6.8 Binomial Queues

The implementation of skew heaps is left as a (trivial) exercise. Note that because a
right path could be long, a recursive implementation could fail because of lack of stack
space, even though performance would otherwise be acceptable. Skew heaps have the
advantage that no extra space is required to maintain path lengths and no tests are required
to determine when to swap children. It is an open problem to determine precisely the
expected right path length of both leftist and skew heaps (the latter is undoubtedly more
difficult). Such a comparison would make it easier to determine whether the slight loss of
balance information is compensated by the lack of testing.

6.8 Binomial Queues

Although both leftist and skew heaps support merging, insertion, and deleteMin all effec-
tively in O(logN) time per operation, there is room for improvement because we know
that binary heaps support insertion in constant average time per operation. Binomial queues
support all three operations in O(log N) worst-case time per operation, but insertions take
constant time on average.

6.8.1 Binomial Queue Structure

Binomial queues differ from all the priority queue implementations that we have seen in
that a binomial queue is not a heap-ordered tree but rather a collection of heap-ordered
trees, known as a forest. Each of the heap-ordered trees is of a constrained form known
as a binomial tree (the reason for the name will be obvious later). There is at most one
binomial tree of every height. A binomial tree of height 0 is a one-node tree; a binomial
tree, By, of height k is formed by attaching a binomial tree, By_1, to the root of another
binomial tree, B_1. Figure 6.34 shows binomial trees By, B, Bz, B3, and By.

From the diagram we see that a binomial tree, By, consists of a root with children
Bo,B1,...,Br—1. Binomial trees of height k have exactly 2k nodes, and the number of
nodes at depth d is the binomial coefficient (Z) If we impose heap order on the binomial
trees and allow at most one binomial tree of any height, we can represent a priority queue
of any size by a collection of binomial trees. For instance, a priority queue of size 13 could
be represented by the forest B3, By, By. We might write this representation as 1101, which
not only represents 13 in binary but also represents the fact that B3, By, and By are present
in the representation and Bj is not.

As an example, a priority queue of six elements could be represented as in Figure 6.35.

6.8.2 Binomial Queue Operations

The minimum element can then be found by scanning the roots of all the trees. Since there
are at most log N different trees, the minimum can be found in O(log N) time. Alternatively,
we can maintain knowledge of the minimum and perform the operation in O(1) time if we
remember to update the minimum when it changes during other operations.

Merging two binomial queues is a conceptually easy operation, which we will describe
by example. Consider the two binomial queues, H; and Ha, with six and seven elements,
respectively, pictured in Figure 6.36.

271



54,

Figure 6.34 Binomial trees By, By, B, B3, and B4

Figure 6.35 Binomial queue H; with six elements

Figure 6.36 Two binomial queues H; and H,



6.8 Binomial Queues

The merge is performed by essentially adding the two queues together. Let H3 be the
new binomial queue. Since Hj has no binomial tree of height 0 and H, does, we can
just use the binomial tree of height 0 in H, as part of H3. Next, we add binomial trees
of height 1. Since both H; and H, have binomial trees of height 1, we merge them by
making the larger root a subtree of the smaller, creating a binomial tree of height 2, shown
in Figure 6.37. Thus, H3 will not have a binomial tree of height 1. There are now three
binomial trees of height 2, namely, the original trees of H; and H, plus the tree formed
by the previous step. We keep one binomial tree of height 2 in H3 and merge the other
two, creating a binomial tree of height 3. Since H; and H; have no trees of height 3, this
tree becomes part of H3 and we are finished. The resulting binomial queue is shown in
Figure 6.38.

Since merging two binomial trees takes constant time with almost any reasonable
implementation, and there are O(log N) binomial trees, the merge takes O(log N) time in
the worst case. To make this operation efficient, we need to keep the trees in the binomial
queue sorted by height, which is certainly a simple thing to do.

Insertion is just a special case of merging, since we merely create a one-node tree
and perform a merge. The worst-case time of this operation is likewise O(logN). More
precisely, if the priority queue into which the element is being inserted has the property
that the smallest nonexistent binomial tree is B, the running time is proportional to i + 1.
For example, H3 (Fig. 6.38) is missing a binomial tree of height 1, so the insertion will
terminate in two steps. Since each tree in a binomial queue is present with probability
%, it follows that we expect an insertion to terminate in two steps, so the average time
is constant. Furthermore, an analysis will show that performing N inserts on an initially
empty binomial queue will take O(N) worst-case time. Indeed, it is possible to do this
operation using only N — 1 comparisons; we leave this as an exercise.

As an example, we show in Figures 6.39 through 6.45 the binomial queues that are
formed by inserting 1 through 7 in order. Inserting 4 shows off a bad case. We merge 4

Figure 6.37 Merge of the two Bj trees in H; and H;

H3:@

Figure 6.38 Binomial queue Hs: the result of merging Hy and H;
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Figure 6.39 After 1 is inserted
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Figure 6.40 After 2 is inserted

Figure 6.41 After 3 is inserted

Figure 6.42 After 4 is inserted
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Figure 6.43 After 5 is inserted

Figure 6.44 After 6 is inserted
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Figure 6.45 After 7 is inserted



6.8 Binomial Queues

with Bp, obtaining a new tree of height 1. We then merge this tree with By, obtaining a
tree of height 2, which is the new priority queue. We count this as three steps (two tree
merges plus the stopping case). The next insertion after 7 is inserted is another bad case
and would require three tree merges.

A deleteMin can be performed by first finding the binomial tree with the smallest root.
Let this tree be By, and let the original priority queue be H. We remove the binomial tree
By, from the forest of trees in H, forming the new binomial queue H'. We also remove the
root of By, creating binomial trees Bg, B, . . ., Br—1, which collectively form priority queue
H”. We finish the operation by merging H" and H”.

As an example, suppose we perform a deleteMin on Hs3, which is shown again in
Figure 6.46. The minimum root is 12, so we obtain the two priority queues H and H”
in Figure 6.47 and Figure 6.48. The binomial queue that results from merging H and H”
is the final answer and is shown in Figure 6.49.

For the analysis, note first that the deleteMin operation breaks the original binomial
queue into two. It takes O(log N) time to find the tree containing the minimum element
and to create the queues H' and H”. Merging these two queues takes O(log N) time, so the
entire deleteMin operation takes O(log N) time.

@

Figure 6.46 Binomial queue H3
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Figure 6.47 Binomial queue H’, containing all the binomial trees in H3 except B3

Figure 6.48 Binomial queue H”: B3 with 12 removed
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Figure 6.49 Result of applying deleteMin to H3

6.8.3 Implementation of Binomial Queues

The deleteMin operation requires the ability to find all the subtrees of the root quickly,
so the standard representation of general trees is required: The children of each node are
kept in a linked list, and each node has a pointer to its first child (if any). This operation
also requires that the children be ordered by the size of their subtrees. We also need to
make sure that it is easy to merge two trees. When two trees are merged, one of the trees
is added as a child to the other. Since this new tree will be the largest subtree, it makes
sense to maintain the subtrees in decreasing sizes. Only then will we be able to merge two
binomial trees, and thus two binomial queues, efficiently. The binomial queue will be an
array of binomial trees.

To summarize, then, each node in a binomial tree will contain the data, first child, and
right sibling. The children in a binomial tree are arranged in decreasing rank.

Figure 6.51 shows how the binomial queue in Figure 6.50 is represented. Figure 6.52
shows the type declarations for a node in the binomial tree and the binomial queue class
interface.

H3:@ @ @
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Figure 6.50 Binomial queue H3 drawn as a forest

A

Figure 6.51 Representation of binomial queue H3
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template <typename Comparable>
class BinomialQueue

{

public

BinomialQueue( );

BinomialQueue( const Comparable & item );
BinomialQueue( const BinomialQueue & rhs );
BinomialQueue( BinomialQueue && rhs );

~Bin

omialQueue( );

BinomialQueue & operator=( const BinomialQueue & rhs );
BinomialQueue & operator=( BinomialQueue && rhs );

bool
cons

void
void
void
void

void
void

privat

stru

{

}s
cons

vect
int
int
int

isEmpty( ) const;
t Comparable & findMin( ) const;

insert( const Comparable & x );
insert( Comparable && x );
deleteMin( );

deleteMin( Comparable & minItem );

makeEmpty ( );
merge( BinomialQueue & rhs );

e:
ct BinomialNode

Comparable element;
BinomialNode *1eftChild;

BinomialNode *nextSibling;

BinomialNode( const Comparable & e, BinomialNode *1t, BinomialNode *rt )
: element{ e }, TeftChild{ 1t }, nextSibling{ rt } { }

BinomialNode( Comparable && e, BinomialNode *1t, BinomialNode *rt )
: element{ std::move( e ) }, TeftChild{ 1t }, nextSibling{ rt } { }
t static int DEFAULT_TREES = 1;

or<BinomialNode *> theTrees; // An array of tree roots
currentSize; // Number of items in the priority queue

findMinIndex( ) const;
capacity( ) const;

BinomialNode * combineTrees( BinomialNode *tl1, BinomialNode *t2 );

void

makeEmpty( BinomialNode * & t );

BinomialNode * clone( BinomialNode * t ) const;

Figure 6.52 Binomial queue class interface and node definition
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Figure 6.53 Merging two binomial trees

In order to merge two binomial queues, we need a routine to merge two binomial trees
of the same size. Figure 6.53 shows how the links change when two binomial trees are
merged. The code to do this is simple and is shown in Figure 6.54.

We provide a simple implementation of the merge routine. Hj is represented by the
current object and H, is represented by rhs. The routine combines H; and H, placing the
result in Hy and making H, empty. At any point we are dealing with trees of rank i. t1 and
t2 are the trees in Hy and H,, respectively, and carry is the tree carried from a previous
step (it might be nullptr). Depending on each of the eight possible cases, the tree that
results for rank i and the carry tree of rank i + 1 is formed. This process proceeds from
rank O to the last rank in the resulting binomial queue. The code is shown in Figure 6.55.
Improvements to the code are suggested in Exercise 6.35.

The deleteMin routine for binomial queues is given in Figure 6.56 (on pages
280-281).

We can extend binomial queues to support some of the nonstandard operations
that binary heaps allow, such as decreaseKey and remove, when the position of the
affected element is known. A decreaseKey is a percolateUp, which can be performed in
O(logN) time if we add a data member to each node that stores a parent link. An
arbitrary remove can be performed by a combination of decreaseKey and deleteMin in
O(logN) time.

1 /**

2 * Return the result of merging equal-sized tl and t2.
3 */

4 BinomialNode * combineTrees( BinomialNode *t1, BinomialNode *t2 )
5 {

6 if( t2->element < tl->element )

7 return combineTrees( t2, tl );

8 t2->nextSibling = tl->TeftChild;

9 t1->TeftChild = t2;

10 return tl;

11 }

Figure 6.54 Routine to merge two equal-sized binomial trees



1 /**

2 * Merge rhs into the priority queue.

3 * rhs becomes empty. rhs must be different from this.

4 * Exercise 6.35 needed to make this operation more efficient.
5 */

6 void merge( BinomialQueue & rhs )

7 {

8 if( this == &rhs ) // Avoid aliasing problems

9 return;

10

11 currentSize += rhs.currentSize;

12

13 if( currentSize > capacity( ) )

14 {

15 int oldNumTrees = theTrees.size( );

16 int newNumTrees = max( theTrees.size( ), rhs.theTrees.size( ) ) + 1;
17 theTrees.resize( newNumTrees );

18 for( int i = oldNumTrees; i < newNumTrees; ++i )
19 theTrees[ i ] = nullptr;

20 }

21

22 BinomialNode *carry = nullptr;

23 for( int i =0, j = 1; j <= currentSize; ++i, j *= 2 )
24 {

25 BinomialNode *tl1 = theTrees[ i ];

26 BinomialNode *t2 = i < rhs.theTrees.size( ) ? rhs.theTrees[ i ]
27 : nullptr;
28 int whichCase = t1 == nullptr 2 0 : 1;

29 whichCase += t2 == nullptr 2 0 : 2;

30 whichCase += carry == nullptr ?2 0 : 4;

31

32 switch( whichCase )

33 {

34 case 0: /* No trees */

35 case 1: /* Only this */

36 break;

37 case 2: /* Only rhs */

38 theTrees[ i ] = t2;

39 rhs.theTrees[ i ] = nullptr;

40 break;

41 case 4: /* Only carry */

42 theTrees[ i ] = carry;

43 carry = nullptr;

44 break;

Figure 6.55 Routine to merge two priority queues



45 case 3: /* this and rhs */

46 carry = combineTrees( t1, t2 );
47 theTrees[ i ] = rhs.theTrees[ i ] = nullptr;
48 break;

49 case 5: /* this and carry */

50 carry = combineTrees( tl, carry );
51 theTrees[ i ] = nullptr;

52 break;

53 case 6: /* rhs and carry */

54 carry = combineTrees( t2, carry );
55 rhs.theTrees[ i ] = nullptr;

56 break;

57 case 7: /* A1l three */

58 theTrees[ i ] = carry;

59 carry = combineTrees( t1, t2 );
60 rhs.theTrees[ i ] = nullptr;

61 break;

62 }

63 }

64

65 for( auto & root : rhs.theTrees )

66 root = nullptr;

67 rhs.currentSize = 0;

68 }

Figure 6.55 (continued)

1 J**

2 * Remove the minimum item and place it in minItem.
3 * Throws UnderflowException if empty.

4 */

5 void deleteMin( Comparable & minItem )

6 {

7 if( isEmpty( ) )

8 throw UnderflowException{ };

9

10 int minIndex = findMinIndex( );

11 minltem = theTrees[ minIndex ]->element;
12

Figure 6.56 deleteMin for binomial queues



13 BinomialNode *oldRoot = theTrees[ minIndex ];

14 BinomialNode *deletedTree = oldRoot->TeftChild;
15 delete oldRoot;

16

17 // Construct H''

18 BinomialQueue deletedQueue;

19 deletedQueue.theTrees.resize( minIndex + 1 );

20 deletedQueue.currentSize = ( 1 << minIndex ) - 1;
21 for( int j = minIndex - 1; j >= 0; --j )

22 {

23 deletedQueue.theTrees[ j ] = deletedTree;

24 deletedTree = deletedTree->nextSibling;

25 deletedQueue.theTrees[ j ]->nextSibling = nullptr;
26 }

27

28 // Construct H'

29 theTrees[ minIndex ] = nullptr;

30 currentSize -= deletedQueue.currentSize + 1;

31

32 merge( deletedQueue );

33 }

34

35 /**

36 * Find index of tree containing the smallest item in the priority queue.
37 * The priority queue must not be empty.

38 * Return the index of tree containing the smallest item.
39 */

40 int findMinIndex( ) const

41 {

42 int i;

43 int minIndex;

44

45 for( i = 0; theTrees[ i ] == nullptr; ++i )

46 B

47

48 for( minIndex = i; i < theTrees.size( ); ++i )

49 if( theTrees[ i ] != nullptr &&

50 theTrees[ i ]->element < theTrees[ minIndex ]->element )
51 minIndex = i;

52

53 return minIndex;

54 }

Figure 6.56 (continued)
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1 #include <iostream>
2 #include <vector>
3 #include <queue>
4 #include <functional>
5 #include <string>
6 using namespace std;
7
8 // Empty the priority queue and print its contents.
9 template <typename PriorityQueue>
10 void dumpContents( const string & msg, PriorityQueue & pq )
11 {
12 cout << msg << ":" << endl;
13 while( !pg.empty( ) )
14 {
15 cout << pg.top( ) << endl;
16 pq.pop( )3
17 }
18 '}
19
20 // Do some inserts and removes (done in dumpContents).
21  int main( )
22
23 priority queue<int> maxPQ;
24 priority queue<int,vector<int>,greater<int>> minPQ;
25
26 minPQ.push( 4 ); minPQ.push( 3 ); minPQ.push( 5 );
27 maxPQ.push( 4 ); maxPQ.push( 3 ); maxPQ.push( 5 );
28
29 dumpContents( "minPQ", minPQ ); // 345
30 dumpContents( "maxPQ", maxPQ ); // 543
31
32 return 0;
33 }

Figure 6.57 Routine that demonstrates the STL priority_queue; the comment shows the
expected order of output

6.9 Priority Queues in the Standard Library

The binary heap is implemented in the STL by the class template named priority_queue
found in the standard header file queue. The STL implements a max-heap rather than a min-
heap so the largest rather than smallest item is the one that is accessed. The key member
functions are:
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