
Splay Trees.

1. Invented by Daniel Sleator and Robert Tarjan.
Self-adjusting Binary Search Trees.
JACM, pp. 652-686, July 1985.

2. Balanced search trees (AVL, weight balanced, B-Trees etc) have O(log n) 
worst case search, but are either complicated to implement, or 
require extra space for balance, or both.

   Splay trees don't maintain any explicit balance condition; rather they
   apply a simple restructuring heuristic, called splaying EVERY time
   the tree is accessed.

3. Intuition: for search cost to be small in a binary search tree, the
   item to be accessed must be close to the root. Many tree-restructuring
   rules try to move the accessed item closer to the root. Two classical
   heuristics are:

   3a. Single rotation:  after accessing item i at a node x, rotate the
edge joining x to its parent; unless x is the root.

   3b. Move to Root: after accessing i at a node x, rotate edges joining
x and p(x), and repeat until x becomes the root.

   Unfortunately, it can be shown that neither heuristic guarantees the
   O(log n) search cost: There are arbitrarily long access sequences
   where time per access is O(n).

4. Sleator-Tarjan's heuristic is similar to move-to-front, but its
swaps depend on the structure of the tree.

   To splay at a node x, repeat the following step until x becomes the root:

   Case 1 (zig):  [terminating single rotation]
if p(x) is the root, rotate the edge between x and p(x);
and terminate.
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   Case 2 (zig-zig):  [two single rotations]
if p(x) is not the root and x and p(x) are both left or
both right children, first rotate the edge joining p(x) 
with its grandparent g(x), and then rotate the edge
joining x with p(x).
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   Case 3 (zig-zag): [double rotation]
                if p(x) is not the root and x is a left child and p(x) 

is a right child, or vice versa, then rotate the edge 
joining x with p(x) and then rotate the edge joining x 
its new p(x).
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5.
Fact 1. Splaying at a node x of depth d takes O(d) time.

Fact 2. Splaying moves x to the root, and roughly halves the 
depth of every node on the access path.

6. UPDATE OPERATIONS.

  access (i,t): if item i is in tree t, return a pointer to its location;
        otherwise, return a null pointer.

  insert (i,t): insert item i in tree t, assuming it is not there already;

  delete (i,t): delete i from t, assuming it is present.

  join (t1, t2): This operation assumes that all items in t1 are less
 than all those in t2. This combines trees t1 and t2 into 



 a single tree and returns the resulting tree.

  split (i,t): Construct and return two trees: t1, which contains all
       items less than or equal to i, and t2, which contains
       all items greater than i. This operation destroys t.

7. How to perform the operations.

   a. To perform access(i,t), we search down from the root, looking for i.
      If search reaches a node x containing i, WE SPLAY AT X and return the
      pointer to x.
   
      If search reaches a null node, we SPLAY the last non-null node,

and return a null pointer.
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   b. Because of the splaying's effect of moving x to the root, insert
and delete are easily implemented using join and split.

   c.   To perform join(t1, t2), we first access the largest item in t1.
Suppose this item is i. After the access, i is at the root of t1.
Because i is the largest item in t1, the root must have a null
right child. Simply make t2's root to be the right child of t1.
Return the resulting tree.

    d.  To perform split(i,t), first perform access(i,t).
If root contains an item greater than i, then break the left
child link from the root, and return the two subtrees.
Otherwise, break the right child link from the root, and 
return the two subtrees.

   [In both join and split, take extra care if one of the subtrees is empty.]

   e. To do insert(i,t), perform split(i,t). Replace t with a new tree
consisting of a new root node containing i, whose left and right
subtrees are t1 and t2 returned by the split.

   f. To do delete(i,t), perform access(i,t), and then replace t
by the join of its left and right subtrees.
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8. Theorems.

A sequence of m arbitrary splay tree operations takes
O( m + \sum_{j=1}^m log n_j ) time; where n_j is the
size of the tree at operation j.

Thus, the amortized cost per operation is O(log n).


