Lecture 7: Minimum Spanning Trees and Prim's Algorithm
 CLRS Chapter 23

Outline of this Lecture

- Spanning trees and minimum spanning trees.
- The minimum spanning tree (MST) problem.
- The generic algorithm for MST problem.
- Prim's algorithm for the MST problem.
- The algorithm
- Correctness
- Implementation + Running Time

Spanning Trees

Spanning Trees: A subgraph T of a undirected graph $G=(V, E)$ is a spanning tree of G if it is a tree and contains every vertex of G.

Example:

Spanning Trees

Theorem: Every connected graph has a spanning tree.

Question: Why is this true?

Question: Given a connected graph G, how can you find a spanning tree of G ?

Weighted Graphs

Weighted Graphs: A weighted graph is a graph, in which each edge has a weight (some real number).

Weight of a Graph: The sum of the weights of all edges.

Example:

Minimum Spanning Trees

A Minimum Spanning Tree in an undirected connected weighted graph is a spanning tree of minimum weight (among all spanning trees).

Example:

Minimum Spanning Trees

Remark: The minimum spanning tree may not be unique. However, if the weights of all the edges are pairwise distinct, it is indeed unique (we won't prove this now).

Example:

Minimum Spanning Tree Problem

MST Problem: Given a connected weighted undirected graph G, design an algorithm that outputs a minimum spanning tree (MST) of G.

Question: What is most intuitive way to solve?

Generic approach: A tree is an acyclic graph.
The idea is to start with an empty graph and try to add edges one at a time, always making sure that what is built remains acyclic. And if we are sure every time the resulting graph always is a subset of some minimum spanning tree, we are done.

Generic Algorithm for MST problem

Let A be a set of edges such that $A \subseteq T$, where T is a MST. An edge (u, v) is a safe edge for A, if $A \cup\{(u, v)\}$ is also a subset of some MST.

If at each step, we can find a safe edge (u, v), we can 'grow' a MST. This leads to the following generic approach:

Generic-MST(G, w)
Let A=EMPTY;
while A does not form a spanning tree find an edge (u, v) that is safe for A add (u, v) to A
return A

How can we find a safe edge?

How to find a safe edge

We first give some definitions. Let $G=(V, E)$ be a connected and undirected graph. We define:

Cut A cut $(S, V-S)$ of G is a partition of V .

Cross An edge (u, v) $\in E$ crosses the cut ($S, V-$ S) if one of its endpoints is in S, and the other is in $V-S$.

Respect A cut respects a set A of edges if no edge in A crosses the cut.

Light edge An edge is a light edge crossing a cut if its weight is the minimum of any edge crossing the cut.

How to find a safe edge

Lemma

Let $G=(V, E)$ be a connected, undirected graph with a real-valued weight function w defined on E. Let A be a subset of E that is included in some minimum spanning tree for G, let ($S, V-S$) be any cut of G that respects A, and let (u, v) be a light edge crossing the cut $(S, V-S)$. Then, edge (u, v) is safe for A.

It means that we can find a safe edge by

1. first finding a cut that respects A,
2. then finding the light edge crossing that cut.

That light edge is a safe edge.

Proof

1. Let $A \subseteq T$, where T is a MST. Suppose $(u, v) \notin$ T.
2. The trick is to construct another MST T^{\prime} that contains both A and (u, v), thereby showing (u, v) is a safe edge for A.
3. Since u, and v are on opposite sides of the cut ($S, V-S$), there is at least one edge in T on the path from u to v that crosses the cut. Let (x, y) be such edge. Since the cut respects $A,(x, y) \notin A$. Since (u, v) is a light edge crossing the cut, we have $w(x, y) \geq w(u, v)$.

4. Add (u, v) to T, it creates a cycle. By removing an edge from the cycle, it becomes a tree again. In particular, we remove $(x, y)(\notin A)$ to make a new tree T^{\prime}.
5. The weight of T^{\prime} is

$$
\begin{aligned}
w\left(T^{\prime}\right) & =w(T)-w(x, y)+w(u, v) \\
& \leq w(T)
\end{aligned}
$$

6. Since T is a MST, we must have $w(T)=w\left(T^{\prime}\right)$, hence T^{\prime} is also a MST.
7. Since $A \cup\{(u, v)\}$ is also a subset of T^{\prime} (a MST), (u,v) is safe for A.

Prim's Algorithm

The generic algorithm gives us an idea how to 'grow' a MST.

If you read the theorem and the proof carefully, you will notice that the choice of a cut (and hence the corresponding light edge) in each iteration is immaterial. We can select any cut (that respects the selected edges) and find the light edge crossing that cut to proceed.

The Prim's algorithm makes a nature choice of the cut in each iteration - it grows a single tree and adds a light edge in each iteration.

Prim's Algorithm : How to grow a tree

Grow a Tree

- Start by picking any vertex r to be the root of the tree.
- While the tree does not contain
all vertices in the graph
find shortest edge leaving the tree and add it to the tree .

Running time is $O((|V|+|E|) \log |V|)$.

More Details

Step 0: Choose any element r; set $S=\{r\}$ and $A=\emptyset$. (Take r as the root of our spanning tree.)

Step 1: Find a lightest edge such that one endpoint is in S and the other is in $V \backslash S$. Add this edge to A and its (other) endpoint to S.

Step 2: If $V \backslash S=\emptyset$, then stop \& output (minimum) spanning tree (S, A). Otherwise go to Step 1.

The idea: expand the current tree by adding the lightest (shortest) edge leaving it and its endpoint.

new edge

Prim's Algorithm

Worked Example

Step 0
$S=\{a\}$
$\mathrm{V} \backslash \mathrm{S}=\{\mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}, \mathrm{f}, \mathrm{g}\}$
lightest edge $=\{\mathrm{a}, \mathrm{b}\}$

Prim's Algorithm

Prim's Example - Continued

Step 1.1 after
$\mathrm{S}=\{\mathrm{a}, \mathrm{b}\}$
$\mathrm{V} \backslash \mathrm{S}=\{\mathrm{c}, \mathrm{d}, \mathrm{e}, \mathrm{f}, \mathrm{g}\}$
$\mathrm{A}=\{\{\mathrm{a}, \mathrm{b}\}\}$
lightest edge $=\{b, d\},\{a, c\}$

Prim's Algorithm

Prim's Example - Continued

Step 1.2 after
$\mathrm{S}=\{\mathrm{a}, \mathrm{b}, \mathrm{d}\}$
$\mathrm{V} \backslash \mathrm{S}=\{\mathrm{c}, \mathrm{e}, \mathrm{f}, \mathrm{g}\}$
$A=\{\{a, b\},\{b, d\}\}$
lightest edge $=\{\mathrm{d}, \mathrm{c}\}$

Prim's Algorithm

Prim's Example - Continued

Step 1.3 before
$\mathrm{S}=\{\mathrm{a}, \mathrm{b}, \mathrm{d}\}$
$\mathrm{V} \backslash \mathrm{S}=\{\mathrm{c}, \mathrm{e}, \mathrm{f}, \mathrm{g}\}$
$\mathrm{A}=\{\{\mathrm{a}, \mathrm{b}\},\{\mathrm{b}, \mathrm{d}\}\}$
lightest edge $=\{\mathrm{d}, \mathrm{c}\}$

Step 1.3 after
S=\{a,b,c,d\}
$\mathrm{V} \backslash \mathrm{S}=\{\mathrm{e}, \mathrm{f}, \mathrm{g}\}$
$A=\{\{a, b\},\{b, d\},\{c, d\}\}$
lightest edge $=\{c, f\}$

Prim's Algorithm

Prim's Example - Continued

Prim's Algorithm

Prim's Example - Continued

Step 1.5 before
$\mathrm{S}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{f}\}$
$\mathrm{V} \backslash \mathrm{S}=\{\mathrm{e}, \mathrm{g}\}$
$A=\{\{a, b\},\{b, d\},\{c, d\},\{c, f\}\}$
lightest edge $=\{\mathrm{f}, \mathrm{g}\}$

Step 1.5 after
$\mathrm{S}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{f}, \mathrm{g}\}$
$V \backslash S=\{e\}$
$\mathrm{A}=\{\{\mathrm{a}, \mathrm{b}\},\{\mathrm{b}, \mathrm{d}\},\{\mathrm{c}, \mathrm{d}\},\{\mathrm{c}, \mathrm{f}\}$, \{f,g\}\}
lightest edge $=\{f, \mathrm{e}\}$

Prim's Algorithm

Prim's Example - Continued

Step 1.6 before
$\mathrm{S}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{f}, \mathrm{g}\}$
$\mathrm{V} \backslash \mathrm{S}=\{\mathrm{e}\}$
$A=\{\{a, b\},\{b, d\},\{c, d\},\{c, f\}$, \{f,g\}\}
lightest edge $=\{\mathrm{f}, \mathrm{e}\}$

Step 1.6 after
$\mathrm{S}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}, \mathrm{f}, \mathrm{g}\}$
$\mathrm{V} \backslash \mathrm{S}=\{ \}$
$A=\{\{a, b\},\{b, d\},\{c, d\},\{c, f\}$, $\{f, g\},\{f, e\}\}$

MST completed

Recall Idea of Prim's Algorithm

Step 0: Choose any element r and set $S=\{r\}$ and $A=\emptyset$. (Take r as the root of our spanning tree.)

Step 1: Find a lightest edge such that one endpoint is in S and the other is in $V \backslash S$. Add this edge to A and its (other) endpoint to S.

Step 2: If $V \backslash S=\emptyset$, then stop and output the minimum spanning tree (S, A).
Otherwise go to Step 1.

Questions:

- Why does this produce a Minimum Spanning Tree?
- How does the algorithm find the lightest edge and update A efficiently?
- How does the algorithm update S efficiently?

Prim's Algorithm

Question: How does the algorithm update S efficiently?

Answer: Color the vertices. Initially all are white. Change the color to black when the vertex is moved to S. Use color $[v]$ to store color.

Question: How does the algorithm find the lightest edge and update A efficiently?

Answer:

(a) Use a priority queue to find the lightest edge.
(b) Use pred[$v]$ to update A.

Reviewing Priority Queues

Priority Queue is a data structure (can be implemented as a heap) which supports the following operations:
insert $(u, k e y)$:
Insert u with the key value key in Q.

u = extractMin():

Extract the item with the minimum key value in Q.
decreaseKey(u,new-key):
Decrease u 's key value to new-key.

Remark: Priority Queues can be implemented so that each operation takes time $O(\log |Q|)$. See CLRS!

Using a Priority Queue to Find the Lightest Edge

Each item of the queue is a triple ($u, \operatorname{pred}[u], k e y[u]$), where

- u is a vertex in $V \backslash S$,
- key[u] is the weight of the lightest edge from u to any vertex in S, and
- $\operatorname{pred}[u]$ is the endpoint of this edge in S. The array is used to build the MST tree.

$\operatorname{key}[\mathrm{f}]=8, \operatorname{pred}[\mathrm{f}]=\mathrm{e}$
$\operatorname{key}[\mathrm{i}]=$ infinity, $\operatorname{pred}[\mathrm{i}]=$ nil
$\operatorname{key}[\mathrm{g}]=16, \operatorname{pred}[\mathrm{~g}]=\mathrm{c}$
$\operatorname{key}[\mathrm{h}]=24, \operatorname{pred}[\mathrm{~h}]=\mathrm{b}$
$\rightarrow \mathrm{f}$ has the minimum key

new edge
$\operatorname{key}[\mathrm{i}]=23, \operatorname{pred}[\mathrm{i}]=\mathrm{f}$
After adding the new edge and vertex f , update the key[v] and pred[v] for each vertex v adjacent to f

Description of Prim's Algorithm

Remark: G is given by adjacency lists. The vertices in $V \backslash S$ are stored in a priority queue with key=value of lightest edge to vertex in S.

```
\(\operatorname{Prim}(G, w, r)\)
\{ for each \(u \in V \quad\) initialize
    \(\{\quad k e y[u]=+\infty\);
        color \([u]=W\);
    \}
    key \([r]=0 ; \quad\) start at root
    \(\operatorname{pred}[r]=N I L\);
    \(Q=\) new \(\operatorname{PriQueue}(V) ; \quad\) put vertices in \(Q\)
    while ( \(Q\) is nonempty)
until all vertices in MST
    \{ u=Q.extraxtMin();
                                    lightest edge
        for each ( \(v \in \operatorname{adj}[u]\) )
        \(\{\quad\) if \(((\operatorname{color}[v]==W) \& \&(w[u, v]<k e y[v]))\)
            \(k e y[v]=w[u, v]\);
                                    new lightest edge
        \(Q . \operatorname{decreaseKey}(v\), key \([v])\);
            \(\operatorname{pred}[v]=u\);
        \}
        \(\operatorname{color}[u]=B ;\)
    \}
\}
```

When the algorithm terminates, $Q=\emptyset$ and the MST is

$$
T=\{\{v, \operatorname{pred}[v]\}: v \in V \backslash\{r\}\}
$$

The pred pointers defi ne the MST as an inverted tree rooted at r.

Example for Running Prim's Algorithm

u	a	b	c	d	e	f
$\operatorname{key}[\mathrm{u}]$						
$\operatorname{pred}[\mathrm{u}]$						

Analysis of Prim's Algorithm

Let $n=|V|$ and $e=|E|$. The data structure PriQueue supports the following two operations: (See CLRS)

- $O(\log n)$ to extract each vertex from the queue. Done once for each vertex $=O(n \log n)$.
- $O(\log n)$ time to decrease the key value of neighboring vertex.
Done at most once for each edge $=O(e \log n)$.

Total cost is then

$$
O((n+e) \log n)
$$

Analysis of Prim's Algorithm - Continued

$\operatorname{Prim}(G, w, r)\{$
for each (u in V)
$\{$
$\operatorname{key}[\mathrm{u}]=+$ infinity;
color $[\mathrm{u}]=$ white;
\}

$$
\operatorname{key}[\mathrm{r}]=0
$$1

$$
\operatorname{pred}[\mathrm{r}]=\text { nil }
$$

$\mathrm{Q}=$ new $\operatorname{PriQueue(V);~}$ n
while (Q. nonempty())
\{
$\mathrm{u}=\mathrm{Q} . \operatorname{extractMin}()$;
$\mathrm{O}(\log \mathrm{n})$
for each (v in adj[u])
\{
if ((color[v] == white) \&
(w(u,v) < key[v])
$1 \mathrm{O}(\operatorname{deg}(\mathrm{u}) \log \mathrm{n})$
\{
$\mathrm{key}[\mathrm{v}]=\mathrm{w}(\mathrm{u}, \mathrm{v}) ; \quad 1$
Q.decrease $\operatorname{Key}(v, \operatorname{key}[v]) ; \quad \mathrm{O}(\log n)$
$\operatorname{pred}[\mathrm{v}]=\mathrm{u}$;
1
\}
color[u] = black;
\}
\}
$\sum_{u \text { in } V}[O(\log n)+O(\operatorname{deg}(u) \log n)]$

Analysis of Prim's Algorithm - Continued

So the overall running time is

$$
\begin{aligned}
& T(n, e) \\
& \quad=3 n+2+\sum_{u \in V}[O(\log n)+O(\operatorname{deg}(u) \log n)] \\
& =3 n+2+O\left[(\log n) \sum_{u \in V}(1+\operatorname{deg}(u))\right] \\
& =3 n+2+O[(\log n)(n+2 e)] \\
& =O[(\log n)(n+2 e)] \\
& =O[(\log n)(n+e)] \\
& =O[(|V|+|E|) \log |V|]
\end{aligned}
$$

