
0

Data Structures for Sets
! Many applications deal with sets.

£ Compilers have symbol tables (set of vars, classes)
£ Dictionary is a set of words.
£ Routers have sets of forwarding rules.
£ Web servers have set of clients, etc.

! A set is a collection of members
£ No repetition of members
£ Members themselves can be sets

! Examples
£ Set of first 5 natural numbers: {1,2,3,4,5}
£ {x | x is a positive integer and x < 100}
£ {x | x is a CA driver with > 10 years of driving experience

and 0 accidents in the last 3 years}

1

Set Operations

!Unary operation: min, max, sort, makenull, …

Binary
operations

Member Set

Member Order
(=, <, >)

Find, insert,
delete, split,
…

Set Find, insert,
delete, split, …

Union,
intersection,
difference,
equal, …

2

Observations

!Set + Operations define an ADT.
£ A set + insert, delete, find
£ A set + ordering
£ Multiple sets + union, insert, delete
£ Multiple sets + merge
£ Etc.

!Depending on type of members and choice of
operations, different implementations can have
different asymptotic complexity.

3

Set ADT: Union, Intersection, Difference

AbstractDataType SetUID

instance
multiple sets

operations
union (s1,s2): {x | x in s1 or x in s2}
intersection (s1,s21): {x | x in s1 and x in s2}
difference (s1,s2): {x | x in s1 and x

not in s2}

4

Examples

!Sets: Articles in Yahoo Science (A), Technology (B),
and Sports (C)
£ Find all articles on Wright brothers.
£ Find all articles dealing with sports medicine

!Sets: Students in CS8 (A), CS16 (B), and CS40 (C)
£ Find all students enrolled in these courses
£ Find students registered for CS8 only
£ Find students registered for both CS8 and CS16
£ Etc.

5

Set UID Implementation: Bit Vector

! Set members known and finite (e.g., all students in CS dept)

! Operations
£ Union: u[k]= x[k] | y[k];
£ Intersection: u[k] = x[k] & y[k];
£ Difference: u[k] = x[k] & ~y[k];

! Complexity: O(n): n size of the set

1 0

1

1

1

0

0

0

1 11

1
students

courses

A set

6

Set UID Implementation: linked lists

!Bit vectors great when
£ Small sets
£ Known membership

!Linked lists
£ Unknown size and members
£ Two kinds: Sorted and Unsorted

7

Set UID Complexity: Unsorted Linked List

!Intersection
For k=1 to n do

Advance setA one step to find kth element;
Follow setB to find that element in B;
If found then

Append element k to setAB
End

!Searching for each element can take n steps.
!Intersection worst-case time O(n2).

8

Set UID Complexity: Sorted Lists

!The list is sorted; larger elements are to the right
!Each list needs to be scanned only once.
!At each element: increment and possibly insert into

A&B, constant time operation
!Hence, sorted list set-set ADT has O(n) complexity
!A simple example of how even trivial algorithms can

make a big difference in runtime complexity.

9

Set UID: Sorted List Intersection
! Case A *setA=*setB

� Include *setA (or *setB) in *setAB

� Increment setA

� Increment setB

! Case B *setA<*setB

� Increment setA Until
� *setA=*setB (A)
� *setA>*setB (C)
� *setA==null

! Case C *setA>*setB

� Increment setB Until
� *setA=*setB (A)
� *setA<*setB (B)
� *setB==null

! Case D *setA==null or *setB==null
� terminate

10

Dictionary ADTs

!Maintain a set of items with distinct keys with:
£ find (k): find item with key k
£ insert (x): insert item x into the dictionary
£ remove (k): delete item with key k

!Where do we use them:
£ Symbol tables for compiler
£ Customer records (access by name)
£ Games (positions, configurations)
£ Spell checkers
£ Peer to Peer systems (access songs by name), etc.

11

Naïve Implementations

!The simplest possible scheme to implement a
dictionary is “log file” or “audit trail”.
£ Maintain the elements in a linked list, with

insertions occuring at the head.
£ The search and delete operations require

searching the entire list in the worst-case.
£ Insertion is O(1), but find and delete are O(n).

!A sorted array does not help, even with ordered
keys. The search becomes fast, but insert/delete
take O(n).

