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The Chinese Remainder Theorem

Some cryptographic algorithms work with two (such as RSA) or more
moduli (such as secret-sharing)

The Chinese Remainder Theorem (CRT) and underlying algorithm
allows to work with multiple moduli

The general idea is to compute a large integer X knowing only its
remainders modulo a small set of integers (called moduli)

The principles of this method was established sometime in the 3rd
and 5th century in China

A Chinese mathematician Sun Tzu or Sunzi is known to be the author
of The Mathematical Classic of Sunzi, which contains the earliest
known example of the algorithm

Thus, it is named as the Chinese Remainder Theorem.
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The Chinese Remainder Theorem

Theorem

Given k pairwise relatively prime moduli n; for i = 1,2, ... k, a number
x € [0, m — 1] with m = ny - np - - - ng is uniquely representable using the
remainders r; for i = 1,2,... k such that rj = x (mod n;).

Given the remainders ry, ra, ..., r,, we can compute x using

K
X=Zr,--c,--m,' (mod m)
i=1

where mj = m/n; and ¢; = m,._1 (mod n;)

o The computation of x using the linear summation formula above is
also called the Chinese Remainder Algorithm (CRA)
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A CRT Example

o Let the moduli set be {5,7,9}
@ These moduli are pairwise relatively prime:
ged(5,7) = ged(5,9) = ged(7,9) =1
o Each modulus does not need to be prime, but they need to be
pairwise relatively prime
o If they are all prime, they will be pairwise relatively prime too
o Wehaveny =5, nn=7,n3=9, and thus m=5-7-9 =315

o All integers in the range [0, 314] are uniquely representable using this
moduli set
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A CRT Example

o Let x = 200, then we have

rn = 200mod5 rn = 200mod7 r3 = 200 mod?9
n = 0 rph = 4 3 = 2

o The remainder set (0, 4,2) with respect to the moduli set (5,7,9)
uniquely represents the integer 200

o Given the integer x and the moduli set, the remainders can be
computed using r; = x (mod n;) for i =1,2,... k

o Given the remainders and the moduli set, the integer x can be
computed using the standard Chinese Remainder Algorithm, given
above, represented as

CRT(0,4,2;5,7,9) = 200
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A CRT Example

o Compute x = CRT(0,4,2;5,7,9)
m=n;-n-n=5-7-9=315
m =m/n =315/5=7-9=063
my =m/np =315/7=5-9=45
m3:m/n3=315/9=5-7=35
c1=m1 1-63"1=3"1=2 (mod5)
c2:m2 1 =451 =3"1=5 (mod 7)
=my'=35"1=8"1=8 (mod9)

X = n-ca-m-+n-c-m+r-cz-my (modm)
= 0.2:63+4-5-45+2-8-35 = 1460 (mod 315)
= 200 (mod 315)

Therefore, CRT(0,4,2;5,7,9) = 200
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Another CRT Example

o Compute x = CRT(2,1,1;7,9,11)
m=mn;-n-n=7-9-11 =693
my =m/n =693/7=9-11 =199
my=m/np =693/9=7-11=77
m3=m/n3 =693/11 =7-9 =63
c=m'=99"t=1"1=1 (mod 7)
c=myt=77"1=5"1=2 (mod 9)
=my'=63"1=8"1=7 (mod 11)

X = n-ca-m-+mn-c-m+r-c-my (modN)
= 2.1-9941-2-77+1-7-63 = 793 (mod 693)
= 100 (mod 693)

Therefore, CRT(2,1,1;7,9,11) = 100
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The Mixed Radix Conversion Algorithm

@ The standard CRA uses the summation

k
x:Zr;-c,--m,- (mod m)
i=1
o The CRA requires multi-precision arithmetic at each step, as each
product term in the summation grows beyond m=ny - ny--- ny
o There exists another algorithm, called the Mixed Radix Conversion
(MRC) Algorithm, which computes x more efficiently
o The MRC algorithm is particularly useful when each modulus fits into
the word size of the computer
o The MRC avoids multi-precision arithmetic until the last phase
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The Step 1 of the MRC Algorithm

o Step 1: Compute and save the inverses ¢jj for 1 </ < j < k

cij = nJ._1 (mod n;)

o This is accomplished using the extended Euclidean algorithm for the
Fermat's method if the modulus is prime

@ In case each modulus fits into the word size of the computer, any of
the inverses would also fit into the same size

o Step 1 can be performed using the single-precision arithmetic
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The Step 2 of the MRC Algorithm

o Step 2: Given the remainders (r1, o, ..., rg) of X with respect to the
moduli (n1, na, ..., nk) and its first column as

rm=r for i=12 ... k

compute the entries of the lower triangular matrix

ri

1 2

31 r32 33

k1 k2 k3 v Tk

o The computations in the ith row are performed mod n;
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The Step 2 of the MRC Algorithm

@ The 2nd column is computed using the 1st column and the inverses
rip = (1 —n1)-c1 modn; for i=23,... k

o The 3rd column is computed using the 2nd column and the inverses
ris = (fio—rm2)-c2 modn; for i=34,... k

@ The 4th column is computed using the 3rd column and the inverses

ris = (ri3—rm3)-c3 modn; for i =4,5,... k
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The Step 2 of the MRC Algorithm

@ The jth column is computed using the (j — 1)th column and the
inverses

rij = (r,-J_l—rj_lJ_l)-c,-,j_l modn,— for I':j7j—|-1,...,k
o All computations in Step 2 are in single-precision arithmetic

o As an example, for k =5 we compute

m=n

modny
n1=r  rp=(n—rni)o mod
r1=r3 rp=(r1—n1)a  r3 = (32— m) modng
1 =ry o= (a1 —ri)aar  raz = (a2 — r2)car raq = (ra3 — r33)ca3 modng
rs1 = rp = (rs1 — r)car rs3 = (rs2 — ro)cs2 rsa = (r53 — r33)cs3 rs5 = (rsa — ras)csa  modns
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The Step 3 of the MRC Algorithm

Step 3: The integer x is then computed using the diagonal entries as
C=1r11+rp N +r33-N- N2+ - +rek-N-N2--Nk_y

o This step requires multiprecision arithmetic due to the product terms
ny-np---nifori=1,2,..., k—1in the summation to obtain x

o Step 3 is the only step in the MRC which requires multiprecision
arithmetic

@ The MRC has some other advantages: Two numbers can be
compared in size if their MRC coefficients (r11, 2, ..., rkk) are known

o The MRC is essentially a radix representation of the number x,
however, more than one radix is used (thus: the term, mixed-radix)
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An Example of the MRC Algorithm

o As example, let us take the remainders (r1, r2, r3) = (2,1,1) with
respect to the moduli (ny1, n2, n3) = (7,9,11) and compute x

o Step 1: First we compute and save the inverses ¢1, ¢31, C32

1 = nit (modnp) 77! (mod9) —4
s = n;t (modng) 77! (mod11) — 8
32 = ny' (modng) 97! (mod1l) —5
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An Example of the MRC Algorithm

o Step 2: The first column of the lower triangular matrix is the given
set of remainders (2,1, 1) from which we compute the rest of the
columns:

2
1 (1-2)-4 (mod9)—5
1 (1-2)-8 (mod11)—3 (3—5)-5 (mod11)—1

Cetin Kaya Kog http://koclab.org Winter 2017 15 / 16


http://koclab.org

Chinese Remainder Theorem CRA, MRC

An Example of the MRC Algorithm

o Step 3: To compute x, we perform the summation

X = ni+r2-n+rmn33-n-n
2+5.74+1-7-9
= 100

@ Until the Step 3, all computations are in single-precision, assuming
each modulus is a single-precision integer
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