A Survey of Addition Chain Algorithms

Thomas Schibler
tschibler@gmail.com
Department of Computer Science
University of California Santa Barbara

June 13, 2018

Abstract

Modular exponentiation appears as a necessary computational tool in many
cryptographic systems. Specifically, given modulus n, base b and exponent
e, exponentiation computes b mod n through repeated multiplications. To
minimize the number of such multiplications, an addition chain of exponents is
computed, such that each exponent in the chain can be expressed as the sum of
two previous exponents. While the problem of finding a minimal addition chain
for a given exponent e is widely thought to be intractable, many algorithms
exist to find short chains. We survey a variety of addition chain algorithms,
focusing on those which partition the bit representation of the target exponent
into manageable sized blocks.

1 Introduction

Addition Chains are an important tool in cryptographic settings, particularly for
public key cryptography algorithms like RSA, in which fast modular exponentiation
is a must. For background, modular exponentiation involves computing the value b°
mod n for some base b, exponent e, and modulus n. While in general the value of
b® can grow unbounded particularly as e becomes large, b mod n can never exceed
the value of n. Naturally, we want to compute the modular result without having to
deal with such large numbers. Indeed, in crypto settings the raw value b would often
exceed any feasible memory limit. Fortunately, we have the identity,

¢ modn=(a modn)-(b modn)

if a = b- c. Therefore for modular exponentiation, decomposing the exponent e, such
that e = e + ey, yields

b mod n= (b mod n)- (b* mod n),

allowing us to condense the result of intermediate multiplications to the size of the
modulus n. However, this result also indicates that we need to break apart the

exponent into pieces that sum together, leading us to addition chains. Specifically,
an addition chain is a sequence of values

A= (a17a27"' 7am)7

such that a; = 1, and a; = a; +a; with j, k < for all « > 1. That is to say, each value
in the chain (other than the starting value of 1) can be computed as a sum of two
previous values. If the final value of the chain a,, = e for our exponent e, then each
step of the chain implies a multiplication step in computing b mod n. As modular
exponentiation is of the more costly operations in algorithms like RSA, an efficient
method is appealing, corresponding to few multiplications, or, a short addition chain.

2 Minimum Length Addition Chains

The key to fast modular exponentiation lies in efficient computation of short addition
chains. Specifically, the length of an addition chain A = (ay, a9, ,a,,) is defined
as [(A) = m — 1, as a; = 1 will always be the first value, leaving m — 1 remaining
steps. Let us also specify L(n) as the length of the shortest chain terminating with
n. Unfortunately, [1], [] et. al. show that problem of finding a minimum length
addition chain containing every value in some set X = {x1,z9,--x,} is NP-Hard.
However, [2] and [] both point out that this result does not indicate a hardness result
for the case of single target value, which is often assumed erroneously. Therefore, the
problem of finding a minimum length chain given target n is still open. That said,
numerous observations support the conjecture that the problem is indeed hard.

For example, Figure 2 depicts the shortest chains for small values of n as a tree.
Already, we can see that the minimum length addition chain is not monotone in n,
and demonstrates little regularity in the relation between n and n + 1. Surprisingly,
[3] even shows that there exists n such that L(2n) < L(n). Upon careful inspection,
one might notice that chains are always extended from a;_; to a; by adding some
value a;j,j < i to a;,—1. Such chains that always use the most recent value a;_; are
called star chains (or Brauer chains as a result of [brauer]). In general the minimum
length chain may not be a star chain (proof from Hansen in 1958), with 12,509 as
the smallest n for which this occurs [geneticalg]. Furthermore, Brauer proved that
for such chains, which he called “special chains,” denoted L*,

L™ —1) <m+ L*(n+ 1),
which only differs in the use of a Brauer chain from the longstanding Scholz conjecture
L™ — 1) <n+Ln+1).

Clift has also proven equality of the Scholz conjecture for values of n up to 232 in
clift]. Brauer’s formula (and the Scholz conjecture should it be proven, especially
with equality) bound the length of a chain for 2" — 1 in terms of the length of a chain
for the exponent L(n), and the minimum number of doublings |log(2" —1)] =n — 1.

3 /\ 4
P .
S~ u N\
S A A A A
ST A A A AN
NI/ A T4 44 T A4 R
AL AT AR A4 T

62 59 112 88 47 92 B2 83 K5 84 90 75 120 78 55 108 63 102 97 99 70 61 104 58 100 77 B6 69 136 76 53 73 144 57 98 67 74 81 130129132

AN A TR TRATNISONNS AN AR

124 118 115119 89 94 93 95 91 135121123 79 110 109 111 126 105 105 147 71 140 122 113 117 116 101 125 87 138 137 106 146 145 114 134 107 148 131 133

127 142 141 143 139
Figure 1: Minimum length addition chains for target n < 148. Reproduced from [4]

However, as [2] points out, even if the problem of finding a minimum length chain
for target n is hard, finding efficient approximations may not be. Many heuristics exist
for the shortest chain problem, some quite complex like the evolutionary techniques
described in [5]. Picek et. al. generate a variety of valid chains for target n, then
apply a genetic algorithm that repeatedly combines such chains and “repairs” them
to optimize for length. Among so many algorithms, we focus primarily on those which
compute a chain based on the bit representation of n, which give provable bounds
on the produced chain length. Fortunately it is easy to show a lower bound on the
chain length L(n) for any n, yielding a base for comparing approximations. [6] show
that minimum chain length is logan + logas(n) — 2.13, where s(n) is the Hamming
weight of n, the sum of bits in its binary expansion. We instead include the intuitive
inductive proof of the bound of log, n.

Lemma 2.1. An addition chain A containing n must have length L(A) > [logyn].

Proof. This follows from the fact that a; appears in chain A = (ay,--- ,a,,) only if
a; = a; +ay for j,k <i. If j = k = ¢ — 1, then the chain value can at most double
with each step. By induction, it takes at least |log, n| doublings to reach n. O

Additionally, it is easy to show an upper bound, such that for all n, L(n) <
2[log, n|, which is the subject of the next section.

3 Binary Method

The binary method is one of the simplest, efficient methods for computing a short
addition chain. Given a target n in its bit representation, n = (by—1,- -+ ,bo)2, the
binary method computes a chain for n by processing the m bits in either direction. To
process right to left, we simply compute each power of 2 through repeated doubling,
while summing all those that correspond to non-zero bits of n. To process left to
right, we double with each bit, additionally adding 1 on each non-zero bit.

Both of these variants compute |log,(n)| doublings, together with a single addition
for each non-zero bit. In the worst case, this is roughly only twice the previously
described lower bound, and only 1.5 times in the expected case. Interestingly the
worst case are the all 1 strings, which are precisely those described in the Scholz
conjecture. For the m-bit all 1 string (2™ — 1), the Scholz conjecture would indicate
that the length of the chain should be m — 1 + L(m). This is identical to binary
method in terms of the number of doublings, but differs in the additions. While the
binary method would compute an addition for each bit, the Scholz conjecture predicts
that this can be done with a shortest chain for the number of bits. In other words, the
binary method could theoretically be improved from 2(m — 1) to m — 1 + O(logm),
or equivalently from a factor 2 to 1 4+ O(log(m)/m). In the next section, the Brauer
Method comes close to accomplishing this goal.

4 Brauer’s Method

In [brauer|, Brauer also described an algorithm for addition chains, which [pippenger]
notes is now called Brauer’s method, or the 2*-ary method. Similar to the binary
method, this method expresses n in its bit representation. However, instead of pro-
cessing individual bits, it processes them k bits at a time, still preforming doublings
and additions. It preforms k& doublings with each step, still one per bit as expected
based on the Scholz conjecture (recall that the number of doublings indicated by the
conjecture remains unchanged). The method gets the name 2*-ary however, because
each addition is based on k bits, or values in [1,2¥). The Brauer method therefore
precomputes all values in this range with the full chain (1,2,--- ,2%), for use later in
the chain. For reasonably sized k, this can cut the number of additions by a factor k,
without requiring too severe preprocessing. In fact, as Bernstein summarizes in [2],
the Brauer method achieves chains of length
logn
logn + (1+ 0(1))10g logn’
Furthermore, [2] notes that with a lower bound of Erdés, Brauer’s method always
finds a chain within a factor

14 0(1)

log logn
of optimal. This is much closer to the desired goal based on Scholz conjecture. In
the remaining portion, we include a few adjustments pointed out in [2]. That said,

4

Brauer’s method already comes very close to achieving optimal chains, and further
improvement is likely of lower priority than other cryptographic concerns.

4.1 Minor Remarks

In [2], Bernstein also highlights a few small improvements to Brauer’s algorithm from
several sources; we briefly describe a few below.

1. Of these improvements, Thurber’s appears most interesting. Instead of always
doubling then adding some r € [1,2%), one can instead add 7/2, and then
proceed to double. This change effectively means that even values do not need
to be precomputed, as we have a choice of how to proceed with each block.

2. Knuth points out that not all values in [1, 2¥) will be used. Especially for larger
k, we can instead compute a shortest chain targeting a value only it appears in
some k-bit block. Of course, this problem must still be approximated as it is
precisely the problem shown to be NP-Hard in [1].

The remaining points in [2] address cases of computing products or sequences of
values, rather than a single target. While interesting extensions to the addition chain
problem, we leave them unturned for the curious reader.

5 Concluding Remarks

It is worth noting that addition chains are useful not only in modular exponentiation,
which we cited as the main motivation, but for all problems involving repeated op-
erations that can be similarly decomposed, such as point addition for elliptic curves.
Additionally, the addition chain algorithms and theoretical bounds discussed only ad-
dress the case of short addition chains, where they come very close to optimal. While
interesting theory questions remain, such as whether the single target case is in fact
NP-Hard like the sequence problem of [1], modern cryptography has other pressing
concerns. For many crypto settings, resistance from side channel attacks is an impor-
tant consideration, which these algorithms do not take into concern. Additionally,
some settings may allow for chains that include other operations. That said, the
algorithms addressed in this paper form an important foundation for understanding
some of the core engineering components of cryptography.

References

[1] P. Downey, B. Leong, and R. Sethi. Computing sequences with addition chains.
SIAM Journal on Computing, 10(3):638-646, 1981.

[2] Daniel J. Bernstein. Pippenger’s exponentiation algorithm. Mathematics Subject
Classification, 1991.

[3] Neill Michael Clift. Calculating optimal addition chains. Computing, 91:265-284,
2011.

[4] Shortest addition chains.

[5] Stjepan Picek et. al. Evolutionary algorithms for finding short addition chains:
Going the distance.

[6] Arnold Schénhage. A lower bound for the length of addition chains. Theoretical
Computer Science, 1(1):1 — 12, 1975.

