
Data Structures and Algorithms cs130a

Algorithm Analysis

The running time analysis of algorithms involves the counting and
finding the final sum f (n) of the “atomic” operations required by the
algorithm with input size n

The definition of an atomic operation depends on what the algorithm
does in principle, and what we need to count in order to understand
and quantify its running time

For example, for a searching algorithm, we will need to count the
number of “comparisons”, because that what searching does: finding
the index of x in a list L if x is the in list, and finding −1 if x is not in
the list

At the it step, we compare x to the ith element of the list: if Li = x ,
we found x and its index is i

http://koclab.org Çetin Kaya Koç Winter 2020 1 / 17

http://koclab.org


Data Structures and Algorithms cs130a

Algorithm Analysis

The atomic operation will be different for other algorithms, for
example, we will have to count the number of “swap” operations in a
sorting algorithm, and the number of integer additions and
multiplications in an algorithm that computes the product of two
n × n matrices

Furthermore, when we count the number of operations, we will need
to consider “the worst case” or “the average case” or “the best case”
situations, in terms the input configuration, values or other factors

Therefore, we would be performing the the worst case, the average
case or the best case analysis of the algorithm we are considering

In most situations, we will have to consider the worst case analysis in
order to make a fair assessment of the algorithm, and to compare it
to other algorithms computing the same output

http://koclab.org Çetin Kaya Koç Winter 2020 2 / 17

http://koclab.org


Data Structures and Algorithms cs130a

Binary Exponentiation Algorithm

The following algorithm computes xe given the input x (which can be
an integer, or a real number, or even a matrix) and the exponent e
(which is a positive integer)

ei be the ith bit of the exponent, for 0 ≤ i < n, in other words
e = (en−1en−2 · · · e1e0)

The input size of the algorithm is n which is the number of bits in e

Step 1: y = 1

Step 2: for i=n-1 down to 0

Step 3: y = y * y

Step 4: if (e_i=1) y = y * x

Step 5: return y

http://koclab.org Çetin Kaya Koç Winter 2020 3 / 17

http://koclab.org


Data Structures and Algorithms cs130a

Analysis of Binary Exponentiation Algorithm

Obviously the atomic operation in this algorithm is the multiplication
or squaring operation: y = y * y and y = y * x

We will count the number of multiplications (assuming squaring is the
same operation)

The running time of the binary exponentiation algorithm f (n) is the
number of multiplications, which depends on the bit configuration of
the exponent

The exponent e could be (100 · · · 0) or (111 · · · 1) or (1010 · · · 10),
giving us different f (n) values

The more 1s in the binary expansion of e implies, the more we need
to perform multiplications in Step 4

http://koclab.org Çetin Kaya Koç Winter 2020 4 / 17

http://koclab.org


Data Structures and Algorithms cs130a

Analysis of Binary Exponentiation Algorithm

The best case analysis: there exists only a single 1 in the binary
expansion of the exponent: e = (1000 · · · 0)
In Step 3, we will have n multiplications, and in Step 4, we will have
only 1, therefore, fbest(n) = n + 1

The worst case analysis: there exists only n 1s in the binary expansion
of the exponent: e = (1111 · · · 1)
In Step 3, we will have n multiplications, and in Step 4, we will also
have n multiplications, therefore, fworst(n) = 2n

The average case analysis: Assuming each exponent bit is equal 1 or
0 with equal probability, there will be about n/2 1s and n/2 0s in the
binary expansion of the exponent
In Step 3, we will have n multiplications, and in Step 4, we will have
n/2 multiplications, therefore, faverage(n) = 1.5n

http://koclab.org Çetin Kaya Koç Winter 2020 5 / 17

http://koclab.org


Data Structures and Algorithms cs130a

Big-O, Big-Omega, and Big-Theta

Once we have the (best, average, worst) running time function f (n),
we can then compute its order:

Big-O: f (n) = O(g1(n))
Big-Omega: f (n) = Ω(g2(n))
Big-Theta: f (n) = Θ(g3(n))

The growth of functions helps to obtain the order of f (n)

This is a separate step from the counting operation

It helps us to quickly ascertain the performance of the algorithm we
have analyzed

http://koclab.org Çetin Kaya Koç Winter 2020 6 / 17

http://koclab.org


Data Structures and Algorithms cs130a

Definition of Big-O

Let f (n) be a positive valued function for n = 1, 2, 3, . . .

We say f (n) = O(g(n)) if there exists a positive constant C and
index n0 such that

f (n) ≤ C · g(n) for n ≥ n0

http://koclab.org Çetin Kaya Koç Winter 2020 7 / 17

http://koclab.org


Data Structures and Algorithms cs130a

Big-O Examples

From the previous slides we found the (worst case) number of
multiplications in computing xe for an n-bit exponent as f (n) = 2n

We can write f (n) = O(n) since

f (n) ≤ C · n for n > n0

is true for C = 3 and n0 = 1

2 n

3 n

2 4 6 8 10

5

10

15

20

25

30

35

f (n) = O(n) is also true C = 2.1 and n0 = 1

We only need to find one C and it must be true for all n ≥ n0
http://koclab.org Çetin Kaya Koç Winter 2020 8 / 17

http://koclab.org


Data Structures and Algorithms cs130a

Big-O Examples

On the the other hand, it is also true that f (n) = O(n2) since

f (n) ≤ C · n2 for n > n0

is true for C = 1 and n0 = 2

2 n

n2

2 3 4 5

5

10

15

20

25

30

http://koclab.org Çetin Kaya Koç Winter 2020 9 / 17

http://koclab.org


Data Structures and Algorithms cs130a

Big-O Examples

On the the other hand, it is also true that f (n) = O(n3) since

f (n) ≤ C · n3 for n > n0

is true for C = 1 and n0 = 2

2 n

n3

1.5 2.0 2.5 3.0

5

10

15

20

25

30

http://koclab.org Çetin Kaya Koç Winter 2020 10 / 17

http://koclab.org


Data Structures and Algorithms cs130a

Big-O Examples

However, there does NOT exist a C and n0 such that

2n ≤ C ·
√
n for n > n0

Therefore, 2n 6= O(
√
n)

2 n

n

2 4 6 8 10

5

10

15

20

http://koclab.org Çetin Kaya Koç Winter 2020 11 / 17

http://koclab.org


Data Structures and Algorithms cs130a

Big-O Examples

f (n) = 2n

f (n) = O(n)

f (n) = O(n2)

f (n) = O(n3)

f (n) 6= O(n0.99)

f (n) 6= O(
√
n)

n

n0.99

2 n

n2

n3

2 3 4 5

10

20

30

40

http://koclab.org Çetin Kaya Koç Winter 2020 12 / 17

http://koclab.org


Data Structures and Algorithms cs130a

Definition of Big-Omega

Let f (n) be a positive valued function for n = 1, 2, 3, . . .

We say f (n) = Ω(g(n)) if there exists a positive constant C and
index n0 such that

f (n) ≥ C · g(n) for n ≥ n0

For f (n) = 2n, we can write f (n) = Ω(n) since

f (n) ≥ C · n for n > n0

is true for C = 1 and n0 = 1

Therefore, 2n = Ω(n)

http://koclab.org Çetin Kaya Koç Winter 2020 13 / 17

http://koclab.org


Data Structures and Algorithms cs130a

Big-Omega Examples

For f (n) = 2n, we can write f (n) = Ω(n0.99) since

f (n) ≥ C · n for n > n0

is true for C = 1 and n0 = 1

Therefore, 2n = Ω(n0.99)

For f (n) = 2n, we can write f (n) = Ω(
√
n)) since

f (n) ≥ C · n for n > n0

is true for C = 1 and n0 = 1

Therefore, 2n = Ω(
√
n)

http://koclab.org Çetin Kaya Koç Winter 2020 14 / 17

http://koclab.org


Data Structures and Algorithms cs130a

Big-Omega Examples

However, f (n) = 2n, there does NOT exist C and n0 such that

f (n) ≥ C · n2 for n > n0

Therefore, 2n 6= Ω(n2)

However, f (n) = 2n, there does NOT exist C and n0 such that

f (n) ≥ C · n3 for n > n0

Therefore, 2n 6= Ω(n3)

http://koclab.org Çetin Kaya Koç Winter 2020 15 / 17

http://koclab.org


Data Structures and Algorithms cs130a

Big-Omega Examples

f (n) = 2n

f (n) = Ω(n)

f (n) = Ω(
√
n)

f (n) = Ω(n0.99)

f (n) 6= Ω(n2)

f (n) 6= Ω(n3)
n

n0.99

2 n

n2

n3

2 3 4 5

10

20

30

40

http://koclab.org Çetin Kaya Koç Winter 2020 16 / 17

http://koclab.org


Data Structures and Algorithms cs130a

Definition of Big-Theta

Let f (n) be a positive valued function for n = 1, 2, 3, . . .

If there exists a function g(n) such that f (n) = O(g(n)) and
f (n) = Ω(g(n)), then we say f (n) = Θ(g(n))

In other words: if there exist positive constants C1 and C2, and index
n0 such that

C1 · g(n) ≤ f (n) ≤ C2 · g(n) for n ≥ n0

We discovered that for f (n) = 2n, we have

f (n) = O(n) and f (n) = Ω(n)

Therefore, f (n) = Θ(n)

http://koclab.org Çetin Kaya Koç Winter 2020 17 / 17

http://koclab.org

