Public-Key Cryptosystem Based on Composite Degree Residuosity Classes

aka

Paillier Cryptosystem

Harmeet Singh

Harmeet Singh

Winter 2018 1 / 26

Public Key Cryptosystems Background

- Foundation of public-key encryption is trap door one-way function f
- Difficulty in inverting the *trap door one-way function* does not depend on the function *f* itself, but on the trap door information
- The inverses of trap door one-way functions are easy to compute given the trap door information
- A public key cryptosystem consists of a pair of invertible transformations:

 $E_k: M \longrightarrow C$ $D_k: C \longrightarrow M$

Where E_k is the enciphering transformation and D_k is the deciphering transformation

Public Key Cryptosystems Background

• The functions $E(\cdot)$ and $D(\cdot)$ are inverses of one another

$$C = E_{K_e}(M)$$
 and $M = D_{K_d}(C)$

• Encryption and decryption processes are asymmetric:

$$K_e \neq K_d$$

- K_e is **public**, known to everyone
- K_d is **private**, known only to the user
- K_e may be easily deduced from K_d
- However, K_d is **NOT** easily deduced from K_e

¹This slide is taken from course's lecture notes

Public Key Cryptosystem Background

Public Key Cryptosystems Background

• RSA: Encryption and decryption are performed by computing

$$C = M^e \pmod{n}$$

 $M = C^d \pmod{n}$

where (n,e) is public key, (d) is private key and e · d = 1 (mod φ(n))
Rabin-Williams: Encryption and decryption are performed by computing

$$C = M^2 \pmod{n}$$

$$x = c^{(p+1)/4} \pmod{p}$$

$$y = c^{(q+1)/4} \pmod{q}$$

$$m_1 = a \cdot p \cdot q + b \cdot q \cdot x \pmod{n}$$

$$m_2 = a \cdot p \cdot q - b \cdot q \cdot x \pmod{n}$$
where **n** is public key, **(p,q,a,b)** is private key and $a = p^{-1} \pmod{q}$
and $b = q^{-1} \pmod{p}$

Public Key Cryptosystem Background

Public Key Cryptosystems Background

ElGamal Cryptosystem

- Setup: A prime number p and the generator g of Z_p^*
- Keys: An integer **x** is picked from Z_p^* . This **x** is private key. Public key **y** is computed as $y = g^x \pmod{p}$
- Encryption:

$$\begin{array}{rcl} \text{Select a random} & : & r \in Z_p^* \\ & c_1 & : & g^r \pmod{p} \\ & c_2 & : & m \cdot y^r \pmod{p} \\ & \text{Ciphertext} & : & c = (c_1, c_2) \end{array}$$

Decryption

$$u_1 = c_1^x = (g^r)^x = (g^x)^r = y^r \pmod{p}$$

 $u_2 = c_2 \cdot u_1^{-1} = y^r \cdot m \cdot y^{-r} = m \pmod{p}$

Public Key Cryptosystems Background

- RSA and Rabin-Williams cryptosystem combines the the intractability of factoring large numbers with polynomial-time extraction of roots of polynomials over a finite eld
- ElGamal cryptosystem combines the intractability of extracting discrete logarithms over finite groups with the homomorphic properties of the modular exponentiation

Composite Residuosity Background

Definition 1

A number z is said to be the *n*-th residue modulo n^2 if there exists a number $y \in Z_{n^2}^*$ such that

$$z = y^n \pmod{n^2}$$

- The set of n-residues forms a subgroup of $Z_{n^2}^*$ of order $\phi(n)$
- Each n-residue in $Z_{n^2}^*$ has exactly *n* roots of degree *n*

Conjecture 1 (Decisional Composite Residuosity Assumption)

There exists no polynomial time distinguisher for n-th residues modulo n^2 .

• Conjecture says that problem of distinguishing *n*-th residues from non *n*-th residues (denoted by CR[n]) is **intractable**

Set Up For Paillier Cryptosystem

- Paillier Encryption scheme is based on high degree residuosity classes
- Set n = pq where p and q are large primes
- $\Phi(n) = (p-1)(q-1)$ is the Euler function
- $\lambda(n) = lcm(p-1, q-1)$ is the Carmichael function

۱

• Let $Z_{n^2}^*$ be the multiplicative group. $|Z_{n^2}^*| = \Phi(n^2) = n\Phi(n)$

• By Carmichael's theorem, for any $w \in Z^*_{n^2}$,

$$w^{\lambda} = 1 \pmod{n}$$

 $w^{n\lambda} = 1 \pmod{n^2}$

• Define B as the set of elements of $Z^*_{n^2}$ of order $n\alpha$ where $\alpha = 1 \cdots \lambda$

Set Up For Paillier Cryptosystem

• For any $g \in B$, consider the mapping $\varepsilon_g : Z_n \times Z_n^* \mapsto Z_{n^2}^*$ defined as: $\varepsilon_g(x, y) \mapsto g^x \cdot y^n \pmod{n^2}$

Mapping ε_g is one-to-one.

Two sets $Z_n \times Z_n^*$ and $Z_{n^2}^*$ have same cardinality. $g^{x_1} \cdot y_1^n \equiv g^{x_2} \cdot y_2^n \pmod{n^2}$ $\Rightarrow g^{x_2-x_1}(y_2/y_1)^n \equiv 1 \pmod{n^2}$ as $y_1 \in Z^*_{n^2}$ and thus, its inverse exists $\Rightarrow g^{(x_2-x_1)\lambda}(y_2/y_1)^{n\lambda} \equiv 1 \pmod{n^2}$ $\Rightarrow g^{(x_2-x_1)\lambda} \equiv 1 \pmod{n^2}$ because of Carmichael's theorem Thus, $(x_2 - x_1)\lambda$ is a multiple of g's order, and then a multiple of n Since $gcd(\lambda, n) = 1$, $x_2 - x_1$ is necessarily a multiple of n. $\Rightarrow x_2 - x_1 = 0 \pmod{n}$ and $(y_2/y_1)^n = 1 \pmod{n^2}$, which leads to the unique solution $(y_2/y_1) = 1$ over Z_n^* $\Rightarrow x_2 = x_1$ and $y_2 = y_1$.

Paillier Cryptosystem: Encryption

• For any $g \in B$, the mapping $\varepsilon_g : Z_n \times Z_n^* \mapsto Z_{n^2}^*$:

$$\varepsilon_g(x,y)\mapsto g^x\cdot y^n\pmod{n^2}$$

is one-to-one.

- Paillier cryptosystem uses this mapping in creating the ciphertext.
- Encryption

Plaintext : 0 < m < nSelect a random : r < nCiphertext : $c = g^m \cdot r^n \pmod{n^2}$

- For a given (m,r) pair, this mapping will generate a unique ciphertext
- $\bullet\,$ By using the mapping $\varepsilon_g,$ we have a mechanism to encrypt a message
- For recovering the message, a mechanism is needed to invert the mapping

Paillier Cryptosystem: Encryption

- n-residuosity class of $w \in Z_{n^2}^*$ w.r.t $g \in B$ is denoted as $||w||_g$
- Definition of ||w||_g : It is the unique integer x ∈ Z_n for which there exists a y ∈ Z_n^{*} such that ε_g(x, y) = w
- In simple language, $\|w\|_g$ denotes an integer $x \in Z_n$ such that

$$w = g^{x} \cdot y^{n} \pmod{n^2}$$

for some $y \in Z_n^*$

Paillier Cryptosystem: Definitions

 In paillier cryptosystem, recovering the message from ciphertext is exactly the problem of finding ||w||_g

Definition 2 (n-th Residuosity Class Problem)

Given $w \in Z_{n^2}^*$ and $g \in B$, compute $||w||_g$. This problem is denoted as Class[n,g]

 Class[n,g] is random-self-reducible over g ∈ B. It means that complexity of Class[n,g] is independent from g. Therefore, we can focus on the following problem:

Definition 3 (Composite Residuosity Class Problem)

Given $w \in Z_{n^2}^*$ and $g \in B$, compute $||w||_g$. This problem is denoted as Class[n]

Paillier Cryptosystem: Definitions

- The ciphertext that we obtain from mapping ε_g belongs to $Z_{n^2}^*$
- By Carmichael's theorem, for any $w \in Z_{n^2}^*$,

$$w^\lambda = 1 \pmod{n}$$

- So, lets consider the set $S_n = \{u < n^2 : u = 1 \pmod{n}\}$
- This S_n is a multiplicative subgroup of integers modulo n^2
- Consider $U = w^{\lambda} \pmod{n^2}$ and **Note** that $1 + n \in B$
 - $w^{\lambda} \pmod{n^2} = (1+n)^{a\lambda} b^{n\lambda} = (1+n)^{a\lambda} = 1 + a\lambda n \pmod{n^2}$

$$\Rightarrow U \pmod{n} \in S_n$$

• Define a function L for $u \in S_n$ as $L(u) = \frac{u-1}{n}$ i.e. quotient of integer division

Paillier Cryptosystem: Decryption

Lemma 4

For any
$$w \in Z_{n^2}^*$$
, $L(w^{\lambda} \pmod{n^2}) = \lambda \|w\|_{1+n} \pmod{n}$

Proof.

Since
$$1 + n \in B$$
, $\Rightarrow \exists (a, b) \in Z_n \times Z_n^*$ such that
 $w = (1 + n)^a b^n \pmod{n^2}$
 $\Rightarrow a = ||w||_{1+n}$
Then,
 $w^{\lambda} = (1 + n)^{a\lambda} b^{n\lambda} = (1 + n)^{a\lambda} = 1 + a\lambda n \pmod{n^2}$
Using the above value in function $L(u)$ defined as $L(u) = \frac{u-1}{n}$
 $L(w^{\lambda} \pmod{n^2}) = (1 + a\lambda n - 1)/n = a\lambda = \lambda ||w||_{1+n} \pmod{n}$

Paillier Cryptosystem: Decryption

Lemma 5 (Change of base for $||w||_g$)

For $g_1, g_2 \in B$, $\|w\|_{g_1} = \|w\|_{g_2} \cdot \|g_2\|_{g_1} \pmod{n}$

Proof.

$$\begin{split} \|w\|_{g_{1}} \Rightarrow w &= g_{1}^{x_{1}} \cdot y_{1}^{n} \pmod{n^{2}} \\ \|w\|_{g_{2}} \Rightarrow w &= g_{2}^{x_{2}} \cdot y_{2}^{n} \pmod{n^{2}} \\ \|g_{2}\|_{g_{1}} \Rightarrow g_{2} &= g_{1}^{x_{3}} \cdot y_{3}^{n} \pmod{n^{2}} \\ \Rightarrow g_{1}^{x_{1}} y_{1}^{n} \pmod{n^{2}} &= (g_{1}^{x_{3}} \cdot y_{3}^{n})^{x_{2}} \cdot y_{2}^{n} \pmod{n^{2}} \\ \Rightarrow g_{1}^{x_{1}} y_{1}^{n} \pmod{n^{2}} &= (g_{1}^{x_{2}} \cdot x_{3}^{n})^{x_{2}} \cdot y_{2}^{n} \pmod{n^{2}} \\ \Rightarrow g_{1}^{x_{1}} y_{1}^{n} \pmod{n^{2}} &= g_{1}^{x_{2} \cdot x_{3}} \cdot y_{3}^{n \cdot x_{2}} \cdot y_{2}^{n} \pmod{n^{2}} \\ \Rightarrow g_{1}^{x_{1}} y_{1}^{n} &= g_{1}^{x_{2} \cdot x_{3}} \pmod{n} \cdot \{(g_{1}^{x_{2} \cdot x_{3}} \operatorname{div}^{n}) \cdot y_{3}^{x_{2}} \cdot y_{2}\}^{n} \pmod{n^{2}} \\ \Rightarrow x_{1} &= x_{2} \cdot x_{3} \pmod{n} \end{split}$$

From above lemma, we can show that $\|g_1\|_{g_2}^{-1} = \|g_2\|_{g_1}$ modulo n

Paillier Cryptosystem: Decryption

• For any
$$g \in B$$
 and $w \in Z^*_{n^2}$,

$$\frac{L(w^{\lambda} \pmod{n^2})}{L(g^{\lambda} \pmod{n^2})} = \frac{\lambda \|w\|_{1+n}}{\lambda \|g\|_{1+n}} = \frac{\|w\|_{1+n}}{\|g\|_{1+n}} = \|w\|_g \pmod{n}$$

by using previous two lemmas

Paillier Encryption: Complete Setup

- Key generation: p, q be prime numbers. Let n = p ⋅ q and g ∈ B.
 Pair (n,g) is public key and (p, q, λ) is private key
 Note: To check if g ∈ B, check whether gcd(L(g^λ mod n²), n) = 1
- Encryption

Plaintext : 0 < m < nSelect a random : r < nCiphertext : $c = g^m \cdot r^n \pmod{n^2}$

Decryption

$$\begin{array}{rcl} {\rm ciphertext} & : & c < n^2 \\ {\rm plaintext} & : & m = \frac{L(c^\lambda \pmod{n^2})}{L(g^\lambda \pmod{n^2})} \pmod{n} \end{array}$$

Paillier Encryption: An Example

•
$$p = 7$$
 and $q = 11$ and $n = 77$, $n^2 = 5929$

• g = 78, as
$$78^{77} \pmod{77^2} = 1$$

• Public key : (77,78), Private key : (7,11, $\lambda = lcm(6,10) = 30$)

Encryption

Plaintext :
$$m = 23$$

Select a random : $r = 51$
Ciphertext : $c = 78^{23} \cdot 51^{77} \pmod{5929} = 193$

Decryption

ciphertext :
$$c = 193$$

plaintext : $m = \frac{L(193^{\lambda} \pmod{5929})}{L(78^{\lambda} \pmod{5929})} \pmod{77}$
 $= 74 \cdot 30^{-1} \pmod{77} = 74 \cdot 18 \pmod{77}$
 $= 23$

Paillier Encryption: Discussion

- It is a probabilistic encryption scheme i.e. randomness is used while encrypting the message
- Therefore, a same message will be mapped to different cipertexts with high probability
- If message m = 0, the encryption will be:

Plaintext : m = 0Select a random : r < nCiphertext : $c = g^0 \cdot r^n \pmod{n^2} = r^n \pmod{n^2}$

- As we can observe, different ciphertexts will be generated each time 0 is encrypted
- This encryption is secure by Conjecture **Decisional Composite Residuosity Assumption** given on slide 7

Paillier Encryption: Properties

- p = 7, q = 11, n = 77, $n^2 = 5929$, g = 78 and $\lambda = 30$
- Compute $L(78^{\lambda} \pmod{5929})^{-1} \pmod{77} = 18$
- Message $m_1 = 23$ and Message $m_2 = 31$
- Homomorphic addition: For all $m_1, m_2 \in Z_n$, and $k \in N$

$$D_{PE}(\mathbf{E}_{PE}(m_1) \mathbf{E}_{PE}(m_2) \pmod{n^2} = m_1 + m_2 \pmod{n}$$
$$D_{PE}(\mathbf{E}_{PE}(m_1) g^{m_2} \pmod{n^2} = m_1 + m_2 \pmod{n}$$

• **Example:** $(c_1 = 193, r_1 = 51)$, $(c_2 = 822, r_2 = 61)$

 $c_1 * c_2 \pmod{5929} = 4492$ $\mathbf{D}_{PE}(4492) = L(4492^{\lambda} \pmod{5929}) * 18 \pmod{77} = 3.18 = 54$

• Example: $g^{m_2} = 78^{31}$ $c_1 * g^{m_2} \pmod{5929} = 4351$ $D_{PE}(4351) = L(4351^{\lambda} \pmod{5929}) * 18 \pmod{77} = 3.18 = 54$

Paillier Encryption: Properties

• Homomorphic multiplication: For all $m_1, m_2 \in Z_n$, and $k \in N$

$$D_{PE}(\mathbf{E}_{PE}(m_1)^{m_2} \pmod{n^2}) = m_1 \cdot m_2 \pmod{n} D_{PE}(\mathbf{E}_{PE}(m_2)^{m_1} \pmod{n^2}) = m_1 \cdot m_2 \pmod{n} D_{PE}(\mathbf{E}_{PE}(m_1)^k \pmod{n^2}) = k \cdot m_1 \pmod{n}$$

• Example: $c_1^{m_2} \pmod{n^2} = 193^{31} \pmod{5929} = 3042$ $D_{PE}(3042) = L(3042^{\lambda} \pmod{5929}) * 18 \pmod{77} = 61.18 = 20$ • Example: $c_1^{-1} \pmod{n^2} = 193^{-1} \pmod{5929} = 5161$ $D_{PE}(5161) = L(5161^{\lambda} \pmod{5929}) * 18 \pmod{77} = 3.18 = 54$

Paillier Encryption: Properties

 Self-Blinding: Any ciphertext can be publicly changed into another without affecting plaintext: For all m ∈ Z_n, and r ∈ N

$$\mathbf{D}_{PE}(\mathbf{E}_{PE}(m) r^n \pmod{n^2}) = m$$

- **Example:** *r* = 46
 - $c_1 * r^n \pmod{5929} = 193 * 46^{77} \pmod{5929} = 5300$ $\mathbf{D}_{PE}(5300) = L(5300^{\lambda} \pmod{5929}).18 = 74.18 = 1332 = 23 = m_1$

Security of Paillier Encryption

Theorem 6

 $Class[n] \leftarrow Fact[n]$ i.e. Class[n] problem is polynomially reducible to Fact[n]

- If factors of *n* are known, then $\lambda(n) = lcm(p-1, q-1)$ can be computed.
- **RSA problem**: It is denoted by *RSA*[*n*, *e*]. For a given RSA public key (*n*, *e*) and a ciphertext *C* = *M*^{*e*} (mod *n*), compute M

Theorem 7

 $Class[n] \leftarrow RSA[n,n]$ i.e. Class[n] problem is polynomially reducible to RSA[n,n]

• Above theorem means that solving RSA[n,n] problem will solve the Class[n] problem

Security of Paillier Encryption

Theorem 8

 $Class[n] \leftarrow RSA[n,n]$ i.e. Class[n] problem is polynomially reducible to RSA[n,n]

Proof.

Let us be given an oracle for RSA[n,n]. We know that $w = (1 + n)^x \cdot y^n \pmod{n^2}$ for some $x \in Z_n$ and $y \in Z_n^*$. $\Rightarrow w = y^n \pmod{n}$ $\Rightarrow y = RSA[n, n] \longleftarrow w \pmod{n}$ Using the y that we computed from RSA[n,n] oracle, we can compute w

$$\frac{w}{y^n} = (1+n)^x = 1 + nx \pmod{n^2}$$

which discloses $x = ||w||_{1+n}$ Since all instances of Class[n, g] are computationally equivalent $\Rightarrow Class[n] \leftarrow RSA[n, n]$

One-Way Trapdoor Permutation

• Encryption:

Plaintext
$$m < n^2$$
split m into m_1, m_2 such that $m = m_1 + nm_2$ Ciphertext $c = g^{m_1} \cdot m_2^n \pmod{n^2}$

Decryption

$$\begin{array}{ll} {\rm ciphertext} & c < n^2 \\ {\rm Step \ 1.} & m_1 = \frac{L(c^\lambda \pmod{n^2})}{L(g^\lambda \pmod{n^2})} \pmod{n} \\ {\rm Step \ 2.} & c^{,} = cg^{-m_1} \pmod{n} \\ {\rm Step \ 3.} & m_2 = c^{,n^{-1}} \pmod{\lambda} \pmod{n} \\ {\rm plaintext} & m = m_1 + nm_2 \end{array}$$

One-Way Trapdoor Permutation

- The scheme defined above is one-way iff RSA[n,n] is hard
- Scheme is permutation because ε_g is bijective
- By definition of ε_g , it is required that $m_2 \in Z_n^*$
- Thus, the scheme defined above cannot be used for encrypting messages smaller than \boldsymbol{n}