
0

130a: Algorithm Analysis

■  Foundations of Algorithm Analysis and Data Structures.
■  Analysis:

£  How to predict an algorithm’s performance
£  How well an algorithm scales up
£  How to compare different algorithms for a problem

■  Data Structures
£  How to efficiently store, access, manage data
£  Data structures effect algorithm’s performance

1

Example Algorithms
■ Two algorithms for computing the Factorial
■ Which one is better?

■  int factorial (int n) {
 if (n <= 1) return 1;
 else return n * factorial(n-1);
}

■  int factorial (int n) {
 if (n<=1) return 1;
 else {
 fact = 1;
 for (k=2; k<=n; k++)
 fact *= k;
 return fact;
 }
}

2

Examples of famous algorithms

■ Constructions of Euclid
■ Newton's root finding
■ Fast Fourier Transform
■ Compression (Huffman, Lempel-Ziv, GIF, MPEG)
■ DES, RSA encryption
■ Simplex algorithm for linear programming
■ Shortest Path Algorithms (Dijkstra, Bellman-Ford)
■ Error correcting codes (CDs, DVDs)
■ TCP congestion control, IP routing
■  Pattern matching (Genomics)
■ Search Engines

3

Role of Algorithms in Modern World

■  Enormous amount of data
£  E-commerce (Amazon, Ebay)
£  Network traffic (telecom billing, monitoring)
£  Database transactions (Sales, inventory)
£  Scientific measurements (astrophysics, geology)
£  Sensor networks. RFID tags
£  Bioinformatics (genome, protein bank)

■  Amazon hired first Chief Algorithms Officer (Udi Manber)

4

A real-world Problem

■ Communication in the Internet
■ Message (email, ftp) broken down into IP packets.
■ Sender/receiver identified by IP address.
■ The packets are routed through the Internet by special

computers called Routers.
■ Each packet is stamped with its destination address, but not

the route.
■ Because the Internet topology and network load is constantly

changing, routers must discover routes dynamically.
■ What should the Routing Table look like?

5

IP Prefixes and Routing
■ Each router is really a switch: it receives packets at several

input ports, and appropriately sends them out to output
ports.

■ Thus, for each packet, the router needs to transfer the
packet to that output port that gets it closer to its
destination.

■ Should each router keep a table: IP address x Output Port?
■ How big is this table?
■ When a link or router fails, how much information would need

to be modified?
■ A router typically forwards several million packets/sec!

6

Data Structures
■ The IP packet forwarding is a Data Structure problem!
■ Efficiency, scalability is very important.

■ Similarly, how does Google find the documents matching your
query so fast?

■ Uses sophisticated algorithms to create index structures,
which are just data structures.

■ Algorithms and data structures are ubiquitous.
■ With the data glut created by the new technologies, the need

to organize, search, and update MASSIVE amounts of
information FAST is more severe than ever before.

7

Algorithms to Process these Data

■  Which are the top K sellers?
■  Correlation between time spent at a web site and purchase

amount?
■  Which flows at a router account for > 1% traffic?
■  Did source S send a packet in last s seconds?
■  Send an alarm if any international arrival matches a profile

in the database
■  Similarity matches against genome databases
■  Etc.

8

Max Subsequence Problem
■  Given a sequence of integers A1, A2, …, An, find the maximum possible

sum value of a subsequence Ai, …, Aj.
■  Numbers can be negative.
■  You want a contiguous chunk with largest sum.

■  Example: -2, 11, -4, 13, -5, -2
■  The answer is 20 (subseq. A2 through A4).

■  We will discuss 4 different algorithms, with time complexities O(n3),
O(n2), O(n log n), and O(n).

■  With n = 106, algorithm 1 may take > 10 years; algorithm 4 will take a
fraction of a second!

9

 int maxSum = 0;

 for(int i = 0; i < a.size(); i++)
 for(int j = i; j < a.size(); j++)
 {
 int thisSum = 0;
 for(int k = i; k <= j; k++)
 thisSum += a[k];
 if(thisSum > maxSum)
 maxSum = thisSum;
 }
 return maxSum;

Algorithm 1 for Max Subsequence Sum
■ Given A1,…,An , find the maximum value of Ai+Ai+1+···+Aj
 0 if the max value is negative

■ Time complexity: O(n3)	

)1(O

)(ijO −

)1(O

)1(O

)1(O

))((
1

∑
−

=

−
n

ij
ijO))((

1

0

1

∑∑
−

=

−

=

−
n

i

n

ij
ijO

10

Algorithm 2

■ Idea: Given sum from i to j-1, we can compute the
sum from i to j in constant time.

■ This eliminates one nested loop, and reduces the
running time to O(n2).

 into maxSum = 0;

 for(int i = 0; i < a.size(); i++)
 int thisSum = 0;
 for(int j = i; j < a.size(); j++)
 {
 thisSum += a[j];
 if(thisSum > maxSum)
 maxSum = thisSum;
 }
 return maxSum;

11

Algorithm 3

■ This algorithm uses divide-and-conquer paradigm.
■ Suppose we split the input sequence at midpoint.
■ The max subsequence is entirely in the left half,

entirely in the right half, or it straddles the
midpoint.

■ Example:
 left half | right half
 4 -3 5 -2 | -1 2 6 -2
■  Max in left is 6 (A1 through A3); max in right is 8 (A6

through A7). But straddling max is 11 (A1 thru A7).

12

Algorithm 3 (cont.)
■ Example:
 left half | right half
 4 -3 5 -2 | -1 2 6 -2
■ Max subsequences in each half found by recursion.
■ How do we find the straddling max subsequence?
■ Key Observation:

£  Left half of the straddling sequence is the max
subsequence ending with -2.

£  Right half is the max subsequence beginning with -1.

■ A linear scan lets us compute these in O(n) time.

13

Algorithm 3: Analysis

■ The divide and conquer is best analyzed through

recurrence:

 T(1) = 1
 T(n) = 2T(n/2) + O(n)

■ This recurrence solves to T(n) = O(n log n).

14

Algorithm 4

■ Time complexity clearly O(n)
■ But why does it work? I.e. proof of correctness.

2, 3, -2, 1, -5, 4, 1, -3, 4, -1, 2

 int maxSum = 0, thisSum = 0;

 for(int j = 0; j < a.size(); j++)
 {
 thisSum += a[j];

 if (thisSum > maxSum)
 maxSum = thisSum;
 else if (thisSum < 0)
 thisSum = 0;
 }
 return maxSum;

}

15

Proof of Correctness

■ Max subsequence cannot start or end at a negative Ai.
■ More generally, the max subsequence cannot have a prefix

with a negative sum.
 Ex: -2 11 -4 13 -5 -2
■ Thus, if we ever find that Ai through Aj sums to < 0, then we

can advance i to j+1
£  Proof. Suppose j is the first index after i when the sum

becomes < 0
£  The max subsequence cannot start at any p between i and

j. Because Ai through Ap-1 is positive, so starting at i would
have been even better.

16

Algorithm 4
 int maxSum = 0, thisSum = 0;

 for(int j = 0; j < a.size(); j++)
 {
 thisSum += a[j];

 if (thisSum > maxSum)
 maxSum = thisSum;
 else if (thisSum < 0)
 thisSum = 0;
 }
 return maxSum

•  The algorithm resets whenever prefix is < 0.
Otherwise, it forms new sums and updates
maxSum in one pass.

17

Why Efficient Algorithms Matter
■ Suppose N = 106
■ A PC can read/process N records in 1 sec.
■ But if some algorithm does N*N computation, then it takes

1M seconds = 11 days!!!

■  100 City Traveling Salesman Problem.
£  A supercomputer checking 100 billion tours/sec still

requires 10100 years!

■  Fast factoring algorithms can break encryption schemes.
Algorithms research determines what is safe code length. (>
100 digits)

18

How to Measure Algorithm Performance

■  What metric should be used to judge algorithms?
£ Length of the program (lines of code)
£ Ease of programming (bugs, maintenance)
£ Memory required
q Running time

■ Running time is the dominant standard.
£ Quantifiable and easy to compare
£ Often the critical bottleneck

19

Abstraction
■ An algorithm may run differently depending on:

£  the hardware platform (PC, Cray, Sun)
£  the programming language (C, Java, C++)
£  the programmer (you, me, Bill Joy)

■ While different in detail, all hardware and prog models are
equivalent in some sense: Turing machines.

■  It suffices to count basic operations.

■ Crude but valuable measure of algorithm’s performance as a
function of input size.

20

Average, Best, and Worst-Case

■ On which input instances should the algorithm’s performance
be judged?

■ Average case:
£  Real world distributions difficult to predict

■ Best case:
£  Seems unrealistic

■  Worst case:
£  Gives an absolute guarantee
£  We will use the worst-case measure.

21

Examples

■ Vector addition Z = A+B
for (int i=0; i<n; i++)

Z[i] = A[i] + B[i];
T(n) = c n

■ Vector (inner) multiplication z =A*B
z = 0;
for (int i=0; i<n; i++)

z = z + A[i]*B[i];
T(n) = c’ + c1 n

22

Examples

■ Vector (outer) multiplication Z = A*BT

for (int i=0; i<n; i++)
 for (int j=0; j<n; j++)
 Z[i,j] = A[i] * B[j];
T(n) = c2 n2;

■ A program does all the above
 T(n) = c0 + c1 n + c2 n2;

23

Simplifying the Bound

■ T(n) = ck nk + ck-1 nk-1 + ck-2 nk-2 + … + c1 n + co
£ too complicated
£ too many terms
£ Difficult to compare two expressions, each with

10 or 20 terms
■ Do we really need that many terms?

24

Simplifications
■ Keep just one term!

£  the fastest growing term (dominates the runtime)
■ No constant coefficients are kept

£  Constant coefficients affected by machines, languages,
etc.

■ Asymtotic behavior (as n gets large) is determined entirely

by the leading term.

£  Example. T(n) = 10 n3 + n2 + 40n + 800

�  If n = 1,000, then T(n) = 10,001,040,800
�  error is 0.01% if we drop all but the n3 term

£  In an assembly line the slowest worker determines the
throughput rate

25

Simplification

■ Drop the constant coefficient
£ Does not effect the relative order

26

Simplification

■ The faster growing term (such as 2n) eventually will
outgrow the slower growing terms (e.g., 1000 n) no
matter what their coefficients!

■  Put another way, given a certain increase in
allocated time, a higher order algorithm will not reap
the benefit by solving much larger problem

27

T(n)
n n n log n n2 n3 n4 n10 2n

10 .01µs .03µs .1µs 1µs 10µs 10s 1µs
20 .02µs .09µs .4µs 8µs 160µs 2.84h 1ms
30 .03µs .15µs .9µs 27µs 810µs 6.83d 1s
40 .04µs .21µs 1.6µs 64µs 2.56ms 121d 18m
50 .05µs .28µs 2.5µs 125µs 6.25ms 3.1y 13d

100 .1µs .66µs 10µs 1ms 100ms 3171y 4×1013y
103 1µs 9.96µs 1ms 1s 16.67m 3.17×1013y 32×10283y
104 10µs 130µs 100ms 16.67m 115.7d 3.17×1023y
105 100µs 1.66ms 10s 11.57d 3171y 3.17×1033y
106 1ms 19.92ms 16.67m 31.71y 3.17×107y 3.17×1043y

Complexity and Tractability

Assume the computer does 1 billion ops per sec.

28

log nnn log nn2n32n01011212248424816641638246451225641664256409665,5365321601,02432,7684,294,967,296

0

10000

20000

30000

40000

50000

60000

70000

n
1

10

100

1000

10000

100000

n

2n
n2

n log n

n

log n

log n
n

n log n

n2

n3

n3
2n

29

Another View

■ More resources (time and/or processing power) translate into
large problems solved if complexity is low

T(n) Problem size
solved in 103
sec

Problem size
solved in 104
sec

Increase in
Problem size

100n 10 100 10

1000n 1 10 10

5n2 14 45 3.2

N3 10 22 2.2

2n 10 13 1.3

30

T(n) keep one drop coef

3n2+4n+1 3 n2 n2

101 n2+102 101 n2 n2

15 n2+6n 15 n2 n2

a n2+bn+c a n2 n2

Asympotics

■ They all have the same “growth” rate

31

Caveats

■ Follow the spirit, not the letter
£ a 100n algorithm is more expensive than n2

algorithm when n < 100
■ Other considerations:

£ a program used only a few times
£ a program run on small data sets
£ ease of coding, porting, maintenance
£ memory requirements

32

Asymptotic Notations

■ Big-O, “bounded above by”: T(n) = O(f(n))
£  For some c and N, T(n) ≤ c·f(n) whenever n > N.

■ Big-Omega, “bounded below by”: T(n) = Ω(f(n))
£  For some c>0 and N, T(n) ≥ c·f(n) whenever n > N.
£  Same as f(n) = O(T(n)).

■ Big-Theta, “bounded above and below”: T(n) = θ(f(n))
£  T(n) = O(f(n)) and also T(n) = Ω(f(n))

■  Little-o, “strictly bounded above”: T(n) = o(f(n))
£  For some c and N, T(n) < c·f(n) whenever n > N
£  T(n)=O(f(n)) and T(n) ≠ θ(f(n))

33

By Pictures

■ Big-Oh (most commonly used)
£ bounded above

■ Big-Omega
£ bounded below

■ Big-Theta
£ exactly

■ Small-o
£ not as expensive as ...

0N

0N

0N

34

Example

33

25

10

0
(?)(?)

nn
nn
nn

O
∞

Ω

23 2)(nnnT +=

35

Examples

)(log/1
))/((!

)(
)(
)(
)(
)(
)1(c

Asymptomic)(

1

0

1
1

32
1

2
1

1

ni
ennn

rr
ni
ni
ni
nnc

nf

n
i

n

nin
i

kkn
i

n
i

n
i

ki
i

k
i

ΘΣ
Θ
ΘΣ
ΘΣ
ΘΣ
ΘΣ
ΘΣ
Θ

=

=

+
=

=

=

=

36

Summary (Why O(n)?)

■ T(n) = ck nk + ck-1 nk-1 + ck-2 nk-2 + … + c1 n + co
■ Too complicated
■ O(nk)

£ a single term with constant coefficient dropped
■ Much simpler, extra terms and coefficients do not

matter asymptotically
■ Other criteria hard to quantify

37

Runtime Analysis

■ Useful rules
£  simple statements (read, write, assign)

�  O(1) (constant)
£  simple operations (+ - * / == > >= < <=

�  O(1)
£  sequence of simple statements/operations

�  rule of sums
£  for, do, while loops

�  rules of products

38

Runtime Analysis (cont.)

■ Two important rules
£ Rule of sums

�  if you do a number of operations in sequence, the
runtime is dominated by the most expensive operation

£ Rule of products
�  if you repeat an operation a number of times, the total

runtime is the runtime of the operation multiplied by
the iteration count

39

Runtime Analysis (cont.)

if (cond) then O(1)
body1 T1(n)

else
body2 T2(n)

endif

T(n) = O(max (T1(n), T2(n))

40

Runtime Analysis (cont.)

■ Method calls
£ A calls B
£ B calls C
£ etc.

■ A sequence of operations when call sequences are
flattened
T(n) = max(TA(n), TB(n), TC(n))

41

Example

for (i=1; i<n; i++)
if A(i) > maxVal then

maxVal= A(i);
maxPos= i;

Asymptotic Complexity: O(n)

42

Example

for (i=1; i<n-1; i++)
for (j=n; j>= i+1; j--)

if (A(j-1) > A(j)) then
temp = A(j-1);
A(j-1) = A(j);
A(j) = tmp;

endif
endfor

endfor

■  Asymptotic Complexity is O(n2)

43

Run Time for Recursive Programs

■ T(n) is defined recursively in terms of T(k), k<n
■ The recurrence relations allow T(n) to be “unwound”

recursively into some base cases (e.g., T(0) or T(1)).
■ Examples:

£ Factorial
£ Hanoi towers

44

Example: Factorial
int factorial (int n) {
 if (n<=1) return 1;
 else return n * factorial(n-1);
}

factorial (n) = n*n-1*n-2* … *1

n * factorial(n-1)

 n-1 * factorial(n-2)

 n-2 * factorial(n-3)

 …

 2 *factorial(1)

T(n)

T(n-1)

T(n-2)

T(1)

)(
*)1(
*)1()1(

....
)3(
)2(
)1(

)(

nO
dnc
dnT

dddnT
ddnT

dnT
nT

=

−+=

−+=

=

+++−=

++−=

+−=

45

Example: Factorial (cont.)
int factorial1(int n) {
 if (n<=1) return 1;
 else {
 fact = 1;
 for (k=2;k<=n;k++)
 fact *= k;
 return fact;
 }
}
■ Both algorithms are O(n).

)1(O

)1(O
)(nO

46

Example: Hanoi Towers

■ Hanoi(n,A,B,C) =
■ Hanoi(n-1,A,C,B)+Hanoi(1,A,B,C)+Hanoi(n-1,C,B,A)

)2(
)12...22(

)12...2()1(2
....

22)3(2
2)2(2

)1(2
)(

21

21

23

2

n

nn

nn

O
c

cT

cccnT
ccnT

cnT
nT

=

++++=

++++=

=

+++−=

++−=

+−=

−−

−−

47

 // Early-terminating version of selection sort
 bool sorted = false;
 !sorted &&

 sorted = true;

 else sorted = false; // out of order

■ Worst Case
■ Best Case

template<class T>
void SelectionSort(T a[], int n)
{

 for (int size=n; (size>1); size--) {
 int pos = 0;

 // find largest
 for (int i = 1; i < size; i++)
 if (a[pos] <= a[i]) pos = i;

 Swap(a[pos], a[size - 1]);
 }
}

Worst Case, Best Case, and Average Case

48

■  T(N)=6N+4 : n0=4 and c=7, f(N)=N
■  T(N)=6N+4 <= c f(N) = 7N for N>=4
■  7N+4 = O(N)
■  15N+20 = O(N)
■  N2=O(N)?
■  N log N = O(N)?
■  N log N = O(N2)?
■  N2 = O(N log N)?
■  N10 = O(2N)?
■  6N + 4 = W(N) ? 7N? N+4 ? N2? N log N?
■  N log N = W(N2)?
■  3 = O(1)
■  1000000=O(1)
■  Sum i = O(N)?

T(N)
f(N)

c f(N)
n0

T(N)=O(f(N))

49

An Analogy: Cooking Recipes
■  Algorithms are detailed and precise instructions.
■  Example: bake a chocolate mousse cake.

£  Convert raw ingredients into processed output.
£  Hardware (PC, supercomputer vs. oven, stove)
£  Pots, pans, pantry are data structures.

■  Interplay of hardware and algorithms
£  Different recipes for oven, stove, microwave etc.

■  New advances.
£  New models: clusters, Internet, workstations
£  Microwave cooking, 5-minute recipes, refrigeration

