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Public Key Cryptosystem Background

Public Key Cryptosystems Background

Foundation of public-key encryption is trap door one-way function f

Difficulty in inverting the trap door one-way function does not depend
on the function f itself, but on the trap door information

The inverses of trap door one-way functions are easy to compute
given the trap door information

A public key cryptosystem consists of a pair of invertible
transformations:

Ek : M −→ C

Dk : C −→ M

Where Ek is the enciphering transformation and Dk is the deciphering
transformation
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Public Key Cryptosystem Background

Public Key Cryptosystems Background

The functions E (·) and D(·) are inverses of one another

C = EKe (M) and M = DKd
(C )

Encryption and decryption processes are asymmetric:

Ke 6= Kd

Ke is public, known to everyone

Kd is private, known only to the user

Ke may be easily deduced from Kd

However, Kd is NOT easily deduced from Ke

1This slide is taken from course’s lecture notes
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Public Key Cryptosystem Background

Public Key Cryptosystems Background

RSA: Encryption and decryption are performed by computing

C = Me (mod n)

M = Cd (mod n)

where (n,e) is public key, (d) is private key and e · d = 1 (mod φ(n))
Rabin-Williams: Encryption and decryption are performed by
computing

C = M2 (mod n)

x = c(p+1)/4 (mod p)

y = c(q+1)/4 (mod q)

m1 = a · p · q + b · q · x (mod n)

m2 = a · p · q − b · q · x (mod n)

where n is public key, (p,q,a,b) is private key and a = p−1 (mod q)
and b = q−1 (mod p)
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Public Key Cryptosystem Background

Public Key Cryptosystems Background

ElGamal Cryptosystem

Setup: A prime number p and the generator g of Zp
∗

Keys: An integer x is picked from Zp
∗. This x is private key.

Public key y is computed as y = g x (mod p)

Encryption:

Select a random : r ∈ Z ∗
p

c1 : g r (mod p)

c2 : m · y r (mod p)

Ciphertext : c = (c1, c2)

Decryption

u1 = cx1 = (g r )x = (g x)r = y r (mod p)

u2 = c2 · u−1
1 = y r ·m · y−r = m (mod p)
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Public Key Cryptosystem Background

Public Key Cryptosystems Background

RSA and Rabin-Williams cryptosystem combines the the intractability
of factoring large numbers with polynomial-time extraction of roots of
polynomials over a finite eld

ElGamal cryptosystem combines the intractability of extracting
discrete logarithms over finite groups with the homomorphic
properties of the modular exponentiation
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Public Key Cryptosystem Background

Composite Residuosity Background

Definition 1

A number z is said to be the n-th residue modulo n2 if there exists a
number y ∈ Z ∗

n2 such that

z = yn (mod n2)

The set of n-residues forms a subgroup of Z ∗
n2 of order φ(n)

Each n-residue in Z ∗
n2 has exactly n roots of degree n

Conjecture 1 (Decisional Composite Residuosity Assumption)

There exists no polynomial time distinguisher for n-th residues modulo n2.

Conjecture says that problem of distinguishing n-th residues from non
n-th residues (denoted by CR[n]) is intractable
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Public Key Cryptosystem Paillier Encryption

Set Up For Paillier Cryptosystem

Paillier Encryption scheme is based on high degree residuosity
classes

Set n = pq where p and q are large primes

Φ(n) = (p − 1)(q − 1) is the Euler function

λ(n) = lcm(p − 1, q − 1) is the Carmichael function

Let Z ∗
n2 be the multiplicative group. | Z ∗

n2 |= Φ(n2) = nΦ(n)

By Carmichael’s theorem, for any w ∈ Z ∗
n2 ,

wλ = 1 (mod n)

wnλ = 1 (mod n2)

Define B as the set of elements of Z ∗
n2 of order nα where α = 1 · · ·λ
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Public Key Cryptosystem Paillier Encryption

Set Up For Paillier Cryptosystem

For any g ∈ B, consider the mapping εg : Zn × Z ∗
n 7→ Z ∗

n2 defined as:

εg (x , y) 7→ g x · yn (mod n2)

Mapping εg is one-to-one.

Two sets Zn × Z ∗
n and Z ∗

n2have same cardinality.

g x1 · yn1 ≡ g x2 · yn2 (mod n2)

⇒ g x2−x1(y2/y1)n ≡ 1 (mod n2) as y1 ∈ Z ∗
n2 and thus, its inverse exists

⇒ g (x2−x1)λ(y2/y1)nλ ≡ 1 (mod n2)

⇒ g (x2−x1)λ ≡ 1 (mod n2) because of Carmichael’s theorem

Thus, (x2 − x1)λ is a multiple of g’s order, and then a multiple of n
Since gcd(λ, n) = 1, x2 − x1 is necessarily a multiple of n.

⇒ x2 − x1 = 0 (mod n) and (y2/y1)n = 1 (mod n2), which leads to the
unique solution (y2/y1) = 1 over Z ∗

n

⇒ x2 = x1 and y2 = y1.
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Public Key Cryptosystem Paillier Encryption

Paillier Cryptosystem: Encryption

For any g ∈ B, the mapping εg : Zn × Z ∗
n 7→ Z ∗

n2 :

εg (x , y) 7→ g x · yn (mod n2)

is one-to-one.

Paillier cryptosystem uses this mapping in creating the ciphertext.

Encryption

Plaintext : 0 < m < n

Select a random : r < n

Ciphertext : c = gm · rn (mod n2)

For a given (m,r) pair, this mapping will generate a unique ciphertext

By using the mapping εg , we have a mechanism to encrypt a message

For recovering the message, a mechanism is needed to invert the
mapping
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Public Key Cryptosystem Paillier Encryption

Paillier Cryptosystem: Encryption

n-residuosity class of w ∈ Z ∗
n2 w.r.t g ∈ B is denoted as ‖w‖g

Definition of ‖w‖g : It is the unique integer x ∈ Zn for which there
exists a y ∈ Z ∗

n such that εg (x , y) = w

In simple language, ‖w‖g denotes an integer x ∈ Zn such that

w = g x · yn (mod n2)

for some y ∈ Z ∗
n
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Public Key Cryptosystem Paillier Encryption

Paillier Cryptosystem: Definitions

In paillier cryptosystem, recovering the message from ciphertext is
exactly the problem of finding ‖w‖g

Definition 2 (n-th Residuosity Class Problem)

Given w ∈ Z ∗
n2 and g ∈ B, compute ‖w‖g . This problem is denoted as

Class[n, g ]

Class[n, g ] is random-self-reducible over g ∈ B. It means that
complexity of Class[n, g ] is independent from g . Therefore, we can
focus on the following problem:

Definition 3 (Composite Residuosity Class Problem)

Given w ∈ Z ∗
n2 and g ∈ B, compute ‖w‖g . This problem is denoted as

Class[n]
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Public Key Cryptosystem Paillier Encryption

Paillier Cryptosystem: Definitions

The ciphertext that we obtain from mapping εg belongs to Z ∗
n2

By Carmichael’s theorem, for any w ∈ Z ∗
n2 ,

wλ = 1 (mod n)

So, lets consider the set Sn = {u < n2 : u = 1 (mod n)}
This Sn is a multiplicative subgroup of integers modulo n2

Consider U = wλ (mod n2) and Note that 1 + n ∈ B

wλ (mod n2) = (1 + n)aλbnλ = (1 + n)aλ = 1 + aλn (mod n2)

⇒ U (mod n) ∈ Sn

Define a function L for u ∈ Sn as L(u) = u−1
n i.e. quotient of integer

division
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Public Key Cryptosystem Paillier Encryption

Paillier Cryptosystem: Decryption

Lemma 4

For any w ∈ Z ∗
n2 , L(wλ (mod n2)) = λ‖w‖1+n (mod n)

Proof.

Since 1 + n ∈ B,⇒ ∃(a, b) ∈ Zn × Z ∗
n such that

w = (1 + n)abn (mod n2)

⇒ a = ‖w‖1+n

Then,

wλ = (1 + n)aλbnλ = (1 + n)aλ = 1 + aλn (mod n2)

Using the above value in function L(u) defined as L(u) =
u − 1

n

L(wλ (mod n2)) = (1 + aλn − 1)/n = aλ = λ‖w‖1+n (mod n)
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Public Key Cryptosystem Paillier Encryption

Paillier Cryptosystem: Decryption

Lemma 5 (Change of base for ‖w‖g )

For g1, g2 ∈ B, ‖w‖g1 = ‖w‖g2 · ‖g2‖g1 (mod n)

Proof.

‖w‖g1 ⇒ w = g x1
1 · yn1 (mod n2)

‖w‖g2 ⇒ w = g x2
2 · yn2 (mod n2)

‖g2‖g1 ⇒ g2 = g x3
1 · yn3 (mod n2)

⇒ g x1
1 yn1 (mod n2) = (g x3

1 .y
n
3 )x2 · yn2 (mod n2)

⇒ g x1
1 yn1 (mod n2) = g x2.x3

1 · yn.x23 · yn2 (mod n2)

⇒ g x1
1 yn1 = g

x2.x3 (mod n)
1 · {(g x2.x3 div n

1 ) · y x23 · y2}n (mod n2)

⇒ x1 = x2 · x3 (mod n)

From above lemma, we can show that ‖g1‖−1
g2 = ‖g2‖g1 modulo n
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Public Key Cryptosystem Paillier Encryption

Paillier Cryptosystem: Decryption

For any g ∈ B and w ∈ Z ∗
n2 ,

L(wλ (mod n2))

L(gλ (mod n2))
=
λ‖w‖1+n

λ‖g‖1+n
=
‖w‖1+n

‖g‖1+n
= ‖w‖g (mod n)

by using previous two lemmas
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Public Key Cryptosystem Paillier Encryption

Paillier Encryption: Complete Setup

Key generation: p, q be prime numbers. Let n = p · q and g ∈ B.
Pair (n, g) is public key and (p, q, λ) is private key
Note: To check if g ∈ B, check whether gcd( L(gλ mod n2), n) = 1

Encryption

Plaintext : 0 < m < n

Select a random : r < n

Ciphertext : c = gm · rn (mod n2)

Decryption

ciphertext : c < n2

plaintext : m =
L(cλ (mod n2))

L(gλ (mod n2))
(mod n)
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Public Key Cryptosystem Paillier Encryption

Paillier Encryption: An Example

p = 7 and q = 11 and n = 77, n2 = 5929

g = 78, as 7877 (mod 772) = 1

Public key : (77, 78), Private key : (7, 11, λ = lcm(6, 10) = 30)

Encryption

Plaintext : m = 23

Select a random : r = 51

Ciphertext : c = 7823 · 5177 (mod 5929) = 193

Decryption

ciphertext : c = 193

plaintext : m =
L(193λ (mod 5929))

L(78λ (mod 5929))
(mod 77)

= 74 · 30−1 (mod 77) = 74 · 18 (mod 77)

= 23
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Public Key Cryptosystem Paillier Encryption

Paillier Encryption: Discussion

It is a probabilistic encryption scheme i.e. randomness is used while
encrypting the message

Therefore, a same message will be mapped to different cipertexts with
high probability

If message m = 0, the encryption will be:

Plaintext : m = 0

Select a random : r < n

Ciphertext : c = g0 · rn (mod n2) = rn (mod n2)

As we can observe, different ciphertexts will be generated each time 0
is encrypted

This encryption is secure by Conjecture Decisional Composite
Residuosity Assumption given on slide 7
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Public Key Cryptosystem Paillier Encryption

Paillier Encryption: Properties

p = 7, q = 11, n = 77, n2 = 5929, g = 78 and λ = 30

Compute L(78λ (mod 5929))−1 (mod 77) = 18

Message m1 = 23 and Message m2 = 31

Homomorphic addition: For all m1,m2 ∈ Zn, and k ∈ N

DPE ( EPE (m1) EPE (m2) (mod n2)) = m1 + m2 (mod n)

DPE ( EPE (m1) gm2 (mod n2)) = m1 + m2 (mod n)

Example: (c1 = 193, r1 = 51) , (c2 = 822, r2 = 61)

c1 ∗ c2 (mod 5929) = 4492
DPE (4492) = L(4492λ (mod 5929)) ∗ 18 (mod 77) = 3.18 = 54

Example: gm2 = 7831

c1 ∗ gm2 (mod 5929) = 4351
DPE (4351) = L(4351λ (mod 5929)) ∗ 18 (mod 77) = 3.18 = 54
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Public Key Cryptosystem Paillier Encryption

Paillier Encryption: Properties

Homomorphic multiplication: For all m1,m2 ∈ Zn, and k ∈ N

DPE ( EPE (m1)m2 (mod n2)) = m1 ·m2 (mod n)

DPE ( EPE (m2)m1 (mod n2)) = m1 ·m2 (mod n)

DPE ( EPE (m1)k (mod n2)) = k ·m1 (mod n)

Example: cm2
1 (mod n2) = 19331 (mod 5929) = 3042

DPE (3042) = L(3042λ (mod 5929)) ∗ 18 (mod 77) = 61.18 = 20

Example: c−1
1 (mod n2) = 193−1 (mod 5929) = 5161

DPE (5161) = L(5161λ (mod 5929)) ∗ 18 (mod 77) = 3.18 = 54
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Public Key Cryptosystem Paillier Encryption

Paillier Encryption: Properties

Self-Blinding: Any ciphertext can be publicly changed into another
without affecting plaintext: For all m ∈ Zn, and r ∈ N

DPE ( EPE (m) rn (mod n2)) = m

Example: r = 46

c1 ∗ rn (mod 5929) = 193 ∗ 4677 (mod 5929) = 5300
DPE (5300) = L(5300λ (mod 5929)).18 = 74.18 = 1332 = 23 = m1
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Public Key Cryptosystem Paillier Encryption

Security of Paillier Encryption

Theorem 6

Class[n] ⇐ Fact[n] i.e. Class[n] problem is polynomially reducible to
Fact[n]

If factors of n are known, then λ(n) = lcm(p − 1, q − 1) can be
computed.

RSA problem: It is denoted by RSA[n, e]. For a given RSA public
key (n, e) and a ciphertext C = Me (mod n), compute M

Theorem 7

Class[n] ⇐ RSA[n,n] i.e. Class[n] problem is polynomially reducible to
RSA[n,n]

Above theorem means that solving RSA[n,n] problem will solve the
Class[n] problem
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Public Key Cryptosystem Paillier Encryption

Security of Paillier Encryption

Theorem 8

Class[n] ⇐ RSA[n,n] i.e. Class[n] problem is polynomially reducible to
RSA[n,n]

Proof.

Let us be given an oracle for RSA[n,n].
We know that w = (1 + n)x · yn (mod n2) for some x ∈ Zn and y ∈ Z ∗

n .
⇒ w = yn (mod n)
⇒ y = RSA[n, n]←− w (mod n)
Using the y that we computed from RSA[n,n] oracle, we can compute w

w

yn
= (1 + n)x = 1 + nx (mod n2)

which discloses x = ‖w‖1+n

Since all instances of Class[n, g ] are computationally equivalent
⇒ Class[n]⇐ RSA[n, n]
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Public Key Cryptosystem Paillier Encryption

One-Way Trapdoor Permutation

Encryption:

Plaintext m < n2

split m into m1,m2 such that m = m1 + nm2

Ciphertext c = gm1 ·mn
2 (mod n2)

Decryption

ciphertext c < n2

Step 1. m1 =
L(cλ (mod n2))

L(gλ (mod n2))
(mod n)

Step 2. c , = cg−m1 (mod n)

Step 3. m2 = c ,n
−1 (mod λ) (mod n)

plaintext m = m1 + nm2
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Public Key Cryptosystem Paillier Encryption

One-Way Trapdoor Permutation

The scheme defined above is one-way iff RSA[n,n] is hard

Scheme is permutation because εg is bijective

By definition of εg , it is required that m2 ∈ Z ∗
n

Thus, the scheme defined above cannot be used for encrypting
messages smaller than n
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