
0

Hash Tables: Intuition

!Hashing is function that maps each key to a location
in memory.

!A key’s location does not depend on other elements,
and does not change after insertion.

�unlike a sorted list
!A good hash function should be easy to compute.

!With such a hash function, the dictionary operations
can be implemented in O(1) time.

1

One Simple Idea: Direct Mapping

1
2
3

8
9

13
14

Graduates

Perm # Student Records

2

Hashing : the basic idea
!Map key values to hash table addresses

keys -> hash table address
This applies to find, insert, and remove

!Usually: integers -> {0, 1, 2, …, Hsize-1}
Typical example: f(n) = n mod Hsize

!Non-numeric keys converted to numbers
£ For example, strings converted to numbers as

� Sum of ASCII values
� First three characters

3

Hashing : the basic idea

9

10

20

39

4

14

8

Graduates

Perm # (mod 9)
Student Records

4

Hashing:

!Choose a hash function h; it also determines the
hash table size.

!Given an item x with key k, put x at location h(k).
!To find if x is in the set, check location h(k).
!What to do if more than one keys hash to the same

value. This is called collision.
!We will discuss two methods to handle collision:

£ Separate chaining
£ Open addressing

5

! Maintain a list of all elements that
hash to the same value

! Search -- using the hash function
to determine which list to traverse

! Insert/deletion–once the “bucket”
is found through Hash, insert and
delete are list operations

Separate chaining

class HashTable {
……
private:
unsigned int Hsize;
List<E,K> *TheList;
……

find(k,e)
HashVal = Hash(k,Hsize);
if (TheList[HashVal].Search(k,e))
then return true;
else return false;

14

42

29

20

1

36

5623

16

24

31

17
7

0
1
2
3
4
5
6
7
8
9
10

6

Insertion: insert 53

14

42

29

20

1

36

5623

16

24

31

17
7

0
1
2
3
4
5
6
7
8
9
10

53 = 4 x 11 + 9
53 mod 11 = 9

14

42

29

20

1

36

5623

16

24

53

17
7

0
1
2
3
4
5
6
7
8
9
10

31

7

Analysis of Hashing with Chaining

!Worst case
£ All keys hash into the same bucket
£ a single linked list.
£ insert, delete, find take O(n) time.

!Average case
£ Keys are uniformly distributed into buckets
£ O(1+N/B): N is the number of elements in a hash

table, B is the number of buckets.
£ If N = O(B), then O(1) time per operation.
£ N/B is called the load factor of the hash table.

8

Open addressing

! If collision happens, alternative
cells are tried until an empty cell
is found.

! Linear probing :
Try next available position

0
1
2
3
4
5
6
7
8
9
10

42

9

14

1

16

24

31

28
7

9

Linear Probing (insert 12)

0
1
2
3
4
5
6
7
8
9
10

42

9

14

1

16

24

31

28
7

12 = 1 x 11 + 1
12 mod 11 = 1

0
1
2
3
4
5
6
7
8
9
10

42

9

14

1

16

24

31

28
7

12

10

Search with linear probing (Search 15)

15 = 1 x 11 + 4
15 mod 11 = 4

0
1
2
3
4
5
6
7
8
9
10

42

9

14

1

16

24

31

28
7

12

NOT FOUND !

11

// find the slot where searched item should be in

int HashTable<E,K>::hSearch(const K& k) const
{

int HashVal = k % D;
int j = HashVal;
do {// don’t search past the first empty slot (insert should put it there)
if (empty[j] || ht[j] == k) return j;
j = (j + 1) % D;

} while (j != HashVal);
return j; // no empty slot and no match either, give up

}

bool HashTable<E,K>::find(const K& k, E& e) const
{

int b = hSearch(k);
if (empty[b] || ht[b] != k) return false;
e = ht[b];
return true;

}

Search with linear probing

12

Deletion in Hashing with Linear Probing

!Since empty buckets are used to terminate search,
standard deletion does not work.

!One simple idea is to not delete, but mark.
! Insert: put item in first empty or marked bucket.
! Search: Continue past marked buckets.
! Delete: just mark the bucket as deleted.
! Advantage: Easy and correct.
!Disadvantage: table can become full with dead items.

13

Deletion with linear probing: LAZY (Delete 9)

9 = 0 x 11 + 9
9 mod 11 = 9

0
1
2
3
4
5
6
7
8
9
10

42

9

14

1

16

24

31

28
7

12

FOUND !

0
1
2
3
4
5
6
7
8
9
10

42

D

14

1

16

24

31

28
7

12

14

remove(j)
{ i = j;
empty[i] = true;
i = (i + 1) % D; // candidate for swapping
while ((not empty[i]) and i!=j) {
r = Hash(ht[i]); // where should it go without

collision?
// can we still find it based on the rehashing strategy?
if not ((j<r<=i) or (i<j<r) or (r<=i<j))
then break; // yes find it from rehashing, swap
i = (i + 1) % D; // no, cannot find it from rehashing

}
if (i!=j and not empty[i])
then {
ht[j] = ht[i];
remove(i);

}
}

Eager Deletion: fill holes

!Remove and find replacement:
£ Fill in the hole for later searches

15

Eager Deletion Analysis (cont.)

£ If not full
� After deletion, there will be at least two holes
� Elements that are affected by the new hole are

� Initial hashed location is cyclically before the new
hole

� Location after linear probing is in between the new
hole and the next hole in the search order

� Elements are movable to fill the hole

Next hole in the search orderNew hole

Initial
hashed location

Location after
linear probing

Next hole in the search order

Initial
hashed location

16

Eager Deletion Analysis (cont.)

!The important thing is to make sure that if a
replacement (i) is swapped into deleted (j), we can
still find that element. How can we not find it?
£ If the original hashed position (r) is circularly in

between deleted and the replacement

j r i

j ri

jr i

i r
Will not find i past the empty green slot!

j i r i r

Will find i

17

Quadratic Probing

!Solves the clustering problem in Linear Probing
£ Check H(x)
£ If collision occurs check H(x) + 1
£ If collision occurs check H(x) + 4
£ If collision occurs check H(x) + 9
£ If collision occurs check H(x) + 16
£ ...

£ H(x) + i2

18

Quadratic Probing (insert 12)

0
1
2
3
4
5
6
7
8
9
10

42

9

14

1

16

24

31

28
7

12 = 1 x 11 + 1
12 mod 11 = 1

0
1
2
3
4
5
6
7
8
9
10

42

9

14

1

16

24

31

28
7

12

19

Double Hashing

! When collision occurs use a second hash function
£ Hash2 (x) = R – (x mod R)
£ R: greatest prime number smaller than table-size

! Inserting 12
H2(x) = 7 – (x mod 7) = 7 – (12 mod 7) = 2
£ Check H(x)
£ If collision occurs check H(x) + 2
£ If collision occurs check H(x) + 4
£ If collision occurs check H(x) + 6
£ If collision occurs check H(x) + 8
£ H(x) + i * H2(x)

20

Double Hashing (insert 12)

0
1
2
3
4
5
6
7
8
9
10

42

9

14

1

16

24

31

28
7

12 = 1 x 11 + 1
12 mod 11 = 1

7 –12 mod 7 = 2

0
1
2
3
4
5
6
7
8
9
10

42

9

14

1

16

24

31

28
7

12

21

Comparison of linear and random probing

22

Rehashing

!If table gets too full, operations will take too long.
!Build another table, twice as big (and prime).

£ Next prime number after 11 x 2 is 23
!Insert every element again to this table

!Rehash after a percentage of the table becomes full
(70% for example)

23

Good and Bad Hashing Functions

!Hash using the wrong key
£ Age of a student

!Hash using limited information
£ First letter of last names (a lot of A’s, few Z’s)

!Hash functions choices :
£ keys evenly distributed in the hash table

!Even distribution guaranteed by “randomness”
£ No expectation of outcomes
£ Cannot design input patterns to defeat

randomness

24

Examples of Hashing Function

! B=100, N=100, keys = A0, A1, …, A99
! Hashing(A12) = (Ascii(A)+Ascii(1)+Ascii(2)) / B

£ H(A18)=H(A27)=H(A36)=H(A45) …
£ Theoretically, N(1+N/B)= 200
£ In reality, 395 steps are needed because of collision

! How to fix it?
£ Hashing(A12) = (Ascii(A)*22+Ascii(1)*2+Ascci(2))/B
£ H(A12)!=H(A21)

! Examples: numerical keys
£ Use X2 and take middle numbers

25

Collision Functions

!Hi(x)= (H(x)+i) mod B
£ Linear pobing

!Hi(x)= (H(x)+ci) mod B (c>1)
£ Linear probing with step-size = c

!Hi(x)= (H(x)+i2) mod B
£ Quadratic probing

!Hi(x)= (H(x)+ i * H2(x)) mod B

26

Analysis of Open Hashing

!Effort of one Insert?
£ Intuitively – that depends on how full the hash is

!Effort of an average Insert?
!Effort to fill the Bucket to a certain capacity?

£ Intuitively – accumulated efforts in inserts
!Effort to search an item (both successful and

unsuccessful)?
!Effort to delete an item (both successful and

unsuccessful)?
£ Same effort for successful search and delete?
£ Same effort for unsuccessful search and delete?

27

More on hashing

!Extensible hashing
£ Hash table grows and shrinks, similar to B-trees

28

Issues:

! What do we lose?
£ Operations that require ordering are inefficient
£ FindMax: O(n) O(log n) Balanced binary tree
£ FindMin: O(n) O(log n) Balanced binary tree
£ PrintSorted: O(n log n) O(n) Balanced binary tree

! What do we gain?
£ Insert: O(1) O(log n) Balanced binary tree
£ Delete: O(1) O(log n) Balanced binary tree
£ Find: O(1) O(log n) Balanced binary tree

! How to handle Collision?
£ Separate chaining
£ Open addressing

