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Hash Tables: Intuition

!Hashing is function that maps each key to a location 
in memory.

!A key’s location does not depend on other elements, 
and does not change after insertion.

�unlike a sorted list
!A good hash function should be easy to compute.

!With such a hash function, the dictionary operations 
can be implemented in O(1) time.
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One Simple Idea: Direct Mapping
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Hashing : the basic idea
!Map key values to hash table addresses

keys -> hash table address
This applies to find, insert, and remove

!Usually: integers -> {0, 1, 2, …, Hsize-1}
Typical example:   f(n) = n mod Hsize

!Non-numeric keys converted to numbers
£ For example, strings converted to numbers as

� Sum of ASCII values
� First three characters
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Hashing : the basic idea
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Hashing:

!Choose a hash function h; it also determines the 
hash table size.

!Given an item x with key k, put x at location h(k).
!To find if x is in the set, check location h(k).
!What to do if more than one keys hash to the same 

value. This is called collision.
!We will discuss two methods to handle collision:

£ Separate chaining
£ Open addressing
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! Maintain a list of all elements that 
hash to the same value

! Search -- using the hash function 
to determine which list to traverse

! Insert/deletion–once the “bucket”
is found through Hash, insert and 
delete are list operations

Separate chaining

class HashTable {
…… 
private:
unsigned int Hsize;
List<E,K> *TheList;
…… 

find(k,e)
HashVal = Hash(k,Hsize);
if (TheList[HashVal].Search(k,e))
then return true;
else return false;
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Insertion: insert 53
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53 = 4 x 11 + 9
53 mod 11 = 9

14

42

29

20

1

36

5623

16

24

53

17
7

0
1
2
3
4
5
6
7
8
9
10

31



7

Analysis of Hashing with Chaining

!Worst case
£ All keys hash into the same bucket 
£ a single linked list.
£ insert, delete, find take O(n) time.

!Average case
£ Keys are uniformly distributed into buckets
£ O(1+N/B): N is the number of elements in a hash 

table, B is the number of buckets. 
£ If N = O(B), then O(1) time per operation.
£ N/B is called the load factor of the hash table.
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Open addressing

! If collision happens, alternative 
cells are tried until an empty cell 
is found.

! Linear probing :
Try next available position
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Linear Probing (insert 12)
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12 = 1 x 11 + 1
12 mod 11 = 1
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Search with linear probing (Search 15)

15 = 1 x 11 + 4
15 mod 11 = 4
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// find the slot where searched item should be in 

int HashTable<E,K>::hSearch(const K& k) const
{

int HashVal = k % D;
int j = HashVal;
do {// don’t search past the first empty slot (insert should put it there)
if (empty[j] || ht[j] == k) return j;
j = (j + 1) % D;

} while (j != HashVal);
return j; // no empty slot and no match either, give up

}

bool HashTable<E,K>::find(const K& k, E& e) const
{

int b = hSearch(k);
if (empty[b] || ht[b] != k) return false;
e = ht[b];
return true;

}

Search with linear probing
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Deletion in Hashing with Linear Probing

!Since empty buckets are used to terminate search, 
standard deletion does not work.

!One simple idea is to not delete, but mark.
! Insert: put item in first empty or marked bucket.
! Search: Continue past marked buckets.
! Delete: just mark the bucket as deleted.
! Advantage: Easy and correct.
!Disadvantage: table can become full with dead items.
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Deletion with linear probing: LAZY (Delete 9)

9 = 0 x 11 + 9
9 mod 11 = 9
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remove(j) 
{ i = j;
empty[i] = true;
i = (i + 1) % D; // candidate for swapping
while ((not empty[i]) and i!=j) {
r = Hash(ht[i]); // where should it go without 

collision?
// can we still find it based on the rehashing strategy?
if not ((j<r<=i) or (i<j<r) or (r<=i<j))
then break; // yes find it from rehashing, swap
i = (i + 1) % D; // no, cannot find it from rehashing

}
if (i!=j and not empty[i])
then {
ht[j] = ht[i];
remove(i);

}
}

Eager Deletion: fill holes

!Remove and find replacement:
£ Fill in the hole for later searches
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Eager Deletion Analysis (cont.)

£ If not full
� After deletion, there will be at least two holes
� Elements that are affected by the new hole are

� Initial hashed location is cyclically before the new 
hole

� Location after linear probing is in between the new 
hole and the next hole in the search order

� Elements are movable to fill the hole

Next hole in the search orderNew hole

Initial
hashed location

Location after 
linear probing

Next hole in the search order

Initial
hashed location
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Eager Deletion Analysis  (cont.)

!The important thing is to make sure that if a 
replacement (i) is swapped into deleted (j), we can 
still find that element. How can we not find it?
£ If the original hashed position (r) is circularly in 

between deleted and the replacement

j r i

j ri

jr i

i r
Will not find i past the empty green slot!

j i r i r

Will find i 
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Quadratic Probing

!Solves the clustering problem in Linear Probing
£ Check H(x)
£ If collision occurs check H(x) + 1
£ If collision occurs check H(x) + 4
£ If collision occurs check H(x) + 9
£ If collision occurs check H(x) + 16
£ ...

£ H(x) + i2
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Quadratic Probing (insert 12)
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Double Hashing

! When collision occurs use a second hash function
£ Hash2 (x) = R – (x mod R)
£ R: greatest prime number smaller than table-size

! Inserting 12
H2(x) = 7 – (x mod 7) = 7 – (12 mod 7) = 2
£ Check H(x)
£ If collision occurs check H(x) + 2
£ If collision occurs check H(x) + 4
£ If collision occurs check H(x) + 6
£ If collision occurs check H(x) + 8
£ H(x) + i * H2(x)
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Double Hashing (insert 12)
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12 = 1 x 11 + 1
12 mod 11 = 1

7 –12 mod 7 = 2
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Comparison of linear and random probing
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Rehashing

!If table gets too full, operations will take too long.
!Build another table, twice as big (and prime).

£ Next prime number after 11 x 2 is 23
!Insert every element again to this table

!Rehash after a percentage of the table becomes full 
(70% for example) 
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Good and Bad Hashing Functions

!Hash using the wrong key
£ Age of a student

!Hash using limited information
£ First letter of last names (a lot of A’s, few Z’s)

!Hash functions choices :
£ keys evenly distributed in the hash table

!Even distribution guaranteed by “randomness”
£ No expectation of outcomes
£ Cannot design input patterns to defeat 

randomness
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Examples of Hashing Function

! B=100, N=100, keys = A0, A1, …, A99
! Hashing(A12) = (Ascii(A)+Ascii(1)+Ascii(2)) / B

£ H(A18)=H(A27)=H(A36)=H(A45) …
£ Theoretically, N(1+N/B)= 200
£ In reality, 395 steps are needed because of collision

! How to fix it?
£ Hashing(A12) = (Ascii(A)*22+Ascii(1)*2+Ascci(2))/B
£ H(A12)!=H(A21)

! Examples: numerical keys
£ Use X2 and take middle numbers 
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Collision Functions

!Hi(x)= (H(x)+i) mod B
£ Linear pobing

!Hi(x)= (H(x)+ci) mod B (c>1)
£ Linear probing with step-size = c

!Hi(x)= (H(x)+i2) mod B
£ Quadratic probing

!Hi(x)= (H(x)+ i * H2(x)) mod B
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Analysis of Open Hashing

!Effort of one Insert?
£ Intuitively – that depends on how full the hash is

!Effort of an average Insert?
!Effort to fill the Bucket to a certain capacity?

£ Intuitively – accumulated efforts in inserts
!Effort to search an item (both successful and 

unsuccessful)?
!Effort to delete an item (both successful and 

unsuccessful)?
£ Same effort for successful search and delete?
£ Same effort for unsuccessful search and delete?
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More on hashing

!Extensible hashing
£ Hash table grows and shrinks, similar to B-trees
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Issues:

! What do we lose?
£ Operations that require ordering are inefficient
£ FindMax: O(n) O(log n) Balanced binary tree
£ FindMin: O(n) O(log n) Balanced binary tree
£ PrintSorted: O(n log n)     O(n) Balanced binary tree

! What do we gain?
£ Insert: O(1) O(log n) Balanced binary tree
£ Delete: O(1) O(log n) Balanced binary tree
£ Find: O(1) O(log n) Balanced binary tree

! How to handle Collision?
£ Separate chaining
£ Open addressing


