
C H A P T E R 9

Graph Algorithms

In this chapter, we discuss several common problems in graph theory. Not only are these
algorithms useful in practice, they are also interesting because in many real-life applications
they are too slow unless careful attention is paid to the choice of data structures. We will. . .

� Show several real-life problems, which can be converted to problems on graphs.
� Give algorithms to solve several common graph problems.
� Show how the proper choice of data structures can drastically reduce the running time

of these algorithms.
� See an important technique, known as depth-first search, and show how it can be used

to solve several seemingly nontrivial problems in linear time.

9.1 Definitions
A graph G = (V, E) consists of a set of vertices, V, and a set of edges, E. Each edge is a pair
(v, w), where v, w ∈ V. Edges are sometimes referred to as arcs. If the pair is ordered, then
the graph is directed. Directed graphs are sometimes referred to as digraphs. Vertex w is
adjacent to v if and only if (v, w) ∈ E. In an undirected graph with edge (v, w), and hence
(w, v), w is adjacent to v and v is adjacent to w. Sometimes an edge has a third component,
known as either a weight or a cost.

A path in a graph is a sequence of vertices w1, w2, w3, . . . , wN such that (wi, wi+1) ∈ E
for 1 ≤ i < N. The length of such a path is the number of edges on the path, which is
equal to N − 1. We allow a path from a vertex to itself; if this path contains no edges, then
the path length is 0. This is a convenient way to define an otherwise special case. If the
graph contains an edge (v, v) from a vertex to itself, then the path v, v is sometimes referred
to as a loop. The graphs we will consider will generally be loopless. A simple path is a
path such that all vertices are distinct, except that the first and last could be the same.

A cycle in a directed graph is a path of length at least 1 such that w1 = wN; this cycle
is simple if the path is simple. For undirected graphs, we require that the edges be distinct.
The logic of these requirements is that the path u, v, u in an undirected graph should not
be considered a cycle, because (u, v) and (v, u) are the same edge. In a directed graph, these
are different edges, so it makes sense to call this a cycle. A directed graph is acyclic if it has
no cycles. A directed acyclic graph is sometimes referred to by its abbreviation, DAG.

379

380 Chapter 9 Graph Algorithms

An undirected graph is connected if there is a path from every vertex to every other
vertex. A directed graph with this property is called strongly connected. If a directed
graph is not strongly connected, but the underlying graph (without direction to the arcs)
is connected, then the graph is said to be weakly connected. A complete graph is a graph
in which there is an edge between every pair of vertices.

An example of a real-life situation that can be modeled by a graph is the airport system.
Each airport is a vertex, and two vertices are connected by an edge if there is a nonstop
flight from the airports that are represented by the vertices. The edge could have a weight,
representing the time, distance, or cost of the flight. It is reasonable to assume that such
a graph is directed, since it might take longer or cost more (depending on local taxes,
for example) to fly in different directions. We would probably like to make sure that the
airport system is strongly connected, so that it is always possible to fly from any airport to
any other airport. We might also like to quickly determine the best flight between any two
airports. “Best” could mean the path with the fewest number of edges or could be taken
with respect to one, or all, of the weight measures.

Traffic flow can be modeled by a graph. Each street intersection represents a vertex,
and each street is an edge. The edge costs could represent, among other things, a speed
limit or a capacity (number of lanes). We could then ask for the shortest route or use this
information to find the most likely location for bottlenecks.

In the remainder of this chapter, we will see several more applications of graphs. Many
of these graphs can be quite large, so it is important that the algorithms we use be efficient.

9.1.1 Representation of Graphs
We will consider directed graphs (undirected graphs are similarly represented).

Suppose, for now, that we can number the vertices, starting at 1. The graph shown in
Figure 9.1 represents 7 vertices and 12 edges.

4

7

5

2

3

6

1

Figure 9.1 A directed graph

9.1 Definitions 381

One simple way to represent a graph is to use a two-dimensional array. This is known as
an adjacency matrix representation. For each edge (u, v), we set A[u][v] to true; otherwise
the entry in the array is false. If the edge has a weight associated with it, then we can set
A[u][v] equal to the weight and use either a very large or a very small weight as a sentinel
to indicate nonexistent edges. For instance, if we were looking for the cheapest airplane
route, we could represent nonexistent flights with a cost of ∞. If we were looking, for
some strange reason, for the most expensive airplane route, we could use −∞ (or perhaps
0) to represent nonexistent edges.

Although this has the merit of extreme simplicity, the space requirement is �(|V|2),
which can be prohibitive if the graph does not have very many edges. An adjacency matrix
is an appropriate representation if the graph is dense: |E| = �(|V|2). In most of the appli-
cations that we shall see, this is not true. For instance, suppose the graph represents a
street map. Assume a Manhattan-like orientation, where almost all the streets run either
north–south or east–west. Therefore, any intersection is attached to roughly four streets,
so if the graph is directed and all streets are two-way, then |E| ≈ 4|V|. If there are 3,000
intersections, then we have a 3,000-vertex graph with 12,000 edge entries, which would
require an array of size 9,000,000. Most of these entries would contain zero. This is intu-
itively bad, because we want our data structures to represent the data that are actually there
and not the data that are not present.

If the graph is not dense, in other words, if the graph is sparse, a better solution is
an adjacency list representation. For each vertex, we keep a list of all adjacent vertices.
The space requirement is then O(|E| + |V|), which is linear in the size of the graph.1 The
abstract representation should be clear from Figure 9.2. If the edges have weights, then
this additional information is also stored in the adjacency lists.

Adjacency lists are the standard way to represent graphs. Undirected graphs can be
similarly represented; each edge (u, v) appears in two lists, so the space usage essentially
doubles. A common requirement in graph algorithms is to find all vertices adjacent to some
given vertex v, and this can be done, in time proportional to the number of such vertices
found, by a simple scan down the appropriate adjacency list.

There are several alternatives for maintaining the adjacency lists. First, observe that the
lists themselves can be maintained in either vectors or lists. However, for sparse graphs,
when using vectors, the programmer may need to initialize each vector with a smaller
capacity than the default; otherwise, there could be significant wasted space.

Because it is important to be able to quickly obtain the list of adjacent vertices for any
vertex, the two basic options are to use a map in which the keys are vertices and the values
are adjacency lists, or to maintain each adjacency list as a data member of a Vertex class.
The first option is arguably simpler, but the second option can be faster, because it avoids
repeated lookups in the map.

In the second scenario, if the vertex is a string (for instance, an airport name, or the
name of a street intersection), then a map can be used in which the key is the vertex name
and the value is a Vertex (typically a pointer to a Vertex), and each Vertex object keeps a
list of (pointers to the) adjacent vertices and perhaps also the original string name.

1 When we speak of linear-time graph algorithms, O(|E| + |V|) is the running time we require.

382 Chapter 9 Graph Algorithms

2, 4, 3

4, 5

6

6, 7, 3

4, 7

(empty)

6

1

2

3

4

5

6

7

Figure 9.2 An adjacency list representation of a graph

In most of the chapter, we present the graph algorithms using pseudocode. We will do
this to save space and, of course, to make the presentation of the algorithms much clearer.
At the end of Section 9.3, we provide a working C++ implementation of a routine that
makes underlying use of a shortest-path algorithm to obtain its answers.

9.2 Topological Sort
A topological sort is an ordering of vertices in a directed acyclic graph, such that if there is
a path from vi to vj, then vj appears after vi in the ordering. The graph in Figure 9.3 repre-
sents the course prerequisite structure at a state university in Miami. A directed edge (v, w)
indicates that course v must be completed before course w may be attempted. A topologi-
cal ordering of these courses is any course sequence that does not violate the prerequisite
requirement.

It is clear that a topological ordering is not possible if the graph has a cycle, since
for two vertices v and w on the cycle, v precedes w and w precedes v. Furthermore, the
ordering is not necessarily unique; any legal ordering will do. In the graph in Figure 9.4,
v1, v2, v5, v4, v3, v7, v6 and v1, v2, v5, v4, v7, v3, v6 are both topological orderings.

A simple algorithm to find a topological ordering is first to find any vertex with no
incoming edges. We can then print this vertex, and remove it, along with its edges, from
the graph. Then we apply this same strategy to the rest of the graph.

To formalize this, we define the indegree of a vertex v as the number of edges (u, v).
We compute the indegrees of all vertices in the graph. Assuming that the indegree for each

9.2 Topological Sort 383

MAC3311

COP3210

CAP3700

COP3337

COP3400

MAD2104

COP4555

CDA4101

COP3530

MAD3512

CDA4400

MAD3305

COP4225

COP4610

CIS4610

COP4540

COP5621

Figure 9.3 An acyclic graph representing course prerequisite structure

v 1 v 2

v 3 v 4 v 5

v 6 v 7

Figure 9.4 An acyclic graph

vertex is stored, and that the graph is read into an adjacency list, we can then apply the
algorithm in Figure 9.5 to generate a topological ordering.

The function findNewVertexOfIndegreeZero scans the array of vertices looking for a ver-
tex with indegree 0 that has not already been assigned a topological number. It returns
NOT_A_VERTEX if no such vertex exists; this indicates that the graph has a cycle.

Because findNewVertexOfIndegreeZero is a simple sequential scan of the array of ver-
tices, each call to it takes O(|V|) time. Since there are |V| such calls, the running time of
the algorithm is O(|V|2).

By paying more careful attention to the data structures, it is possible to do better. The
cause of the poor running time is the sequential scan through the array of vertices. If the

384 Chapter 9 Graph Algorithms

void Graph::topsort()
{

for(int counter = 0; counter < NUM_VERTICES; counter++)
{

Vertex v = findNewVertexOfIndegreeZero();
if(v == NOT_A_VERTEX)

throw CycleFoundException{ };
v.topNum = counter;
for each Vertex w adjacent to v

w.indegree--;
}

}

Figure 9.5 Simple topological sort pseudocode

graph is sparse, we would expect that only a few vertices have their indegrees updated dur-
ing each iteration. However, in the search for a vertex of indegree 0, we look at (potentially)
all the vertices, even though only a few have changed.

We can remove this inefficiency by keeping all the (unassigned) vertices of indegree 0
in a special box. The findNewVertexOfIndegreeZero function then returns (and removes) any
vertex in the box. When we decrement the indegrees of the adjacent vertices, we check
each vertex and place it in the box if its indegree falls to 0.

To implement the box, we can use either a stack or a queue; we will use a queue. First,
the indegree is computed for every vertex. Then all vertices of indegree 0 are placed on an
initially empty queue. While the queue is not empty, a vertex v is removed, and all vertices
adjacent to v have their indegrees decremented. A vertex is put on the queue as soon as
its indegree falls to 0. The topological ordering then is the order in which the vertices
dequeue. Figure 9.6 shows the status after each phase.

Indegree Before Dequeue #

Vertex 1 2 3 4 5 6 7

v1 0 0 0 0 0 0 0

v2 1 0 0 0 0 0 0

v3 2 1 1 1 0 0 0

v4 3 2 1 0 0 0 0

v5 1 1 0 0 0 0 0

v6 3 3 3 3 2 1 0

v7 2 2 2 1 0 0 0

Enqueue v1 v2 v5 v4 v3, v7 v6

Dequeue v1 v2 v5 v4 v3 v7 v6

Figure 9.6 Result of applying topological sort to the graph in Figure 9.4

9.2 Topological Sort 385

void Graph::topsort()
{

Queue<Vertex> q;
int counter = 0;

q.makeEmpty();
for each Vertex v

if(v.indegree == 0)
q.enqueue(v);

while(!q.isEmpty())
{

Vertex v = q.dequeue();
v.topNum = ++counter; // Assign next number

for each Vertex w adjacent to v
if(--w.indegree == 0)

q.enqueue(w);
}

if(counter != NUM_VERTICES)
throw CycleFoundException{ };

}

Figure 9.7 Pseudocode to perform topological sort

A pseudocode implementation of this algorithm is given in Figure 9.7. As before, we
will assume that the graph is already read into an adjacency list and that the indegrees
are computed and stored with the vertices. We also assume each vertex has a named data
member, topNum, in which to place its topological numbering.

The time to perform this algorithm is O(|E| + |V|) if adjacency lists are used. This
is apparent when one realizes that the body of the for loop is executed at most once
per edge. Computing the indegrees can be done with the following code; this same logic
shows that the cost of this computation is O(|E| + |V|), even though there are nested
loops.

for each Vertex v
v.indegree = 0;

for each Vertex v
for each Vertex w adjacent to v

w.indegree++;

The queue operations are done at most once per vertex, and the other initialization steps,
including the computation of indegrees, also take time proportional to the size of the
graph.

386 Chapter 9 Graph Algorithms

9.3 Shortest-Path Algorithms
In this section we examine various shortest-path problems. The input is a weighted
graph: Associated with each edge (vi, vj) is a cost ci,j to traverse the edge. The cost of

a path v1v2 . . . vN is
∑N−1

i=1 ci,i+1. This is referred to as the weighted path length. The
unweighted path length is merely the number of edges on the path, namely, N − 1.

Single-Source Shortest-Path Problem
Given as input a weighted graph, G = (V, E), and a distinguished vertex, s, find the
shortest weighted path from s to every other vertex in G.

For example, in the graph in Figure 9.8, the shortest weighted path from v1 to v6 has a
cost of 6 and goes from v1 to v4 to v7 to v6. The shortest unweighted path between these
vertices is 2. Generally, when it is not specified whether we are referring to a weighted or
an unweighted path, the path is weighted if the graph is. Notice also that in this graph
there is no path from v6 to v1.

The graph in the preceding example has no edges of negative cost. The graph in
Figure 9.9 shows the problems that negative edges can cause. The path from v5 to v4 has

6

2

4 1 3 10

2

485

1

2

v 1 v 2

v 3 v 4 v 5

v 6 v 7

Figure 9.8 A directed graph G

6

2

4 1 3 –10

1

262

1

5

v 1 v 2

v 3 v 4 v 5

v 6 v 7

Figure 9.9 A graph with a negative-cost cycle

9.3 Shortest-Path Algorithms 387

cost 1, but a shorter path exists by following the loop v5, v4, v2, v5, v4, which has cost −5.
This path is still not the shortest, because we could stay in the loop arbitrarily long. Thus,
the shortest path between these two points is undefined. Similarly, the shortest path from
v1 to v6 is undefined, because we can get into the same loop. This loop is known as a
negative-cost cycle; when one is present in the graph, the shortest paths are not defined.
Negative-cost edges are not necessarily bad, as the cycles are, but their presence seems to
make the problem harder. For convenience, in the absence of a negative-cost cycle, the
shortest path from s to s is zero.

There are many examples where we might want to solve the shortest-path problem.
If the vertices represent computers; the edges represent a link between computers; and
the costs represent communication costs (phone bill per a megabyte of data), delay costs
(number of seconds required to transmit a megabyte), or a combination of these and other
factors, then we can use the shortest-path algorithm to find the cheapest way to send
electronic news from one computer to a set of other computers.

We can model airplane or other mass transit routes by graphs and use a shortest-
path algorithm to compute the best route between two points. In this and many practical
applications, we might want to find the shortest path from one vertex, s, to only one other
vertex, t. Currently there are no algorithms in which finding the path from s to one vertex
is any faster (by more than a constant factor) than finding the path from s to all vertices.

We will examine algorithms to solve four versions of this problem. First, we will con-
sider the unweighted shortest-path problem and show how to solve it in O(|E|+|V|). Next,
we will show how to solve the weighted shortest-path problem if we assume that there are
no negative edges. The running time for this algorithm is O(|E| log |V|) when implemented
with reasonable data structures.

If the graph has negative edges, we will provide a simple solution, which unfortunately
has a poor time bound of O(|E| · |V|). Finally, we will solve the weighted problem for the
special case of acyclic graphs in linear time.

9.3.1 Unweighted Shortest Paths
Figure 9.10 shows an unweighted graph, G. Using some vertex, s, which is an input param-
eter, we would like to find the shortest path from s to all other vertices. We are only
interested in the number of edges contained on the path, so there are no weights on the
edges. This is clearly a special case of the weighted shortest-path problem, since we could
assign all edges a weight of 1.

For now, suppose we are interested only in the length of the shortest paths, not in the
actual paths themselves. Keeping track of the actual paths will turn out to be a matter of
simple bookkeeping.

Suppose we choose s to be v3. Immediately, we can tell that the shortest path from
s to v3 is then a path of length 0. We can mark this information, obtaining the graph in
Figure 9.11.

Now we can start looking for all vertices that are a distance 1 away from s. These can
be found by looking at the vertices that are adjacent to s. If we do this, we see that v1 and
v6 are one edge from s. This is shown in Figure 9.12.

We can now find vertices whose shortest path from s is exactly 2, by finding all the
vertices adjacent to v1 and v6 (the vertices at distance 1), whose shortest paths are not

v 1 v 2

v 3 v 4 v 5

v 6 v 7

Figure 9.10 An unweighted directed graph G

v 1 v 2

v 3 v 4 v 5

v 6 v 7

0

Figure 9.11 Graph after marking the start node as reachable in zero edges

v 1 v 2

v 3 v 4 v 5

v 6 v 7

0

1

1

Figure 9.12 Graph after finding all vertices whose path length from s is 1

9.3 Shortest-Path Algorithms 389

v 1 v 2

v 3 v 4 v 5

v 6 v 7

0

1

1

2

2

Figure 9.13 Graph after finding all vertices whose shortest path is 2

already known. This search tells us that the shortest path to v2 and v4 is 2. Figure 9.13
shows the progress that has been made so far.

Finally we can find, by examining vertices adjacent to the recently evaluated v2 and v4,
that v5 and v7 have a shortest path of three edges. All vertices have now been calculated,
and so Figure 9.14 shows the final result of the algorithm.

This strategy for searching a graph is known as breadth-first search. It operates by
processing vertices in layers: The vertices closest to the start are evaluated first, and the
most distant vertices are evaluated last. This is much the same as a level-order traversal for
trees.

Given this strategy, we must translate it into code. Figure 9.15 shows the initial
configuration of the table that our algorithm will use to keep track of its progress.

For each vertex, we will keep track of three pieces of information. First, we will keep
its distance from s in the entry dv. Initially all vertices are unreachable except for s, whose
path length is 0. The entry in pv is the bookkeeping variable, which will allow us to print
the actual paths. The entry known is set to true after a vertex is processed. Initially, all
entries are not known, including the start vertex. When a vertex is marked known, we have

v 1 v 2

v 3 v 4 v 5

v 6 v 7

0

1

1

2

2 3

3

Figure 9.14 Final shortest paths

390 Chapter 9 Graph Algorithms

v known dv pv

v1 F ∞ 0

v2 F ∞ 0

v3 F 0 0

v4 F ∞ 0

v5 F ∞ 0

v6 F ∞ 0

v7 F ∞ 0

Figure 9.15 Initial configuration of table used in unweighted shortest-path computation

a guarantee that no cheaper path will ever be found, and so processing for that vertex is
essentially complete.

The basic algorithm can be described in Figure 9.16. The algorithm in Figure 9.16
mimics the diagrams by declaring as known the vertices at distance d = 0, then d = 1,
then d = 2, and so on, and setting all the adjacent vertices w that still have dw = ∞ to a
distance dw = d + 1.

void Graph::unweighted(Vertex s)
{

for each Vertex v
{

v.dist = INFINITY;
v.known = false;

}

s.dist = 0;

for(int currDist = 0; currDist < NUM_VERTICES; currDist++)
for each Vertex v

if(!v.known && v.dist == currDist)
{

v.known = true;
for each Vertex w adjacent to v

if(w.dist == INFINITY)
{

w.dist = currDist + 1;
w.path = v;

}
}

}

Figure 9.16 Pseudocode for unweighted shortest-path algorithm

9.3 Shortest-Path Algorithms 391

v 1v 2v 3v 4v 5v 6v 7v 8v 9

Figure 9.17 A bad case for unweighted shortest-path algorithm using Figure 9.16

By tracing back through the pv variable, the actual path can be printed. We will see
how when we discuss the weighted case.

The running time of the algorithm is O(|V|2), because of the doubly nested for loops.
An obvious inefficiency is that the outside loop continues until NUM_VERTICES-1, even if all
the vertices become known much earlier. Although an extra test could be made to avoid
this, it does not affect the worst-case running time, as can be seen by generalizing what
happens when the input is the graph in Figure 9.17 with start vertex v9.

We can remove the inefficiency in much the same way as was done for topological sort.
At any point in time, there are only two types of unknown vertices that have dv �= ∞. Some
have dv = currDist, and the rest have dv = currDist + 1. Because of this extra structure, it
is very wasteful to search through the entire table to find a proper vertex.

A very simple but abstract solution is to keep two boxes. Box #1 will have the unknown
vertices with dv = currDist, and box #2 will have dv = currDist + 1. The test to find an
appropriate vertex v can be replaced by finding any vertex in box #1. After updating w
(inside the innermost if block), we can add w to box #2. After the outermost for loop
terminates, box #1 is empty, and box #2 can be transferred to box #1 for the next pass of
the for loop.

We can refine this idea even further by using just one queue. At the start of the pass,
the queue contains only vertices of distance currDist. When we add adjacent vertices of
distance currDist + 1, since they enqueue at the rear, we are guaranteed that they will not
be processed until after all the vertices of distance currDist have been processed. After the
last vertex at distance currDist dequeues and is processed, the queue only contains vertices
of distance currDist + 1, so this process perpetuates. We merely need to begin the process
by placing the start node on the queue by itself.

The refined algorithm is shown in Figure 9.18. In the pseudocode, we have assumed
that the start vertex, s, is passed as a parameter. Also, it is possible that the queue might
empty prematurely, if some vertices are unreachable from the start node. In this case, a
distance of INFINITY will be reported for these nodes, which is perfectly reasonable. Finally,
the known data member is not used; once a vertex is processed it can never enter the queue
again, so the fact that it need not be reprocessed is implicitly marked. Thus, the known data
member can be discarded. Figure 9.19 shows how the values on the graph we have been
using are changed during the algorithm (it includes the changes that would occur to known
if we had kept it).

Using the same analysis as was performed for topological sort, we see that the running
time is O(|E| + |V|), as long as adjacency lists are used.

9.3.2 Dijkstra’s Algorithm
If the graph is weighted, the problem (apparently) becomes harder, but we can still use the
ideas from the unweighted case.

392 Chapter 9 Graph Algorithms

void Graph::unweighted(Vertex s)
{

Queue<Vertex> q;

for each Vertex v
v.dist = INFINITY;

s.dist = 0;
q.enqueue(s);

while(!q.isEmpty())
{

Vertex v = q.dequeue();

for each Vertex w adjacent to v
if(w.dist == INFINITY)
{

w.dist = v.dist + 1;
w.path = v;
q.enqueue(w);

}
}

}

Figure 9.18 Psuedocode for unweighted shortest-path algorithm

We keep all of the same information as before. Thus, each vertex is marked as either
known or unknown. A tentative distance dv is kept for each vertex, as before. This dis-
tance turns out to be the shortest path length from s to v using only known vertices as
intermediates. As before, we record pv, which is the last vertex to cause a change to dv.

The general method to solve the single-source shortest-path problem is known as
Dijkstra’s algorithm. This thirty-year-old solution is a prime example of a greedy algo-
rithm. Greedy algorithms generally solve a problem in stages by doing what appears to
be the best thing at each stage. For example, to make change in U.S. currency, most
people count out the quarters first, then the dimes, nickels, and pennies. This greedy algo-
rithm gives change using the minimum number of coins. The main problem with greedy
algorithms is that they do not always work. The addition of a 12-cent piece breaks the
coin-changing algorithm for returning 15 cents, because the answer it gives (one 12-cent
piece and three pennies) is not optimal (one dime and one nickel).

Dijkstra’s algorithm proceeds in stages, just like the unweighted shortest-path algo-
rithm. At each stage, Dijkstra’s algorithm selects a vertex, v, which has the smallest dv

among all the unknown vertices and declares that the shortest path from s to v is known.
The remainder of a stage consists of updating the values of dw.

In the unweighted case, we set dw = dv + 1 if dw = ∞. Thus, we essentially lowered
the value of dw if vertex v offered a shorter path. If we apply the same logic to the weighted

9.3 Shortest-Path Algorithms 393

Initial State v3 Dequeued v1 Dequeued v6 Dequeued

v known dv pv known dv pv known dv pv known dv pv

v1 F ∞ 0 F 1 v3 T 1 v3 T 1 v3

v2 F ∞ 0 F ∞ 0 F 2 v1 F 2 v1

v3 F 0 0 T 0 0 T 0 0 T 0 0

v4 F ∞ 0 F ∞ 0 F 2 v1 F 2 v1

v5 F ∞ 0 F ∞ 0 F ∞ 0 F ∞ 0

v6 F ∞ 0 F 1 v3 F 1 v3 T 1 v3

v7 F ∞ 0 F ∞ 0 F ∞ 0 F ∞ 0

Q: v3 v1, v6 v6, v2, v4 v2, v4

v2 Dequeued v4 Dequeued v5 Dequeued v7 Dequeued

v known dv pv known dv pv known dv pv known dv pv

v1 T 1 v3 T 1 v3 T 1 v3 T 1 v3

v2 T 2 v1 T 2 v1 T 2 v1 T 2 v1

v3 T 0 0 T 0 0 T 0 0 T 0 0

v4 F 2 v1 T 2 v1 T 2 v1 T 2 v1

v5 F 3 v2 F 3 v2 T 3 v2 T 3 v2

v6 T 1 v3 T 1 v3 T 1 v3 T 1 v3

v7 F ∞ 0 F 3 v4 F 3 v4 T 3 v4

Q: v4, v5 v5, v7 v7 empty

Figure 9.19 How the data change during the unweighted shortest-path algorithm

case, then we should set dw = dv + cv,w if this new value for dw would be an improvement.
Put simply, the algorithm decides whether or not it is a good idea to use v on the path to w.
The original cost, dw, is the cost without using v; the cost calculated above is the cheapest
path using v (and only known vertices).

The graph in Figure 9.20 is our example. Figure 9.21 represents the initial config-
uration, assuming that the start node, s, is v1. The first vertex selected is v1, with path
length 0. This vertex is marked known. Now that v1 is known, some entries need to be
adjusted. The vertices adjacent to v1 are v2 and v4. Both these vertices get their entries
adjusted, as indicated in Figure 9.22.

Next, v4 is selected and marked known. Vertices v3, v5, v6, and v7 are adjacent, and it
turns out that all require adjusting, as shown in Figure 9.23.

Next, v2 is selected. v4 is adjacent but already known, so no work is performed on it.
v5 is adjacent but not adjusted, because the cost of going through v2 is 2 + 10 = 12 and
a path of length 3 is already known. Figure 9.24 shows the table after these vertices are
selected.

394 Chapter 9 Graph Algorithms

6

2

4 1 3 10

2

485

1

2

v 1 v 2

v 3 v 4 v 5

v 6 v 7

Figure 9.20 The directed graph G (again)

v known dv pv

v1 F 0 0

v2 F ∞ 0

v3 F ∞ 0

v4 F ∞ 0

v5 F ∞ 0

v6 F ∞ 0

v7 F ∞ 0

Figure 9.21 Initial configuration of table used in Dijkstra’s algorithm

v known dv pv

v1 T 0 0

v2 F 2 v1

v3 F ∞ 0

v4 F 1 v1

v5 F ∞ 0

v6 F ∞ 0

v7 F ∞ 0

Figure 9.22 After v1 is declared known

The next vertex selected is v5 at cost 3. v7 is the only adjacent vertex, but it is not
adjusted, because 3 + 6 > 5. Then v3 is selected, and the distance for v6 is adjusted down
to 3 + 5 = 8. The resulting table is depicted in Figure 9.25.

Next, v7 is selected; v6 gets updated down to 5 + 1 = 6. The resulting table is
Figure 9.26.

9.3 Shortest-Path Algorithms 395

v known dv pv

v1 T 0 0

v2 F 2 v1

v3 F 3 v4

v4 T 1 v1

v5 F 3 v4

v6 F 9 v4

v7 F 5 v4

Figure 9.23 After v4 is declared known

v known dv pv

v1 T 0 0

v2 T 2 v1

v3 F 3 v4

v4 T 1 v1

v5 F 3 v4

v6 F 9 v4

v7 F 5 v4

Figure 9.24 After v2 is declared known

v known dv pv

v1 T 0 0

v2 T 2 v1

v3 T 3 v4

v4 T 1 v1

v5 T 3 v4

v6 F 8 v3

v7 F 5 v4

Figure 9.25 After v5 and then v3 are declared known

Finally, v6 is selected. The final table is shown in Figure 9.27. Figure 9.28 graphically
shows how edges are marked known and vertices updated during Dijkstra’s algorithm.

To print out the actual path from a start vertex to some vertex v, we can write a recursive
routine to follow the trail left in the p variables.

We now give pseudocode to implement Dijkstra’s algorithm. Each Vertex stores various
data members that are used in the algorithm. This is shown in Figure 9.29.

396 Chapter 9 Graph Algorithms

v known dv pv

v1 T 0 0

v2 T 2 v1

v3 T 3 v4

v4 T 1 v1

v5 T 3 v4

v6 F 6 v7

v7 T 5 v4

Figure 9.26 After v7 is declared known

v known dv pv

v1 T 0 0

v2 T 2 v1

v3 T 3 v4

v4 T 1 v1

v5 T 3 v4

v6 T 6 v7

v7 T 5 v4

Figure 9.27 After v6 is declared known and algorithm terminates

The path can be printed out using the recursive routine in Figure 9.30. The routine
recursively prints the path all the way up to the vertex before v on the path, and then just
prints v. This works because the path is simple.

Figure 9.31 shows the main algorithm, which is just a for loop to fill up the table using
the greedy selection rule.

A proof by contradiction will show that this algorithm always works as long as no
edge has a negative cost. If any edge has negative cost, the algorithm could produce the
wrong answer (see Exercise 9.7(a)). The running time depends on how the vertices are
manipulated, which we have yet to consider. If we use the obvious algorithm of sequentially
scanning the vertices to find the minimum dv, each phase will take O(|V|) time to find the
minimum, and thus O(|V|2) time will be spent finding the minimum over the course of the
algorithm. The time for updating dw is constant per update, and there is at most one update
per edge for a total of O(|E|). Thus, the total running time is O(|E|+ |V|2) = O(|V|2). If the
graph is dense, with |E| = �(|V|2), this algorithm is not only simple but also essentially
optimal, since it runs in time linear in the number of edges.

If the graph is sparse, with |E| = �(|V|), this algorithm is too slow. In this case, the
distances would need to be kept in a priority queue. There are actually two ways to do this;
both are similar.

9.3 Shortest-Path Algorithms 397

6

2

4 1 3 10

2

485

1

2

6

2

4 1 3 10

2

485

1

2

6

2

4 1 3 10

2

485

1

2

6

2

4 1 3 10

2

485

1

2

6

2

4 1 3 10

2

485

1

2

6

2

4 1 3 10

2

485

1

2

6

2

4 1 3 10

2

485

1

2

6

2

4 1 3 10

2

485

1

2

0 • 20

1

20

313

59

20

13 3

59

3

20

313

59

20

13

58

3

20

313

56

20

13

56

v 1 v 2

v 3 v 4 v 5

v 6 v 7

v 1* v 2

v 3 v 4 v 5

v 6 v 7

v 1* v 2

v 3 v 4* v 5

v 6 v 7

v 1* v 2*

v 3 v 4* v 5

v 6 v 7

v 1* v 2*

v 3 v 4* v 5*

v 6 v 7

v 1* v 2*

v 3* v 4* v 5*

v 6 v 7

v 1* v 2*

v 3* v 4* v 5*

v 6 v 7*

v 1* v 2*

v 3* v 4* v 5*

v 6* v 7*

∞ ∞∞

∞ ∞∞ ∞

∞∞

Figure 9.28 Stages of Dijkstra’s algorithm

Selection of the vertex v is a deleteMin operation, since once the unknown minimum
vertex is found, it is no longer unknown and must be removed from future consideration.
The update of w’s distance can be implemented two ways.

One way treats the update as a decreaseKey operation. The time to find the minimum is
then O(log |V|), as is the time to perform updates, which amount to decreaseKey operations.
This gives a running time of O(|E| log |V| + |V| log |V|) = O(|E| log |V|), an improvement

398 Chapter 9 Graph Algorithms

/**
* PSEUDOCODE sketch of the Vertex structure.
* In real C++, path would be of type Vertex *,
* and many of the code fragments that we describe
* require either a dereferencing * or use the
* -> operator instead of the . operator.
* Needless to say, this obscures the basic algorithmic ideas.
*/

struct Vertex
{

List adj; // Adjacency list
bool known;
DistType dist; // DistType is probably int
Vertex path; // Probably Vertex *, as mentioned above

// Other data and member functions as needed
};

Figure 9.29 Vertex class for Dijkstra’s algorithm (pseudocode)

/**
* Print shortest path to v after dijkstra has run.
* Assume that the path exists.
*/

void Graph::printPath(Vertex v)
{

if(v.path != NOT_A_VERTEX)
{

printPath(v.path);
cout << " to ";

}
cout << v;

}

Figure 9.30 Routine to print the actual shortest path

over the previous bound for sparse graphs. Since priority queues do not efficiently support
the find operation, the location in the priority queue of each value of di will need to be
maintained and updated whenever di changes in the priority queue. If the priority queue
is implemented by a binary heap, this will be messy. If a pairing heap (Chapter 12) is used,
the code is not too bad.

An alternate method is to insert w and the new value dw into the priority queue every
time w’s distance changes. Thus, there may be more than one representative for each vertex
in the priority queue. When the deleteMin operation removes the smallest vertex from
the priority queue, it must be checked to make sure that it is not already known and, if

9.3 Shortest-Path Algorithms 399

void Graph::dijkstra(Vertex s)
{

for each Vertex v
{

v.dist = INFINITY;
v.known = false;

}

s.dist = 0;

while(there is an unknown distance vertex)
{

Vertex v = smallest unknown distance vertex;

v.known = true;

for each Vertex w adjacent to v
if(!w.known)
{

DistType cvw = cost of edge from v to w;

if(v.dist + cvw < w.dist)
{

// Update w
decrease(w.dist to v.dist + cvw);
w.path = v;

}
}

}
}

Figure 9.31 Pseudocode for Dijkstra’s algorithm

it is, it is simply ignored and another deleteMin is performed. Although this method is
superior from a software point of view, and is certainly much easier to code, the size of
the priority queue could get to be as large as |E|. This does not affect the asymptotic time
bounds, since |E| ≤ |V|2 implies that log |E| ≤ 2 log |V|. Thus, we still get an O(|E| log |V|)
algorithm. However, the space requirement does increase, and this could be important in
some applications. Moreover, because this method requires |E| deleteMins instead of only
|V|, it is likely to be slower in practice.

Notice that for the typical problems, such as computer mail and mass transit com-
mutes, the graphs are typically very sparse because most vertices have only a couple of
edges, so it is important in many applications to use a priority queue to solve this problem.

There are better time bounds possible using Dijkstra’s algorithm if different data struc-
tures are used. In Chapter 11, we will see another priority queue data structure called the

400 Chapter 9 Graph Algorithms

Fibonacci heap. When this is used, the running time is O(|E|+|V| log |V|). Fibonacci heaps
have good theoretical time bounds but a fair amount of overhead, so it is not clear whether
using Fibonacci heaps is actually better in practice than Dijkstra’s algorithm with binary
heaps. To date, there are no meaningful average-case results for this problem.

9.3.3 Graphs with Negative Edge Costs
If the graph has negative edge costs, then Dijkstra’s algorithm does not work. The problem
is that once a vertex, u, is declared known, it is possible that from some other unknown
vertex, v, there is a path back to u that is very negative. In such a case, taking a path from
s to v back to u is better than going from s to u without using v. Exercise 9.7(a) asks you to
construct an explicit example.

A tempting solution is to add a constant � to each edge cost, thus removing negative
edges, calculate a shortest path on the new graph, and then use that result on the original.
The naive implementation of this strategy does not work because paths with many edges
become more weighty than paths with few edges.

A combination of the weighted and unweighted algorithms will solve the problem, but
at the cost of a drastic increase in running time. We forget about the concept of known
vertices, since our algorithm needs to be able to change its mind. We begin by placing s
on a queue. Then, at each stage, we dequeue a vertex v. We find all vertices w adjacent
to v such that dw > dv + cv,w. We update dw and pw, and place w on a queue if it is not
already there. A bit can be set for each vertex to indicate presence in the queue. We repeat
the process until the queue is empty. Figure 9.32 (almost) implements this algorithm.

Although the algorithm works if there are no negative-cost cycles, it is no longer
true that the code in the inner for loop is executed once per edge. Each vertex can
dequeue at most |V| times, so the running time is O(|E| · |V|) if adjacency lists are used
(Exercise 9.7(b)). This is quite an increase from Dijkstra’s algorithm, so it is fortunate
that, in practice, edge costs are nonnegative. If negative-cost cycles are present, then the
algorithm as written will loop indefinitely. By stopping the algorithm after any vertex has
dequeued |V| + 1 times, we can guarantee termination.

9.3.4 Acyclic Graphs
If the graph is known to be acyclic, we can improve Dijkstra’s algorithm by changing
the order in which vertices are declared known, otherwise known as the vertex selection
rule. The new rule is to select vertices in topological order. The algorithm can be done in
one pass, since the selections and updates can take place as the topological sort is being
performed.

This selection rule works because when a vertex v is selected, its distance, dv, can
no longer be lowered, since by the topological ordering rule it has no incoming edges
emanating from unknown nodes.

There is no need for a priority queue with this selection rule; the running time is
O(|E| + |V|), since the selection takes constant time.

An acyclic graph could model some downhill skiing problem—we want to get from
point a to b, but can only go downhill, so clearly there are no cycles. Another possible

9.3 Shortest-Path Algorithms 401

void Graph::weightedNegative(Vertex s)
{

Queue<Vertex> q;

for each Vertex v
v.dist = INFINITY;

s.dist = 0;
q.enqueue(s);

while(!q.isEmpty())
{

Vertex v = q.dequeue();

for each Vertex w adjacent to v
if(v.dist + cvw < w.dist)
{

// Update w
w.dist = v.dist + cvw;
w.path = v;
if(w is not already in q)

q.enqueue(w);
}

}
}

Figure 9.32 Pseudocode for weighted shortest-path algorithm with negative edge costs

application might be the modeling of (nonreversible) chemical reactions. We could have
each vertex represent a particular state of an experiment. Edges would represent a transi-
tion from one state to another, and the edge weights might represent the energy released.
If only transitions from a higher energy state to a lower are allowed, the graph is acyclic.

A more important use of acyclic graphs is critical path analysis. The graph in
Figure 9.33 will serve as our example. Each node represents an activity that must be per-
formed, along with the time it takes to complete the activity. This graph is thus known as
an activity-node graph. The edges represent precedence relationships: An edge (v, w) means
that activity v must be completed before activity w may begin. Of course, this implies that
the graph must be acyclic. We assume that any activities that do not depend (either directly
or indirectly) on each other can be performed in parallel by different servers.

This type of a graph could be (and frequently is) used to model construction projects.
In this case, there are several important questions which would be of interest to answer.
First, what is the earliest completion time for the project? We can see from the graph that 10
time units are required along the path A, C, F, H. Another important question is to deter-
mine which activities can be delayed, and by how long, without affecting the minimum
completion time. For instance, delaying any of A, C, F, or H would push the completion

402 Chapter 9 Graph Algorithms

start

A (3)

B (2)

C (3)

D (2)

E (1)

F (3)

G (2)

H (1)

K (4)

finish

Figure 9.33 Activity-node graph

time past 10 units. On the other hand, activity B is less critical and can be delayed up to
two time units without affecting the final completion time.

To perform these calculations, we convert the activity-node graph to an event-node
graph. Each event corresponds to the completion of an activity and all its dependent activ-
ities. Events reachable from a node v in the event-node graph may not commence until
after the event v is completed. This graph can be constructed automatically or by hand.
Dummy edges and nodes may need to be inserted in the case where an activity depends on
several others. This is necessary in order to avoid introducing false dependencies (or false
lack of dependencies). The event-node graph corresponding to the graph in Figure 9.33 is
shown in Figure 9.34.

To find the earliest completion time of the project, we merely need to find the length of
the longest path from the first event to the last event. For general graphs, the longest-path
problem generally does not make sense, because of the possibility of positive-cost cycles.
These are the equivalent of negative-cost cycles in shortest-path problems. If positive-cost
cycles are present, we could ask for the longest simple path, but no satisfactory solution is
known for this problem. Since the event-node graph is acyclic, we need not worry about
cycles. In this case, it is easy to adapt the shortest-path algorithm to compute the earliest

1

2

3

6' 6

4

5

7' 7

8' 8

9

10' 10

A/3

B/2

C/3

0

0

D/2

0

0

0

0
E/1

F/3

G/2

K/4

0

0

0

H/1

Figure 9.34 Event-node graph

9.3 Shortest-Path Algorithms 403

completion time for all nodes in the graph. If ECi is the earliest completion time for node
i, then the applicable rules are

EC1 = 0

ECw = max
(v,w)∈E

(ECv + cv,w)

Figure 9.35 shows the earliest completion time for each event in our example event-node
graph.

We can also compute the latest time, LCi, that each event can finish without affecting
the final completion time. The formulas to do this are

LCn = ECn

LCv = min
(v,w)∈E

(LCw − cv,w)

These values can be computed in linear time by maintaining, for each vertex, a list of all
adjacent and preceding vertices. The earliest completion times are computed for vertices by
their topological order, and the latest completion times are computed by reverse topological
order. The latest completion times are shown in Figure 9.36.

The slack time for each edge in the event-node graph represents the amount of time
that the completion of the corresponding activity can be delayed without delaying the
overall completion. It is easy to see that

Slack(v,w) = LCw − ECv − cv,w

1

2

3

6' 6

4

5

7' 7

8' 8

9

10' 10

A/3

B/2

C/3

0

0

D/2

0

0

0

0
E/1

F/3

G/2

K/4

0

0

0

H/1
0

3

2

3 5

6

3

6 9

5 7

7

9 10

Figure 9.35 Earliest completion times

1

2

3

6' 6

4

5

7' 7

8' 8

9

10' 10

A/3

B/2

C/3

0

0

D/2

0

0

0

0
E/1

F/3

G/2

K/4

0

0

0

H/1

0

3

4

4 6

6

5

6 9

7 9

9

9 10

Figure 9.36 Latest completion times

404 Chapter 9 Graph Algorithms

1

2

3

6' 6

4

5

7' 7

8' 8

9

10' 10

A/3/0

B/2/2

C/3/0

D/2/1

E/1/2

F/3/0

G/2/2

K/4/2

H/1/0
0

3

2

3 5

6

3

6 9

5 7

7

9 10

0

3

4

4 6

6

5

6 9

7 9

9

9 10

Figure 9.37 Earliest completion time, latest completion time, and slack

Figure 9.37 shows the slack (as the third entry) for each activity in the event-node graph.
For each node, the top number is the earliest completion time and the bottom entry is the
latest completion time.

Some activities have zero slack. These are critical activities, which must finish on sched-
ule. There is at least one path consisting entirely of zero-slack edges; such a path is a critical
path.

9.3.5 All-Pairs Shortest Path
Sometimes it is important to find the shortest paths between all pairs of vertices in the
graph. Although we could just run the appropriate single-source algorithm |V| times, we
might expect a somewhat faster solution, especially on a dense graph, if we compute all
the information at once.

In Chapter 10, we will see an O(|V|3) algorithm to solve this problem for weighted
graphs. Although, for dense graphs, this is the same bound as running a simple (non-
priority queue) Dijkstra’s algorithm |V| times, the loops are so tight that the specialized
all-pairs algorithm is likely to be faster in practice. On sparse graphs, of course, it is faster
to run |V| Dijkstra’s algorithms coded with priority queues.

9.3.6 Shortest Path Example
In this section we write some C++ routines to compute word ladders. In a word ladder each
word is formed by changing one character in the ladder’s previous word. For instance, we
can convert zero to five by a sequence of one-character substitutions as follows: zero hero
here hire fire five.

This is an unweighted shortest problem in which each word is a vertex, and two ver-
tices have edges (in both directions) between them if they can be converted to each other
with a one-character substitution.

In Section 4.8, we described and wrote a C++ routine that would create a map in
which the keys are words, and the values are vectors containing the words that can result
from a one-character transformation. As such, this map represents the graph, in adjacency
list format, and we only need to write one routine to run the single-source unweighted
shortest-path algorithm and a second routine to output the sequence of words, after the

1 // Runs the shortest path calculation from the adjacency map, returning a vector
2 // that contains the sequence of word changes to get from first to second.
3 unordered_map<string,string>
4 findChain(const unordered_map<string,vector<string>> & adjacentWords,
5 const string & first, const string & second)
6 {
7 unordered_map<string,string> previousWord;
8 queue<string> q;
9

10 q.push(first);
11
12 while(!q.empty())
13 {
14 string current = q.front(); q.pop();
15 auto itr = adjacentWords.find(current);
16
17 const vector<string> & adj = itr->second;
18 for(string & str : adj)
19 if(previousWord[str] == "")
20 {
21 previousWord[str] = current;
22 q.push(str);
23 }
24 }
25 previousWord[first] = "";
26
27 return previousWord;
28 }
29
30 // After the shortest path calculation has run, computes the vector that
31 // contains the sequence of words changes to get from first to second.
32 vector<string> getChainFromPreviousMap(
33 const unordered_map<string,string> & previous, const string & second)
34 {
35 vector<string> result;
36 auto & prev = const_cast<unordered_map<string,string> &>(previous);
37
38 for(string current = second; current != ""; current = prev[current])
39 result.push_back(current);
40
41 reverse(begin(result), end(result));
42 return result;
43 }

Figure 9.38 C++ code to find word ladders

406 Chapter 9 Graph Algorithms

single-source shortest-path algorithm has completed. These two routines are both shown
in Figure 9.38.

The first routine is findChain, which takes the map representing the adjacency lists and
the two words to be connected and returns a map in which the keys are words, and the
corresponding value is the word prior to the key on the shortest ladder starting at first.
In other words, in the example above, if the starting word is zero, the value for key five is
fire, the value for key fire is hire, the value for key hire is here, and so on. Clearly this
provides enough information for the second routine, getChainFromPreviousMap, which can
work its way backward.

findChain is a direct implementation of the pseudocode in Figure 9.18, and for sim-
plicity, it assumes that first is a key in adjacentWords (this is easily tested prior to the call,
or we can add extra code at line 16 that throws an exception if this condition is not satis-
fied). The basic loop incorrectly assigns a previous entry for first (when the initial word
adjacent to first is processed) so at line 25 that entry is repaired.

getChainFromPrevMap uses the prev map and second, which presumably is a key in the
map and returns the words used to form the word ladder by working its way backward
through prev. This generates the words backward, so the STL reverse algorithm is used to
fix the problem. The cast at line 36 is needed because operator[] cannot be applied on an
immutable map.

It is possible to generalize this problem to allow single-character substitutions that
include the deletion of a character or the addition of a character. To compute the adjacency
list requires only a little more effort: In the last algorithm in Section 4.8, every time a
representative for word w in group g is computed, we check if the representative is a word
in group g − 1. If it is, then the representative is adjacent to w (it is a single-character
deletion), and w is adjacent to the representative (it is a single-character addition). It is also
possible to assign a cost to a character deletion or insertion (that is higher than a simple
substitution), and this yields a weighted shortest-path problem that can be solved with
Dijkstra’s algorithm.

9.4 Network Flow Problems
Suppose we are given a directed graph G = (V, E) with edge capacities cv,w. These
capacities could represent the amount of water that could flow through a pipe or the
amount of traffic that could flow on a street between two intersections. We have two
vertices: s, which we call the source, and t, which is the sink. Through any edge, (v, w),
at most cv,w units of “flow” may pass. At any vertex, v, that is not either s or t, the total
flow coming in must equal the total flow going out. The maximum-flow problem is to
determine the maximum amount of flow that can pass from s to t. As an example, for the
graph in Figure 9.39 on the left the maximum flow is 5, as indicated by the graph on the
right. Although this example graph is acyclic, this is not a requirement; our (eventual)
algorithm will work even if the graph has a cycle.

As required by the problem statement, no edge carries more flow than its capacity.
Vertex a has three units of flow coming in, which it distributes to c and d. Vertex d takes
three units of flow from a and b and combines this, sending the result to t. A vertex can

9.4 Network Flow Problems 407

s

a b

c d

t

s

a b

c d

t

4 2

1

2 2
4

3 3

3

2 2

2

1

2

3

0

Figure 9.39 A graph (left) and its maximum flow

combine and distribute flow in any manner that it likes, as long as edge capacities are not
violated and as long as flow conservation is maintained (what goes in must come out).

Looking at the graph, we see that s has edges of capacities 4 and 2 leaving it, and t has
edges of capacities 3 and 3 entering it. So perhaps the maximum flow could be 6 instead
of 5. However, Figure 9.40 shows how we can prove that the maximum flow is 5. We
cut the graph into two parts; one part contains s and some other vertices; the other part
contains t. Since flow must cross through the cut, the total capacity of all edges (u, v) where
u is in s’s partition and v is in t’s partition is a bound on the maximum flow. These edges are
(a, c) and (d, t), with total capacity 5, so the maximum flow cannot exceed 5. Any graph
has a large number of cuts; the cut with minimum total capacity provides a bound on the
maximum flow, and as it turns out (but it is not immediately obvious), the minimum cut
capacity is exactly equal to the maximum flow.

s

a b

c d

t

4 2

1

2 2
4

3 3

Figure 9.40 A cut in graph G partitions the vertices with s and t in different groups. The
total edge cost across the cut is 5, proving that a flow of 5 is maximum.

408 Chapter 9 Graph Algorithms

9.4.1 A Simple Maximum-Flow Algorithm
A first attempt to solve the problem proceeds in stages. We start with our graph, G, and
construct a flow graph Gf . Gf tells the flow that has been attained at any stage in the
algorithm. Initially all edges in Gf have no flow, and we hope that when the algorithm
terminates, Gf contains a maximum flow. We also construct a graph, Gr, called the residual
graph. Gr tells, for each edge, how much more flow can be added. We can calculate this
by subtracting the current flow from the capacity for each edge. An edge in Gr is known as
a residual edge.

At each stage, we find a path in Gr from s to t. This path is known as an augmenting
path. The minimum edge on this path is the amount of flow that can be added to every
edge on the path. We do this by adjusting Gf and recomputing Gr. When we find no path
from s to t in Gr, we terminate. This algorithm is nondeterministic, in that we are free to
choose any path from s to t; obviously some choices are better than others, and we will
address this issue later. We will run this algorithm on our example. The graphs below are
G, Gf , Gr, respectively. Keep in mind that there is a slight flaw in this algorithm. The initial
configuration is in Figure 9.41.

There are many paths from s to t in the residual graph. Suppose we select s, b, d, t.
Then we can send two units of flow through every edge on this path. We will adopt the
convention that once we have filled (saturated) an edge, it is removed from the residual
graph. We then obtain Figure 9.42.

Next, we might select the path s, a, c, t, which also allows two units of flow. Making the
required adjustments gives the graphs in Figure 9.43.

The only path left to select is s, a, d, t, which allows one unit of flow. The resulting
graphs are shown in Figure 9.44.

The algorithm terminates at this point, because t is unreachable from s. The resulting
flow of 5 happens to be the maximum. To see what the problem is, suppose that with
our initial graph, we chose the path s, a, d, t. This path allows three units of flow and thus
seems to be a good choice. The result of this choice, however, leaves only one path from
s to t in the residual graph; it allows one more unit of flow, and thus, our algorithm has

s

a b

c d

t

s

a b

c d

t

s

a b

c d

t

4 2

1

2 2
4

3 3

4

1

2 2

3

4

2

3

0 0

0

0 0
0

0 0

Figure 9.41 Initial stages of the graph, flow graph, and residual graph

s

a b

c d

t

s

a b

c d

t

s

a b

c d

t

4 2

1

2 2
4

3 3

4

1

2

3

4

1

0 2

0

0 2
0

0 2

Figure 9.42 G, Gf , Gr after two units of flow added along s, b, d, t

s

a b

c d

t

s

a b

c d

t

s

a b

c d

t

4 2

1

2 2
4

3 3

2

1

4

1
1

2 2

0

2 2
0

2 2

Figure 9.43 G, Gf , Gr after two units of flow added along s, a, c, t

s

a b

c d

t

s

a b

c d

t

s

a b

c d

t

4 2

1

2 2
4

3 3

1

1

3

1

3 2

0

2 2
1

2 3

Figure 9.44 G, Gf , Gr after one unit of flow added along s, a, d, t—algorithm terminates

410 Chapter 9 Graph Algorithms

s

a b

c d

t

s

a b

c d

t

s

a b

c d

t

4 2

1

2 2
4

3 3

1

1

2 2
1

3

23 0

0

0 0
3

0 3

Figure 9.45 G, Gf , Gr if initial action is to add three units of flow along s, a, d,
t—algorithm terminates after one more step with suboptimal solution

failed to find an optimal solution. This is an example of a greedy algorithm that does not
work. Figure 9.45 shows why the algorithm fails.

In order to make this algorithm work, we need to allow the algorithm to change its
mind. To do this, for every edge (v, w) with flow fv,w in the flow graph, we will add an edge
in the residual graph (w, v) of capacity fv,w. In effect, we are allowing the algorithm to undo
its decisions by sending flow back in the opposite direction. This is best seen by example.
Starting from our original graph and selecting the augmenting path s, a, d, t, we obtain the
graphs in Figure 9.46.

Notice that in the residual graph, there are edges in both directions between a and d.
Either one more unit of flow can be pushed from a to d, or up to three units can be pushed
back—we can undo flow. Now the algorithm finds the augmenting path s, b, d, a, c, t, of
flow 2. By pushing two units of flow from d to a, the algorithm takes two units of flow
away from the edge (a, d) and is essentially changing its mind. Figure 9.47 shows the new
graphs.

s

a b

c d

t

s

a b

c d

t

s

a b

c d

t

4 2

1

2 2
4

3 3

3
1

1

2 2

3
1

3

3

23 0

0

0 0
3

0 3

Figure 9.46 Graphs after three units of flow added along s, a, d, t using correct algorithm

9.4 Network Flow Problems 411

s

a b

c d

t

s

a b

c d

t

s

a b

c d

t

4 2

1

2 2
4

3 3

3

1

2 2

2

1

3

1

3

23 2

0

2 2
1

2 3

1

Figure 9.47 Graphs after two units of flow added along s, b, d, a, c, t using correct
algorithm

There is no augmenting path in this graph, so the algorithm terminates. Note that the
same result would occur if at Figure 9.46, the augmenting path s, a, c, t was chosen which
allows one unit of flow, because then a subsequent augmenting path could be found.

It is easy to see that if the algorithm terminates, then it must terminate with a maximum
flow. Termination implies that there is no path from s to t in the residual graph. So cut the
residual graph, putting the vertices reachable from s on one side and the unreachables
(which include t) on the other side. Figure 9.48 shows the cut. Clearly any edges in the
original graph G that cross the cut must be saturated; otherwise, there would be residual
flow remaining on one of the edges, which would then imply an edge that crosses the cut
(in the wrong disallowed direction) in Gr. But that means that the flow in G is exactly equal
to the capacity of a cut in G; hence, we have a maximum flow.

If the edge costs in the graph are integers, then the algorithm must terminate; each
augmentation adds a unit of flow, so we eventually reach the maximum flow, though there

s

a b

c d

t

s

a b

c d

t

3

1

2 2

2

1

3

1

3

2
1

3 2

0

2 2
1

2 3

Figure 9.48 The vertices reachable from s in the residual graph form one side of a cut;
the unreachables form the other side of the cut

412 Chapter 9 Graph Algorithms

s

a b

t

1000000 1000000

10000001000000

1

Figure 9.49 The classic bad case for augmenting

is no guarantee that this will be efficient. In particular, if the capacities are all integers and
the maximum flow is f , then, since each augmenting path increases the flow value by at
least 1, f stages suffice, and the total running time is O(f ·|E|), since an augmenting path can
be found in O(|E|) time by an unweighted shortest-path algorithm. The classic example of
why this is a bad running time is shown by the graph in Figure 9.49.

The maximum flow is seen by inspection to be 2,000,000 by sending 1,000,000 down
each side. Random augmentations could continually augment along a path that includes
the edge connected by a and b. If this were to occur repeatedly, 2,000,000 augmentations
would be required, when we could get by with only 2.

A simple method to get around this problem is always to choose the augment-
ing path that allows the largest increase in flow. Finding such a path is similar to
solving a weighted shortest-path problem, and a single-line modification to Dijkstra’s algo-
rithm will do the trick. If capmax is the maximum edge capacity, then one can show
that O(|E| log capmax) augmentations will suffice to find the maximum flow. In this case,
since O(|E| log |V|) time is used for each calculation of an augmenting path, a total bound
of O(|E|2 log |V| log capmax) is obtained. If the capacities are all small integers, this reduces
to O(|E|2 log |V|).

Another way to choose augmenting paths is always to take the path with the least
number of edges, with the plausible expectation that by choosing a path in this manner,
it is less likely that a small, flow-restricting edge will turn up on the path. With this rule,
each augmenting step computes the shortest unweighted path from s to t in the residual
graph, so assume that each vertex in the graph maintains dv, representing the shortest-path
distance from s to v in the residual graph. Each augmenting step can add new edges into
the residual graph, but it is clear that no dv can decrease, because an edge is added in the
opposite direction of an existing shortest path.

Each augmenting step saturates at least one edge. Suppose edge (u, v) is saturated; at
that point, u had distance du and v had distance dv = du + 1; then (u, v) was removed from

9.5 Minimum Spanning Tree 413

the residual graph, and edge (v, u) was added. (u, v) cannot reappear in the residual graph
again, unless and until (v, u) appears in a future augmenting path. But if it does, then the
distance to u at that point must be dv + 1, which would be 2 higher than at the time (u, v)
was previously removed.

This means that each time (u, v) reappears, u’s distance goes up by 2. This means
that any edge can reappear at most |V|/2 times. Each augmentation causes some edge to
reappear so the number of augmentations is O(|E||V|). Each step takes O(|E|), due to the
unweighted shortest-path calculation, yielding an O(|E|2|V|) bound on the running time.

Further data structure improvements are possible to this algorithm, and there are sev-
eral, more complicated, algorithms. A long history of improved bounds has lowered the
current best-known bound for this problem to O(|E||V|). There are also a host of very good
bounds for special cases. For instance, O(|E||V|1/2) time finds a maximum flow in a graph,
having the property that all vertices except the source and sink have either a single incom-
ing edge of capacity 1 or a single outgoing edge of capacity 1. These graphs occur in many
applications.

The analyses required to produce these bounds are rather intricate, and it is not clear
how the worst-case results relate to the running times encountered in practice. A related,
even more difficult problem is the min-cost flow problem. Each edge has not only a capac-
ity but also a cost per unit of flow. The problem is to find, among all maximum flows, the
one flow of minimum cost. Both of these problems are being actively researched.

9.5 Minimum Spanning Tree
The next problem we will consider is that of finding a minimum spanning tree in an
undirected graph. The problem makes sense for directed graphs but appears to be more
difficult. Informally, a minimum spanning tree of an undirected graph G is a tree formed
from graph edges that connects all the vertices of G at lowest total cost. A minimum span-
ning tree exists if and only if G is connected. Although a robust algorithm should report
the case that G is unconnected, we will assume that G is connected and leave the issue of
robustness as an exercise to the reader.

In Figure 9.50 the second graph is a minimum spanning tree of the first (it happens to
be unique, but this is unusual). Notice that the number of edges in the minimum spanning
tree is |V| − 1. The minimum spanning tree is a tree because it is acyclic, it is spanning
because it covers every vertex, and it is minimum for the obvious reason. If we need to
wire a house with a minimum of cable (assuming no other electrical constraints), then a
minimum spanning tree problem needs to be solved.

For any spanning tree, T, if an edge, e, that is not in T is added, a cycle is created.
The removal of any edge on the cycle reinstates the spanning tree property. The cost of the
spanning tree is lowered if e has lower cost than the edge that was removed. If, as a span-
ning tree is created, the edge that is added is the one of minimum cost that avoids creation
of a cycle, then the cost of the resulting spanning tree cannot be improved, because any
replacement edge would have cost at least as much as an edge already in the spanning tree.
This shows that greed works for the minimum spanning tree problem. The two algorithms
we present differ in how a minimum edge is selected.

414 Chapter 9 Graph Algorithms

6

2

4 1 3 10

7

485

1

2

v 1 v 2

v 3 v 4 v 5

v 6 v 7

6

2

1

4

1

2

v 1 v 2

v 3 v 4 v 5

v 6 v 7

Figure 9.50 A graph G and its minimum spanning tree

9.5.1 Prim’s Algorithm
One way to compute a minimum spanning tree is to grow the tree in successive stages. In
each stage, one node is picked as the root, and we add an edge, and thus an associated
vertex, to the tree.

At any point in the algorithm, we can see that we have a set of vertices that have already
been included in the tree; the rest of the vertices have not. The algorithm then finds, at each
stage, a new vertex to add to the tree by choosing the edge (u, v) such that the cost of (u, v)
is the smallest among all edges where u is in the tree and v is not. Figure 9.51 shows how
this algorithm would build the minimum spanning tree, starting from v1. Initially, v1 is in
the tree as a root with no edges. Each step adds one edge and one vertex to the tree.

We can see that Prim’s algorithm is essentially identical to Dijkstra’s algorithm for short-
est paths. As before, for each vertex we keep values dv and pv and an indication of whether
it is known or unknown. dv is the weight of the shortest edge connecting v to a known vertex,
and pv, as before, is the last vertex to cause a change in dv. The rest of the algorithm is
exactly the same, with the exception that since the definition of dv is different, so is the
update rule. For this problem, the update rule is even simpler than before: After a vertex,
v, is selected, for each unknown w adjacent to v, dw = min(dw, cw,v).

The initial configuration of the table is shown in Figure 9.52. v1 is selected, and v2, v3,
and v4 are updated. The table resulting from this is shown in Figure 9.53. The next vertex

1 1

1 1 1

1

2

2 2 2

2

2 2 2

2

4 4

4

1

1
6

v1 v2

v3 v4 v5

v6 v7

v1 v2

v3 v4 v5

v6 v7

v1 v2

v3 v4 v5

v6 v7

v1 v2

v3 v4 v5

v6 v7

v1 v2

v3 v4 v5

v6 v7

v1 v2

v3 v4 v5

v6 v7

v1 v2

v3 v4 v5

v6 v7

Figure 9.51 Prim’s algorithm after each stage

v known dv pv

v1 F 0 0

v2 F ∞ 0

v3 F ∞ 0

v4 F ∞ 0

v5 F ∞ 0

v6 F ∞ 0

v7 F ∞ 0

Figure 9.52 Initial configuration of table used in Prim’s algorithm

v known dv pv

v1 T 0 0

v2 F 2 v1

v3 F 4 v1

v4 F 1 v1

v5 F ∞ 0

v6 F ∞ 0

v7 F ∞ 0

Figure 9.53 The table after v1 is declared known

416 Chapter 9 Graph Algorithms

v known dv pv

v1 T 0 0

v2 F 2 v1

v3 F 2 v4

v4 T 1 v1

v5 F 7 v4

v6 F 8 v4

v7 F 4 v4

Figure 9.54 The table after v4 is declared known

selected is v4. Every vertex is adjacent to v4. v1 is not examined, because it is known. v2

is unchanged, because it has dv = 2 and the edge cost from v4 to v2 is 3; all the rest are
updated. Figure 9.54 shows the resulting table. The next vertex chosen is v2 (arbitrarily
breaking a tie). This does not affect any distances. Then v3 is chosen, which affects the
distance in v6, producing Figure 9.55. Figure 9.56 results from the selection of v7, which
forces v6 and v5 to be adjusted. v6 and then v5 are selected, completing the algorithm.

v known dv pv

v1 T 0 0

v2 T 2 v1

v3 T 2 v4

v4 T 1 v1

v5 F 7 v4

v6 F 5 v3

v7 F 4 v4

Figure 9.55 The table after v2 and then v3 are declared known

v known dv pv

v1 T 0 0

v2 T 2 v1

v3 T 2 v4

v4 T 1 v1

v5 F 6 v7

v6 F 1 v7

v7 T 4 v4

Figure 9.56 The table after v7 is declared known

9.5 Minimum Spanning Tree 417

v known dv pv

v1 T 0 0

v2 T 2 v1

v3 T 2 v4

v4 T 1 v1

v5 T 6 v7

v6 T 1 v7

v7 T 4 v4

Figure 9.57 The table after v6 and v5 are selected (Prim’s algorithm terminates)

The final table is shown in Figure 9.57. The edges in the spanning tree can be read
from the table: (v2, v1), (v3, v4), (v4, v1), (v5, v7), (v6, v7), (v7, v4). The total cost is 16.

The entire implementation of this algorithm is virtually identical to that of Dijkstra’s
algorithm, and everything that was said about the analysis of Dijkstra’s algorithm applies
here. Be aware that Prim’s algorithm runs on undirected graphs, so when coding it, remem-
ber to put every edge in two adjacency lists. The running time is O(|V|2) without heaps,
which is optimal for dense graphs, and O(|E| log |V|) using binary heaps, which is good for
sparse graphs.

9.5.2 Kruskal’s Algorithm
A second greedy strategy is to continually select the edges in order of smallest weight and
accept an edge if it does not cause a cycle. The action of the algorithm on the graph in the
preceding example is shown in Figure 9.58.

Edge Weight Action

(v1, v4) 1 Accepted

(v6, v7) 1 Accepted

(v1, v2) 2 Accepted

(v3, v4) 2 Accepted

(v2, v4) 3 Rejected

(v1, v3) 4 Rejected

(v4, v7) 4 Accepted

(v3, v6) 5 Rejected

(v5, v7) 6 Accepted

Figure 9.58 Action of Kruskal’s algorithm on G

418 Chapter 9 Graph Algorithms

1 1

1 1 1

1

1

1 1 1

1

2 2 2

2

2 2

2

4

4 6

v1 v2

v3 v4 v5

v6 v7

v1 v2

v3 v4 v5

v6 v7

v1 v2

v3 v4 v5

v6 v7

v1 v2

v3 v4 v5

v6 v7

v1 v2

v3 v4 v5

v6 v7

v1 v2

v3 v4 v5

v6 v7

v1 v2

v3 v4 v5

v6 v7

Figure 9.59 Kruskal’s algorithm after each stage

Formally, Kruskal’s algorithm maintains a forest—a collection of trees. Initially, there
are |V| single-node trees. Adding an edge merges two trees into one. When the algorithm
terminates, there is only one tree, and this is the minimum spanning tree. Figure 9.59
shows the order in which edges are added to the forest.

The algorithm terminates when enough edges are accepted. It turns out to be simple to
decide whether edge (u, v) should be accepted or rejected. The appropriate data structure
is the union/find algorithm from Chapter 8.

The invariant we will use is that at any point in the process, two vertices belong to
the same set if and only if they are connected in the current spanning forest. Thus, each
vertex is initially in its own set. If u and v are in the same set, the edge is rejected, because
since they are already connected, adding (u, v) would form a cycle. Otherwise, the edge
is accepted, and a union is performed on the two sets containing u and v. It is easy to see
that this maintains the set invariant, because once the edge (u, v) is added to the spanning
forest, if w was connected to u and x was connected to v, then x and w must now be
connected, and thus belong in the same set.

The edges could be sorted to facilitate the selection, but building a heap in linear time
is a much better idea. Then deleteMins give the edges to be tested in order. Typically, only a
small fraction of the edges need to be tested before the algorithm can terminate, although
it is always possible that all the edges must be tried. For instance, if there was an extra
vertex v8 and edge (v5, v8) of cost 100, all the edges would have to be examined. Function
kruskal in Figure 9.60 finds a minimum spanning tree.

The worst-case running time of this algorithm is O(|E| log |E|), which is domi-
nated by the heap operations. Notice that since |E| = O(|V|2), this running time is

9.6 Applications of Depth-First Search 419

vector<Edge> kruskal(vector<Edge> edges, int numVertices)
{

DisjSets ds{ numVertices };
priority_queue pq{ edges };
vector<Edge> mst;

while(mst.size() != numVertices - 1)
{

Edge e = pq.pop(); // Edge e = (u, v)
SetType uset = ds.find(e.getu());
SetType vset = ds.find(e.getv());

if(uset != vset)
{

// Accept the edge
mst.push_back(e);
ds.union(uset, vset);

}
}

return mst;
}

Figure 9.60 Pseudocode for Kruskal’s algorithm

actually O(|E| log |V|). In practice, the algorithm is much faster than this time bound
would indicate.

9.6 Applications of Depth-First Search
Depth-first search is a generalization of preorder traversal. Starting at some vertex, v, we
process v and then recursively traverse all vertices adjacent to v. If this process is performed
on a tree, then all tree vertices are systematically visited in a total of O(|E|) time, since
|E| = �(|V|). If we perform this process on an arbitrary graph, we need to be careful
to avoid cycles. To do this, when we visit a vertex, v, we mark it visited, since now we
have been there, and recursively call depth-first search on all adjacent vertices that are not
already marked. We implicitly assume that for undirected graphs every edge (v, w) appears
twice in the adjacency lists: once as (v, w) and once as (w, v). The procedure in Figure 9.61
performs a depth-first search (and does absolutely nothing else) and is a template for the
general style.

For each vertex, the data member visited is initialized to false. By recursively calling
the procedures only on nodes that have not been visited, we guarantee that we do not loop
indefinitely. If the graph is undirected and not connected, or directed and not strongly con-
nected, this strategy might fail to visit some nodes. We then search for an unmarked node,

420 Chapter 9 Graph Algorithms

void Graph::dfs(Vertex v)
{

v.visited = true;
for each Vertex w adjacent to v

if(!w.visited)
dfs(w);

}

Figure 9.61 Template for depth-first search (pseudocode)

apply a depth-first traversal there, and continue this process until there are no unmarked
nodes.2 Because this strategy guarantees that each edge is encountered only once, the total
time to perform the traversal is O(|E| + |V|), as long as adjacency lists are used.

9.6.1 Undirected Graphs
An undirected graph is connected if and only if a depth-first search starting from any node
visits every node. Because this test is so easy to apply, we will assume that the graphs we
deal with are connected. If they are not, then we can find all the connected components
and apply our algorithm on each of these in turn.

As an example of depth-first search, suppose in the graph of Figure 9.62 we start
at vertex A. Then we mark A as visited and call dfs(B) recursively. dfs(B) marks B as
visited and calls dfs(C) recursively. dfs(C) marks C as visited and calls dfs(D) recur-
sively. dfs(D) sees both A and B, but both of these are marked, so no recursive calls are
made. dfs(D) also sees that C is adjacent but marked, so no recursive call is made there, and
dfs(D) returns back to dfs(C). dfs(C) sees B adjacent, ignores it, finds a previously unseen
vertex E adjacent, and thus calls dfs(E). dfs(E) marks E, ignores A and C, and returns to
dfs(C). dfs(C) returns to dfs(B). dfs(B) ignores both A and D and returns. dfs(A) ignores
both D and E and returns. (We have actually touched every edge twice, once as (v, w) and
again as (w, v), but this is really once per adjacency list entry.)

We graphically illustrate these steps with a depth-first spanning tree. The root of the
tree is A, the first vertex visited. Each edge (v, w) in the graph is present in the tree. If, when
we process (v, w), we find that w is unmarked, or if, when we process (w, v), we find that v
is unmarked, we indicate this with a tree edge. If, when we process (v, w), we find that w
is already marked, and when processing (w, v), we find that v is already marked, we draw
a dashed line, which we will call a back edge, to indicate that this “edge” is not really part
of the tree. The depth-first search of the graph in Figure 9.62 is shown in Figure 9.63.

The tree will simulate the traversal we performed. A preorder numbering of the tree,
using only tree edges, tells us the order in which the vertices were marked. If the graph is
not connected, then processing all nodes (and edges) requires several calls to dfs, and each
generates a tree. This entire collection is a depth-first spanning forest.

2 An efficient way of implementing this is to begin the depth-first search at v1. If we need to restart the
depth-first search, we examine the sequence vk, vk+1, . . . for an unmarked vertex, where vk−1 is the vertex
where the last depth-first search was started. This guarantees that throughout the algorithm, only O(|V|) is
spent looking for vertices where new depth-first search trees can be started.

9.6 Applications of Depth-First Search 421

A

B

C

D E

Figure 9.62 An undirected graph

A

B

C

D E

Figure 9.63 Depth-first search of previous graph

9.6.2 Biconnectivity
A connected undirected graph is biconnected if there are no vertices whose removal dis-
connects the rest of the graph. The graph in Figure 9.62 is biconnected. If the nodes
are computers and the edges are links, then if any computer goes down, network mail is

422 Chapter 9 Graph Algorithms

B A

C D

G E

F

Figure 9.64 A graph with articulation points C and D

unaffected, except, of course, at the down computer. Similarly, if a mass transit system is
biconnected, users always have an alternate route should some terminal be disrupted.

If a graph is not biconnected, the vertices whose removal would disconnect the graph
are known as articulation points. These nodes are critical in many applications. The graph
in Figure 9.64 is not biconnected: C and D are articulation points. The removal of C would
disconnect G, and the removal of D would disconnect E and F, from the rest of the graph.

Depth-first search provides a linear-time algorithm to find all articulation points in a
connected graph. First, starting at any vertex, we perform a depth-first search and number
the nodes as they are visited. For each vertex, v, we call this preorder number Num(v).
Then, for every vertex, v, in the depth-first search spanning tree, we compute the lowest-
numbered vertex, which we call Low(v), that is reachable from v by taking zero or more
tree edges and then possibly one back edge (in that order). The depth-first search tree
in Figure 9.65 shows the preorder number first, and then the lowest-numbered vertex
reachable under the rule described above.

The lowest-numbered vertex reachable by A, B, and C is vertex 1 (A), because they can
all take tree edges to D and then one back edge back to A. We can efficiently compute Low
by performing a postorder traversal of the depth-first spanning tree. By the definition of
Low, Low(v) is the minimum of

1. Num(v)

2. the lowest Num(w) among all back edges (v, w)

3. the lowest Low(w) among all tree edges (v, w)

The first condition is the option of taking no edges, the second way is to choose no
tree edges and a back edge, and the third way is to choose some tree edges and possibly a

9.6 Applications of Depth-First Search 423

F, 6/4

E, 5/4

D, 4/1

C, 3/1

B, 2/1

A, 1/1

G, 7/7

Figure 9.65 Depth-first tree for previous graph, with Num and Low

back edge. This third method is succinctly described with a recursive call. Since we need
to evaluate Low for all the children of v before we can evaluate Low(v), this is a postorder
traversal. For any edge (v, w), we can tell whether it is a tree edge or a back edge merely by
checking Num(v) and Num(w). Thus, it is easy to compute Low(v): We merely scan down
v’s adjacency list, apply the proper rule, and keep track of the minimum. Doing all the
computation takes O(|E| + |V|) time.

All that is left to do is to use this information to find articulation points. The root is an
articulation point if and only if it has more than one child, because if it has two children,
removing the root disconnects nodes in different subtrees, and if it has only one child,
removing the root merely disconnects the root. Any other vertex v is an articulation point
if and only if v has some child w such that Low(w) ≥ Num(v). Notice that this condition is
always satisfied at the root, hence the need for a special test.

The if part of the proof is clear when we examine the articulation points that the
algorithm determines, namely, C and D. D has a child E, and Low(E) ≥ Num(D), since
both are 4. Thus, there is only one way for E to get to any node above D, and that is by
going through D. Similarly, C is an articulation point, because Low(G) ≥ Num(C). To prove
that this algorithm is correct, one must show that the only if part of the assertion is true
(that is, this finds all articulation points). We leave this as an exercise. As a second example,
we show (Fig. 9.66) the result of applying this algorithm on the same graph, starting the
depth-first search at C.

424 Chapter 9 Graph Algorithms

F, 4/2

E, 3/2

D, 2/1

C, 1/1

B, 6/1

A, 5/1

G, 7/7

Figure 9.66 Depth-first tree that results if depth-first search starts at C

We close by giving pseudocode to implement this algorithm. We will assume that
Vertex contains the data members visited (initialized to false), num, low, and parent. We
will also keep a (Graph) class variable called counter, which is initialized to 1, to assign the
preorder traversal numbers, num. We also leave out the easily implemented test for the root.

As we have already stated, this algorithm can be implemented by performing a preorder
traversal to compute Num and then a postorder traversal to compute Low. A third traversal
can be used to check which vertices satisfy the articulation point criteria. Performing three
traversals, however, would be a waste. The first pass is shown in Figure 9.67.

The second and third passes, which are postorder traversals, can be implemented by
the code in Figure 9.68. The last if statement handles a special case. If w is adjacent to

/**
* Assign num and compute parents.
*/

void Graph::assignNum(Vertex v)
{

v.num = counter++;
v.visited = true;
for each Vertex w adjacent to v

if(!w.visited)
{

w.parent = v;
assignNum(w);

}
}

Figure 9.67 Routine to assign Num to vertices (pseudocode)

9.6 Applications of Depth-First Search 425

/**
* Assign low; also check for articulation points.
*/

void Graph::assignLow(Vertex v)
{

v.low = v.num; // Rule 1
for each Vertex w adjacent to v
{

if(w.num > v.num) // Forward edge
{

assignLow(w);
if(w.low >= v.num)

cout << v << " is an articulation point" << endl;
v.low = min(v.low, w.low); // Rule 3

}
else
if(v.parent != w) // Back edge

v.low = min(v.low, w.num); // Rule 2
}

}

Figure 9.68 Pseudocode to compute Low and to test for articulation points (test for the
root is omitted)

v, then the recursive call to w will find v adjacent to w. This is not a back edge, only an
edge that has already been considered and needs to be ignored. Otherwise, the procedure
computes the minimum of the various low and num entries, as specified by the algorithm.

There is no rule that a traversal must be either preorder or postorder. It is possible
to do processing both before and after the recursive calls. The procedure in Figure 9.69
combines the two routines assignNum and assignLow in a straightforward manner to produce
the procedure findArt.

9.6.3 Euler Circuits
Consider the three figures in Figure 9.70. A popular puzzle is to reconstruct these figures
using a pen, drawing each line exactly once. The pen may not be lifted from the paper
while the drawing is being performed. As an extra challenge, make the pen finish at the
same point at which it started. This puzzle has a surprisingly simple solution. Stop reading
if you would like to try to solve it.

The first figure can be drawn only if the starting point is the lower left- or right-hand
corner, and it is not possible to finish at the starting point. The second figure is easily
drawn with the finishing point the same as the starting point, but the third figure cannot
be drawn at all within the parameters of the puzzle.

We can convert this problem to a graph theory problem by assigning a vertex to each
intersection. Then the edges can be assigned in the natural manner, as in Figure 9.71.

void Graph::findArt(Vertex v)
{

v.visited = true;
v.low = v.num = counter++; // Rule 1
for each Vertex w adjacent to v
{

if(!w.visited) // Forward edge
{

w.parent = v;
findArt(w);
if(w.low >= v.num)

cout << v << " is an articulation point" << endl;
v.low = min(v.low, w.low); // Rule 3

}
else
if(v.parent != w) // Back edge

v.low = min(v.low, w.num); // Rule 2
}

}

Figure 9.69 Testing for articulation points in one depth-first search (test for the root is
omitted) (pseudocode)

Figure 9.70 Three drawings

Figure 9.71 Conversion of puzzle to graph

9.6 Applications of Depth-First Search 427

After this conversion is performed, we must find a path in the graph that visits every
edge exactly once. If we are to solve the “extra challenge,” then we must find a cycle that
visits every edge exactly once. This graph problem was solved in 1736 by Euler and marked
the beginning of graph theory. The problem is thus commonly referred to as an Euler path
(sometimes Euler tour) or Euler circuit problem, depending on the specific problem
statement. The Euler tour and Euler circuit problems, though slightly different, have the
same basic solution. Thus, we will consider the Euler circuit problem in this section.

The first observation that can be made is that an Euler circuit, which must end on
its starting vertex, is possible only if the graph is connected and each vertex has an even
degree (number of edges). This is because, on the Euler circuit, a vertex is entered and then
left. If any vertex v has odd degree, then eventually we will reach the point where only one
edge into v is unvisited, and taking it will strand us at v. If exactly two vertices have odd
degree, an Euler tour, which must visit every edge but need not return to its starting vertex,
is still possible if we start at one of the odd-degree vertices and finish at the other. If more
than two vertices have odd degree, then an Euler tour is not possible.

The observations of the preceding paragraph provide us with a necessary condition for
the existence of an Euler circuit. It does not, however, tell us that all connected graphs that
satisfy this property must have an Euler circuit, nor does it give us guidance on how to
find one. It turns out that the necessary condition is also sufficient. That is, any connected
graph, all of whose vertices have even degree, must have an Euler circuit. Furthermore, a
circuit can be found in linear time.

We can assume that we know that an Euler circuit exists, since we can test the necessary
and sufficient condition in linear time. Then the basic algorithm is to perform a depth-first
search. There are a surprisingly large number of “obvious” solutions that do not work.
Some of these are presented in the exercises.

The main problem is that we might visit a portion of the graph and return to the
starting point prematurely. If all the edges coming out of the start vertex have been used
up, then part of the graph is untraversed. The easiest way to fix this is to find the first
vertex on this path that has an untraversed edge and perform another depth-first search.
This will give another circuit, which can be spliced into the original. This is continued
until all edges have been traversed.

As an example, consider the graph in Figure 9.72. It is easily seen that this graph has
an Euler circuit. Suppose we start at vertex 5, and traverse the circuit 5, 4, 10, 5. Then we
are stuck, and most of the graph is still untraversed. The situation is shown in Figure 9.73.

We then continue from vertex 4, which still has unexplored edges. A depth-first search
might come up with the path 4, 1, 3, 7, 4, 11, 10, 7, 9, 3, 4. If we splice this path into
the previous path of 5, 4, 10, 5, then we get a new path of 5, 4, 1, 3, 7, 4, 11, 10, 7, 9, 3,
4, 10, 5.

The graph that remains after this is shown in Figure 9.74. Notice that in this graph,
all the vertices must have even degree, so we are guaranteed to find a cycle to add. The
remaining graph might not be connected, but this is not important. The next vertex on
the path that has untraversed edges is vertex 3. A possible circuit would then be 3, 2, 8,
9, 6, 3. When spliced in, this gives the path 5, 4, 1, 3, 2, 8, 9, 6, 3, 7, 4, 11, 10, 7, 9, 3,
4, 10, 5.

The graph that remains is in Figure 9.75. On this path, the next vertex with an untra-
versed edge is 9, and the algorithm finds the circuit 9, 12, 10, 9. When this is added to the

428 Chapter 9 Graph Algorithms

9

3

1

7

4

10

12

8

2

6

11

5

Figure 9.72 Graph for Euler circuit problem

9

3

1

7

4

10

12

8

2

6
11

5

Figure 9.73 Graph remaining after 5, 4, 10, 5

9

3

1

7

4

10

12

8

2

6
11

5

Figure 9.74 Graph after the path 5, 4, 1, 3, 7, 4, 11, 10, 7, 9, 3, 4, 10, 5

current path, a circuit of 5, 4, 1, 3, 2, 8, 9, 12, 10, 9, 6, 3, 7, 4, 11, 10, 7, 9, 3, 4, 10, 5 is
obtained. As all the edges are traversed, the algorithm terminates with an Euler circuit.

To make this algorithm efficient, we must use appropriate data structures. We will
sketch some of the ideas, leaving the implementation as an exercise. To make splicing
simple, the path should be maintained as a linked list. To avoid repetitious scanning
of adjacency lists, we must maintain, for each adjacency list, a pointer to the last edge
scanned. When a path is spliced in, the search for a new vertex from which to perform
the next depth-first search must begin at the start of the splice point. This guarantees that

9.6 Applications of Depth-First Search 429

9

3

1

7

4

10

12

8

2

6

11

5

Figure 9.75 Graph remaining after the path 5, 4, 1, 3, 2, 8, 9, 6, 3, 7, 4, 11, 10, 7, 9, 3,
4, 10, 5

the total work performed on the vertex search phase is O(|E|) during the entire life of
the algorithm. With the appropriate data structures, the running time of the algorithm is
O(|E| + |V|).

A very similar problem is to find a simple cycle, in an undirected graph, that visits
every vertex. This is known as the Hamiltonian cycle problem. Although it seems almost
identical to the Euler circuit problem, no efficient algorithm for it is known. We shall see
this problem again in Section 9.7.

9.6.4 Directed Graphs
Using the same strategy as with undirected graphs, directed graphs can be traversed in
linear time, using depth-first search. If the graph is not strongly connected, a depth-first
search starting at some node might not visit all nodes. In this case, we repeatedly perform
depth-first searches, starting at some unmarked node, until all vertices have been visited.
As an example, consider the directed graph in Figure 9.76.

We arbitrarily start the depth-first search at vertex B. This visits vertices B, C, A, D, E,
and F. We then restart at some unvisited vertex. Arbitrarily, we start at H, which visits J and
I. Finally, we start at G, which is the last vertex that needs to be visited. The corresponding
depth-first search tree is shown in Figure 9.77.

The dashed arrows in the depth-first spanning forest are edges (v, w) for which w was
already marked at the time of consideration. In undirected graphs, these are always back
edges, but, as we can see, there are three types of edges that do not lead to new vertices.
First, there are back edges, such as (A, B) and (I, H). There are also forward edges, such as
(C, D) and (C, E), that lead from a tree node to a descendant. Finally, there are cross edges,
such as (F, C) and (G, F), which connect two tree nodes that are not directly related. Depth-
first search forests are generally drawn with children and new trees added to the forest from
left to right. In a depth-first search of a directed graph drawn in this manner, cross edges
always go from right to left.

Some algorithms that use depth-first search need to distinguish between the three types
of nontree edges. This is easy to check as the depth-first search is being performed, and it
is left as an exercise.

430 Chapter 9 Graph Algorithms

A B

D

E

C F

G

H

IJ

Figure 9.76 A directed graph

E

D

A

C

B

F

I

J

H G

Figure 9.77 Depth-first search of previous graph

One use of depth-first search is to test whether or not a directed graph is acyclic. The
rule is that a directed graph is acyclic if and only if it has no back edges. (The graph above
has back edges, and thus is not acyclic.) The reader may remember that a topological sort
can also be used to determine whether a graph is acyclic. Another way to perform topo-
logical sorting is to assign the vertices topological numbers N, N − 1, . . . , 1 by postorder
traversal of the depth-first spanning forest. As long as the graph is acyclic, this ordering
will be consistent.

9.6 Applications of Depth-First Search 431

9.6.5 Finding Strong Components
By performing two depth-first searches, we can test whether a directed graph is strongly
connected, and if it is not, we can actually produce the subsets of vertices that are strongly
connected to themselves. This can also be done in only one depth-first search, but the
method used here is much simpler to understand.

First, a depth-first search is performed on the input graph G. The vertices of G are
numbered by a postorder traversal of the depth-first spanning forest, and then all edges in
G are reversed, forming Gr. The graph in Figure 9.78 represents Gr for the graph G shown
in Figure 9.76; the vertices are shown with their numbers.

The algorithm is completed by performing a depth-first search on Gr, always starting
a new depth-first search at the highest-numbered vertex. Thus, we begin the depth-first
search of Gr at vertex G, which is numbered 10. This leads nowhere, so the next search
is started at H. This call visits I and J. The next call starts at B and visits A, C, and F. The
next calls after this are dfs(D) and finally dfs(E). The resulting depth-first spanning forest
is shown in Figure 9.79.

Each of the trees (this is easier to see if you completely ignore all nontree edges) in this
depth-first spanning forest forms a strongly connected component. Thus, for our example,
the strongly connected components are {G}, {H, I, J}, {B, A, C, F}, {D}, and {E}.

To see why this algorithm works, first note that if two vertices v and w are in the same
strongly connected component, then there are paths from v to w and from w to v in the
original graph G, and hence also in Gr. Now, if two vertices v and w are not in the same
depth-first spanning tree of Gr, clearly they cannot be in the same strongly connected
component.

A,3 B,6

D,2

E,1

C,4 F,5

G,10

H,9

I,7J,8

Figure 9.78 Gr numbered by postorder traversal of G (from Fig. 9.76)

432 Chapter 9 Graph Algorithms

G

J

I

H

F

C

A

B D E

Figure 9.79 Depth-first search of Gr—strong components are {G}, {H, I, J}, {B, A, C, F},
{D}, {E}

To prove that this algorithm works, we must show that if two vertices v and w are
in the same depth-first spanning tree of Gr, there must be paths from v to w and from w
to v. Equivalently, we can show that if x is the root of the depth-first spanning tree of Gr

containing v, then there is a path from x to v and from v to x. Applying the same logic to w
would then give a path from x to w and from w to x. These paths would imply paths from
v to w and w to v (going through x).

Since v is a descendant of x in Gr ’s depth-first spanning tree, there is a path from x to
v in Gr and thus a path from v to x in G. Furthermore, since x is the root, x has the higher
postorder number from the first depth-first search. Therefore, during the first depth-first
search, all the work processing v was completed before the work at x was completed. Since
there is a path from v to x, it follows that v must be a descendant of x in the spanning tree
for G—otherwise v would finish after x. This implies a path from x to v in G and completes
the proof.

9.7 Introduction to NP-Completeness
In this chapter, we have seen solutions to a wide variety of graph theory problems. All these
problems have polynomial running times, and with the exception of the network flow
problem, the running time is either linear or only slightly more than linear (O(|E| log |E|)).
We have also mentioned, in passing, that for some problems certain variations seem harder
than the original.

Recall that the Euler circuit problem, which finds a path that touches every edge exactly
once, is solvable in linear time. The Hamiltonian cycle problem asks for a simple cycle that
contains every vertex. No linear algorithm is known for this problem.

The single-source unweighted shortest-path problem for directed graphs is also
solvable in linear time. No linear-time algorithm is known for the corresponding longest-
simple-path problem.

The situation for these problem variations is actually much worse than we have
described. Not only are no linear algorithms known for these variations, but there are
no known algorithms that are guaranteed to run in polynomial time. The best known
algorithms for these problems could take exponential time on some inputs.

9.7 Introduction to NP-Completeness 433

In this section we will take a brief look at this problem. This topic is rather complex,
so we will only take a quick and informal look at it. Because of this, the discussion may be
(necessarily) somewhat imprecise in places.

We will see that there are a host of important problems that are roughly equivalent
in complexity. These problems form a class called the NP-complete problems. The exact
complexity of these NP-complete problems has yet to be determined and remains the
foremost open problem in theoretical computer science. Either all these problems have
polynomial-time solutions or none of them do.

9.7.1 Easy vs. Hard
When classifying problems, the first step is to examine the boundaries. We have already
seen that many problems can be solved in linear time. We have also seen some O(log N)
running times, but these either assume some preprocessing (such as input already being
read or a data structure already being built) or occur on arithmetic examples. For instance,
the gcd algorithm, when applied on two numbers M and N, takes O(log N) time. Since the
numbers consist of log M and log N bits, respectively, the gcd algorithm is really taking time
that is linear in the amount or size of input. Thus, when we measure running time, we will
be concerned with the running time as a function of the amount of input. Generally, we
cannot expect better than linear running time.

At the other end of the spectrum lie some truly hard problems. These problems are
so hard that they are impossible. This does not mean the typical exasperated moan, which
means that it would take a genius to solve the problem. Just as real numbers are not
sufficient to express a solution to x2 < 0, one can prove that computers cannot solve every
problem that happens to come along. These “impossible” problems are called undecidable
problems.

One particular undecidable problem is the halting problem. Is it possible to have your
C++ compiler have an extra feature that not only detects syntax errors but also all infinite
loops? This seems like a hard problem, but one might expect that if some very clever
programmers spent enough time on it, they could produce this enhancement.

The intuitive reason that this problem is undecidable is that such a program might have
a hard time checking itself. For this reason, these problems are sometimes called recursively
undecidable.

If an infinite loop–checking program could be written, surely it could be used to check
itself. We could then produce a program called LOOP. LOOP takes as input a program,
P, and runs P on itself. It prints out the phrase YES if P loops when run on itself. If P
terminates when run on itself, a natural thing to do would be to print out NO. Instead of
doing that, we will have LOOP go into an infinite loop.

What happens when LOOP is given itself as input? Either LOOP halts, or it does not
halt. The problem is that both these possibilities lead to contradictions, in much the same
way as does the phrase “This sentence is a lie.”

By our definition, LOOP(P) goes into an infinite loop if P(P) terminates. Suppose
that when P = LOOP, P(P) terminates. Then, according to the LOOP program, LOOP(P)
is obligated to go into an infinite loop. Thus, we must have LOOP(LOOP) terminating
and entering an infinite loop, which is clearly not possible. On the other hand, sup-
pose that when P = LOOP, P(P) enters an infinite loop. Then LOOP(P) must terminate,

434 Chapter 9 Graph Algorithms

and we arrive at the same set of contradictions. Thus, we see that the program LOOP
cannot possibly exist.

9.7.2 The Class NP
A few steps down from the horrors of undecidable problems lies the class NP. NP stands
for nondeterministic polynomial-time. A deterministic machine, at each point in time, is
executing an instruction. Depending on the instruction, it then goes to some next instruc-
tion, which is unique. A nondeterministic machine has a choice of next steps. It is free to
choose any that it wishes, and if one of these steps leads to a solution, it will always choose
the correct one. A nondeterministic machine thus has the power of extremely good (opti-
mal) guessing. This probably seems like a ridiculous model, since nobody could possibly
build a nondeterministic computer, and because it would seem to be an incredible upgrade
to your standard computer (every problem might now seem trivial). We will see that non-
determinism is a very useful theoretical construct. Furthermore, nondeterminism is not
as powerful as one might think. For instance, undecidable problems are still undecidable,
even if nondeterminism is allowed.

A simple way to check if a problem is in NP is to phrase the problem as a yes/no
question. The problem is in NP if, in polynomial time, we can prove that any “yes” instance
is correct. We do not have to worry about “no” instances, since the program always makes
the right choice. Thus, for the Hamiltonian cycle problem, a “yes” instance would be any
simple circuit in the graph that includes all the vertices. This is in NP, since, given the path,
it is a simple matter to check that it is really a Hamiltonian cycle. Appropriately phrased
questions, such as “Is there a simple path of length > K?” can also easily be checked and
are in NP. Any path that satisfies this property can be checked trivially.

The class NP includes all problems that have polynomial-time solutions, since obvi-
ously the solution provides a check. One would expect that since it is so much easier to
check an answer than to come up with one from scratch, there would be problems in NP
that do not have polynomial-time solutions. To date no such problem has been found, so
it is entirely possible, though not considered likely by experts, that nondeterminism is not
such an important improvement. The problem is that proving exponential lower bounds
is an extremely difficult task. The information theory bound technique, which we used to
show that sorting requires �(N log N) comparisons, does not seem to be adequate for the
task, because the decision trees are not nearly large enough.

Notice also that not all decidable problems are in NP. Consider the problem of deter-
mining whether a graph does not have a Hamiltonian cycle. To prove that a graph has
a Hamiltonian cycle is a relatively simple matter—we just need to exhibit one. Nobody
knows how to show, in polynomial time, that a graph does not have a Hamiltonian cycle.
It seems that one must enumerate all the cycles and check them one by one. Thus the
non–Hamiltonian cycle problem is not known to be in NP.

9.7.3 NP-Complete Problems
Among all the problems known to be in NP, there is a subset, known as the NP-complete
problems, which contains the hardest. An NP-complete problem has the property that any
problem in NP can be polynomially reduced to it.

9.7 Introduction to NP-Completeness 435

A problem, P1, can be reduced to P2 as follows: Provide a mapping so that any instance
of P1 can be transformed to an instance of P2. Solve P2, and then map the answer back
to the original. As an example, numbers are entered into a pocket calculator in decimal.
The decimal numbers are converted to binary, and all calculations are performed in binary.
Then the final answer is converted back to decimal for display. For P1 to be polynomially
reducible to P2, all the work associated with the transformations must be performed in
polynomial time.

The reason that NP-complete problems are the hardest NP problems is that a prob-
lem that is NP-complete can essentially be used as a subroutine for any problem in NP,
with only a polynomial amount of overhead. Thus, if any NP-complete problem has a
polynomial-time solution, then every problem in NP must have a polynomial-time solution.
This makes the NP-complete problems the hardest of all NP problems.

Suppose we have an NP-complete problem, P1. Suppose P2 is known to be in NP.
Suppose further that P1 polynomially reduces to P2, so that we can solve P1 by using
P2 with only a polynomial time penalty. Since P1 is NP-complete, every problem in NP
polynomially reduces to P1. By applying the closure property of polynomials, we see that
every problem in NP is polynomially reducible to P2: We reduce the problem to P1 and
then reduce P1 to P2. Thus, P2 is NP-complete.

As an example, suppose that we already know that the Hamiltonian cycle problem is
NP-complete. The traveling salesman problem is as follows.

Traveling Salesman Problem
Given a complete graph, G = (V, E), with edge costs, and an integer K, is there a
simple cycle that visits all vertices and has total cost ≤ K?

The problem is different from the Hamiltonian cycle problem, because all |V|(|V|−1)/2
edges are present and the graph is weighted. This problem has many important appli-
cations. For instance, printed circuit boards need to have holes punched so that chips,
resistors, and other electronic components can be placed. This is done mechanically.
Punching the hole is a quick operation; the time-consuming step is positioning the hole
puncher. The time required for positioning depends on the distance traveled from hole to
hole. Since we would like to punch every hole (and then return to the start for the next
board), and minimize the total amount of time spent traveling, what we have is a traveling
salesman problem.

The traveling salesman problem is NP-complete. It is easy to see that a solution can
be checked in polynomial time, so it is certainly in NP. To show that it is NP-complete,
we polynomially reduce the Hamiltonian cycle problem to it. To do this we construct a
new graph, G′. G′ has the same vertices as G. For G′, each edge (v, w) has a weight of 1 if
(v, w) ∈ G, and 2 otherwise. We choose K = |V|. See Figure 9.80.

It is easy to verify that G has a Hamiltonian cycle if and only if G′ has a traveling
salesman tour of total weight |V|.

There is now a long list of problems known to be NP-complete. To prove that some
new problem is NP-complete, it must be shown to be in NP, and then an appropriate
NP-complete problem must be transformed into it. Although the transformation to a trav-
eling salesman problem was rather straightforward, most transformations are actually quite
involved and require some tricky constructions. Generally, several different NP-complete

436 Chapter 9 Graph Algorithms

V1

V2 V3

V4 V5

V1

V2 V3

V4 V5

1 1

2 1

2

1
2 1

2

1

Figure 9.80 Hamiltonian cycle problem transformed to traveling salesman problem

problems are considered before the problem that actually provides the reduction. As we
are only interested in the general ideas, we will not show any more transformations; the
interested reader can consult the references.

The alert reader may be wondering how the first NP-complete problem was actually
proven to be NP-complete. Since proving that a problem is NP-complete requires trans-
forming it from another NP-complete problem, there must be some NP-complete problem
for which this strategy will not work. The first problem that was proven to be NP-complete
was the satisfiability problem. The satisfiability problem takes as input a Boolean expres-
sion and asks whether the expression has an assignment to the variables that gives a value
of true.

Satisfiability is certainly in NP, since it is easy to evaluate a Boolean expression and
check whether the result is true. In 1971, Cook showed that satisfiability was NP-complete
by directly proving that all problems that are in NP could be transformed to satisfiabi-
lity. To do this, he used the one known fact about every problem in NP: Every problem
in NP can be solved in polynomial time by a nondeterministic computer. The formal
model for a computer is known as a Turing machine. Cook showed how the actions
of this machine could be simulated by an extremely complicated and long, but still
polynomial, Boolean formula. This Boolean formula would be true if and only if the
program which was being run by the Turing machine produced a “yes” answer for its
input.

Once satisfiability was shown to be NP-complete, a host of new NP-complete problems,
including some of the most classic problems, were also shown to be NP-complete.

In addition to the satisfiability, Hamiltonian circuit, traveling salesman, and longest-
path problems, which we have already examined, some of the more well-known NP-
complete problems which we have not discussed are bin packing, knapsack, graph coloring,
and clique. The list is quite extensive and includes problems from operating systems
(scheduling and security), database systems, operations research, logic, and especially
graph theory.

Exercises 437

Summary

In this chapter we have seen how graphs can be used to model many real-life problems.
Many of the graphs that occur are typically very sparse, so it is important to pay attention
to the data structures that are used to implement them.

We have also seen a class of problems that do not seem to have efficient solutions. In
Chapter 10, some techniques for dealing with these problems will be discussed.

Exercises

9.1 Find a topological ordering for the graph in Figure 9.81.

9.2 If a stack is used instead of a queue for the topological sort algorithm in Section 9.2,
does a different ordering result? Why might one data structure give a “better”
answer?

9.3 Write a program to perform a topological sort on a graph.

9.4 An adjacency matrix requires O(|V|2) merely to initialize using a standard double
loop. Propose a method that stores a graph in an adjacency matrix (so that testing
for the existence of an edge is O(1)) but avoids the quadratic running time.

9.5 a. Find the shortest path from A to all other vertices for the graph in Figure 9.82.
b. Find the shortest unweighted path from B to all other vertices for the graph in

Figure 9.82.

9.6 What is the worst-case running time of Dijkstra’s algorithm when implemented
with d-heaps (Section 6.5)?

9.7 a. Give an example where Dijkstra’s algorithm gives the wrong answer in the
presence of a negative edge but no negative-cost cycle.

�� b. Show that the weighted shortest-path algorithm suggested in Section 9.3.3
works if there are negative-weight edges, but no negative-cost cycles, and that
the running time of this algorithm is O(|E| · |V|).

s

A

D

G

B

E

H

C

F

I

t

1

4

6

2

2

3

3

2 1

6

2

2

3

32

6

41

3

1 4

Figure 9.81 Graph used in Exercises 9.1 and 9.11

438 Chapter 9 Graph Algorithms

A

B

C

D

E

F

G

5

3

2

1

3

7

2 1

6

7

1

2

Figure 9.82 Graph used in Exercise 9.5

� 9.8 Suppose all the edge weights in a graph are integers between 1 and |E|. How fast
can Dijkstra’s algorithm be implemented?

9.9 Write a program to solve the single-source shortest-path problem.

9.10 a. Explain how to modify Dijkstra’s algorithm to produce a count of the number of
different minimum paths from v to w.

b. Explain how to modify Dijkstra’s algorithm so that if there is more than one
minimum path from v to w, a path with the fewest number of edges is chosen.

9.11 Find the maximum flow in the network of Figure 9.81.

9.12 Suppose that G = (V, E) is a tree, s is the root, and we add a vertex t and edges
of infinite capacity from all leaves in G to t. Give a linear-time algorithm to find a
maximum flow from s to t.

9.13 A bipartite graph, G = (V, E), is a graph such that V can be partitioned into two
subsets, V1 and V2, and no edge has both its vertices in the same subset.
a. Give a linear algorithm to determine whether a graph is bipartite.
b. The bipartite matching problem is to find the largest subset E′ of E such that no

vertex is included in more than one edge. A matching of four edges (indicated
by dashed edges) is shown in Figure 9.83. There is a matching of five edges,
which is maximum.

Show how the bipartite matching problem can be used to solve the following prob-
lem: We have a set of instructors, a set of courses, and a list of courses that each
instructor is qualified to teach. If no instructor is required to teach more than one
course, and only one instructor may teach a given course, what is the maximum
number of courses that can be offered?
c. Show that the network flow problem can be used to solve the bipartite matching

problem.
d. What is the time complexity of your solution to part (b)?

Exercises 439

Figure 9.83 A bipartite graph

� 9.14 a. Give an algorithm to find an augmenting path that permits the maximum flow.
b. Let f be the amount of flow remaining in the residual graph. Show that the

augmenting path produced by the algorithm in part (a) admits a path of capacity
f/|E|.

c. Show that after |E| consecutive iterations, the total flow remaining in the residual
graph is reduced from f to at most f /e, where e ≈ 2.71828.

d. Show that |E| ln f iterations suffice to produce the maximum flow.

9.15 a. Find a minimum spanning tree for the graph in Figure 9.84 using both Prim’s
and Kruskal’s algorithms.

b. Is this minimum spanning tree unique? Why?

9.16 Does either Prim’s or Kruskal’s algorithm work if there are negative edge weights?

9.17 Show that a graph of V vertices can have VV−2 minimum spanning trees.

9.18 Write a program to implement Kruskal’s algorithm.

9.19 If all of the edges in a graph have weights between 1 and |E|, how fast can the
minimum spanning tree be computed?

A B C

D E F G

H I J

4

5

6

4

2

3

2

11

1

4

3

3

10

6

2

11

7

1

8

Figure 9.84 Graph used in Exercise 9.15

440 Chapter 9 Graph Algorithms

A

B

C

D

E

F

G

H

I

J

K

Figure 9.85 Graph used in Exercise 9.21

9.20 Give an algorithm to find a maximum spanning tree. Is this harder than finding a
minimum spanning tree?

9.21 Find all the articulation points in the graph in Figure 9.85. Show the depth-first
spanning tree and the values of Num and Low for each vertex.

9.22 Prove that the algorithm to find articulation points works.

9.23 a. Give an algorithm to find the minimum number of edges that need to be remo-
ved from an undirected graph so that the resulting graph is acyclic.

� b. Show that this problem is NP-complete for directed graphs.

9.24 Prove that in a depth-first spanning forest of a directed graph, all cross edges go
from right to left.

9.25 Give an algorithm to decide whether an edge (v, w) in a depth-first spanning forest
of a directed graph is a tree, back, cross, or forward edge.

9.26 Find the strongly connected components in the graph of Figure 9.86.

A

B

C

D

E

F

G

Figure 9.86 Graph used in Exercise 9.26

Exercises 441

9.27 Write a program to find the strongly connected components in a digraph.
� 9.28 Give an algorithm that finds the strongly connected components in only one depth-

first search. Use an algorithm similar to the biconnectivity algorithm.

9.29 The biconnected components of a graph, G, is a partition of the edges into sets such
that the graph formed by each set of edges is biconnected. Modify the algorithm in
Figure 9.69 to find the biconnected components instead of the articulation points.

9.30 Suppose we perform a breadth-first search of an undirected graph and build a
breadth-first spanning tree. Show that all edges in the tree are either tree edges or
cross edges.

9.31 Give an algorithm to find in an undirected (connected) graph a path that goes
through every edge exactly once in each direction.

9.32 a. Write a program to find an Euler circuit in a graph if one exists.
b. Write a program to find an Euler tour in a graph if one exists.

9.33 An Euler circuit in a directed graph is a cycle in which every edge is visited exactly
once.

� a. Prove that a directed graph has an Euler circuit if and only if it is strongly
connected and every vertex has equal indegree and outdegree.

� b. Give a linear-time algorithm to find an Euler circuit in a directed graph where
one exists.

9.34 a. Consider the following solution to the Euler circuit problem: Assume that the
graph is biconnected. Perform a depth-first search, taking back edges only as a
last resort. If the graph is not biconnected, apply the algorithm recursively on
the biconnected components. Does this algorithm work?

b. Suppose that when taking back edges, we take the back edge to the nearest
ancestor. Does the algorithm work?

9.35 A planar graph is a graph that can be drawn in a plane without any two edges
intersecting.

� a. Show that neither of the graphs in Figure 9.87 is planar.
b. Show that in a planar graph, there must exist some vertex which is connected

to no more than five nodes.
�� c. Show that in a planar graph, |E| ≤ 3|V| − 6.

Figure 9.87 Graph used in Exercise 9.35

442 Chapter 9 Graph Algorithms

9.36 A multigraph is a graph in which multiple edges are allowed between pairs of
vertices. Which of the algorithms in this chapter work without modification for
multigraphs? What modifications need to be done for the others?

� 9.37 Let G = (V, E) be an undirected graph. Use depth-first search to design a linear
algorithm to convert each edge in G to a directed edge such that the resulting
graph is strongly connected, or determine that this is not possible.

9.38 You are given a set of N sticks, which are lying on top of each other in some
configuration. Each stick is specified by its two endpoints; each endpoint is an
ordered triple giving its x, y, and z coordinates; no stick is vertical. A stick may be
picked up only if there is no stick on top of it.
a. Explain how to write a routine that takes two sticks a and b and reports

whether a is above, below, or unrelated to b. (This has nothing to do with graph
theory.)

b. Give an algorithm that determines whether it is possible to pick up all the sticks,
and if so, provides a sequence of stick pickups that accomplishes this.

9.39 A graph is k-colorable if each vertex can be given one of k colors, and no edge
connects identically colored vertices. Give a linear-time algorithm to test a graph
for two-colorability. Assume graphs are stored in adjacency-list format; you must
specify any additional data structures that are needed.

9.40 Give a polynomial-time algorithm that finds �V/2� vertices that collectively cover
at least three-fourths (3/4) of the edges in an arbitrary undirected graph.

9.41 Show how to modify the topological sort algorithm so that if the graph is not
acyclic, the algorithm will print out some cycle. You may not use depth-first search.

9.42 Let G be a directed graph with N vertices. A vertex s is called a sink if, for every v
in V such that s �= v, there is an edge (v, s), and there are no edges of the form (s, v).
Give an O(N) algorithm to determine whether or not G has a sink, assuming that
G is given by its n × n adjacency matrix.

9.43 When a vertex and its incident edges are removed from a tree, a collection of sub-
trees remains. Give a linear-time algorithm that finds a vertex whose removal from
an N vertex tree leaves no subtree with more than N/2 vertices.

9.44 Give a linear-time algorithm to determine the longest unweighted path in an acyclic
undirected graph (that is, a tree).

9.45 Consider an N-by-N grid in which some squares are occupied by black circles. Two
squares belong to the same group if they share a common edge. In Figure 9.88,
there is one group of four occupied squares, three groups of two occupied squares,
and two individual occupied squares. Assume that the grid is represented by a
two-dimensional array. Write a program that does the following:
a. Computes the size of a group when a square in the group is given.
b. Computes the number of different groups.
c. Lists all groups.

9.46 Section 8.7 described the generating of mazes. Suppose we want to output the path
in the maze. Assume that the maze is represented as a matrix; each cell in the matrix
stores information about what walls are present (or absent).

Exercises 443

Figure 9.88 Grid for Exercise 9.45

a. Write a program that computes enough information to output a path in the
maze. Give output in the form SEN... (representing go south, then east, then
north, etc.).

b. If you are using a C++ compiler with a windowing package, write a program
that draws the maze and, at the press of a button, draws the path.

9.47 Suppose that walls in the maze can be knocked down, with a penalty of P squares.
P is specified as a parameter to the algorithm. (If the penalty is 0, then the problem
is trivial.) Describe an algorithm to solve this version of the problem. What is the
running time for your algorithm?

9.48 Suppose that the maze may or may not have a solution.
a. Describe a linear-time algorithm that determines the minimum number of walls

that need to be knocked down to create a solution. (Hint: Use a double-ended
queue.)

b. Describe an algorithm (not necessarily linear-time) that finds a shortest path
after knocking down the minimum number of walls. Note that the solution to
part (a) would give no information about which walls would be the best to
knock down. (Hint: Use Exercise 9.47.)

9.49 Write a program to compute word ladders where single-character substitutions
have a cost of 1, and single-character additions or deletions have a cost of p > 0,
specified by the user. As mentioned at the end of Section 9.3.6, this is essentially a
weighted shortest-path problem.

Explain how each of the following problems (Exercises 9.50–9.53) can be solved by
applying a shortest-path algorithm. Then design a mechanism for representing an input,
and write a program that solves the problem.

9.50 The input is a list of league game scores (and there are no ties). If all teams have at
least one win and a loss, we can generally “prove,” by a silly transitivity argument,

444 Chapter 9 Graph Algorithms

that any team is better than any other. For instance, in the six-team league where
everyone plays three games, suppose we have the following results: A beat B and
C; B beat C and F; C beat D; D beat E; E beat A; F beat D and E. Then we can prove
that A is better than F, because A beat B, who in turn, beat F. Similarly, we can
prove that F is better than A because F beat E and E beat A. Given a list of game
scores and two teams X and Y, either find a proof (if one exists) that X is better
than Y, or indicate that no proof of this form can be found.

9.51 The input is a collection of currencies and their exchange rates. Is there a sequence
of exchanges that makes money instantly? For instance, if the currencies are X, Y,
and Z and the exchange rate is 1 X equals 2 Ys, 1 Y equals 2 Zs, and 1 X equals 3
Zs, then 300 Zs will buy 100 Xs, which in turn will buy 200 Ys, which in turn will
buy 400 Zs. We have thus made a profit of 33 percent.

9.52 A student needs to take a certain number of courses to graduate, and these courses
have prerequisites that must be followed. Assume that all courses are offered every
semester and that the student can take an unlimited number of courses. Given a list
of courses and their prerequisites, compute a schedule that requires the minimum
number of semesters.

9.53 The object of the Kevin Bacon Game is to link a movie actor to Kevin Bacon via
shared movie roles. The minimum number of links is an actor’s Bacon number. For
instance, Tom Hanks has a Bacon number of 1; he was in Apollo 13 with Kevin
Bacon. Sally Fields has a Bacon number of 2, because she was in Forrest Gump with
Tom Hanks, who was in Apollo 13 with Kevin Bacon. Almost all well-known actors
have a Bacon number of 1 or 2. Assume that you have a comprehensive list of
actors, with roles,3 and do the following:
a. Explain how to find an actor’s Bacon number.
b. Explain how to find the actor with the highest Bacon number.
c. Explain how to find the minimum number of links between two arbitrary actors.

9.54 The clique problem can be stated as follows: Given an undirected graph, G = (V, E),
and an integer, K, does G contain a complete subgraph of at least K vertices?

The vertex cover problem can be stated as follows: Given an undirected graph,
G = (V, E), and an integer, K, does G contain a subset V′ ⊂ V such that
|V′| ≤ K and every edge in G has a vertex in V′? Show that the clique problem
is polynomially reducible to vertex cover.

9.55 Assume that the Hamiltonian cycle problem is NP-complete for undirected graphs.
a. Prove that the Hamiltonian cycle problem is NP-complete for directed graphs.
b. Prove that the unweighted simple longest-path problem is NP-complete for

directed graphs.

9.56 The baseball card collector problem is as follows: Given packets P1, P2, . . . , PM, each
of which contains a subset of the year’s baseball cards, and an integer, K, is it possi-
ble to collect all the baseball cards by choosing ≤ K packets? Show that the baseball
card collector problem is NP-complete.

3 For instance, see the Internet Movie Database files: actor.list.gz and actresses.list.gz at
ftp://ftp.fu-berlin.de/pub/misc/movies/database.

References 445

References

Good graph theory textbooks include [9], [14], [24], and [39]. More advanced topics,
including the more careful attention to running times, are covered in [41], [44], and [51].

Use of adjacency lists was advocated in [26]. The topological sort algorithm is from
[31], as described in [36]. Dijkstra’s algorithm appeared in [10]. The improvements using
d-heaps and Fibonacci heaps are described in [30] and [16], respectively. The shortest-path
algorithm with negative edge weights is due to Bellman [3]; Tarjan [51] describes a more
efficient way to guarantee termination.

Ford and Fulkerson’s seminal work on network flow is [15]. The idea of augmenting
along shortest paths or on paths admitting the largest flow increase is from [13]. Other
approaches to the problem can be found in [11], [34], [23], [7], [35], [22], and [43]. An
algorithm for the min-cost flow problem can be found in [20].

An early minimum spanning tree algorithm can be found in [4]. Prim’s algorithm is
from [45]; Kruskal’s algorithm appears in [37]. Two O(|E| log log |V|) algorithms are [6]
and [52]. The theoretically best-known algorithms appear in [16], [18], [32] and [5].
An empirical study of these algorithms suggests that Prim’s algorithm, implemented with
decreaseKey, is best in practice on most graphs [42].

The algorithm for biconnectivity is from [47]. The first linear-time strong components
algorithm (Exercise 9.28) appears in the same paper. The algorithm presented in the text
is due to Kosaraju (unpublished) and Sharir [46]. Other applications of depth-first search
appear in [27], [28], [48], and [49] (as mentioned in Chapter 8, the results in [48] and
[49] have been improved, but the basic algorithm is unchanged).

The classic reference work for the theory of NP-complete problems is [21]. Additional
material can be found in [1]. The NP-completeness of satisfiability is shown in [8] and inde-
pendently by Levin. The other seminal paper is [33], which showed the NP-completeness
of 21 problems. An excellent survey of complexity theory is [50]. An approximation algo-
rithm for the traveling salesman problem, which generally gives nearly optimal results, can
be found in [40].

A solution to Exercise 9.8 can be found in [2]. Solutions to the bipartite matching
problem in Exercise 9.13 can be found in [25] and [38]. The problem can be generalized
by adding weights to the edges and removing the restriction that the graph is bipartite.
Efficient solutions for the unweighted matching problem for general graphs are quite
complex. Details can be found in [12], [17], and [19].

Exercise 9.35 deals with planar graphs, which commonly arise in practice. Planar
graphs are very sparse, and many difficult problems are easier on planar graphs. An exam-
ple is the graph isomorphism problem, which is solvable in linear time for planar graphs
[29]. No polynomial time algorithm is known for general graphs.

1. A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The Design and Analysis of Computer Algorithms,
Addison-Wesley, Reading, Mass., 1974.

2. R. K. Ahuja, K. Melhorn, J. B. Orlin, and R. E. Tarjan, “Faster Algorithms for the Shortest
Path Problem,” Journal of the ACM, 37 (1990), 213–223.

3. R. E. Bellman, “On a Routing Problem,” Quarterly of Applied Mathematics, 16 (1958), 87–90.
4. O. Borǔvka, “Ojistém problému minimálním (On a Minimal Problem),” Práca Moravské

Pr̆irodo-vĕdecké Spolec̆nosti, 3 (1926), 37–58.

446 Chapter 9 Graph Algorithms

5. B. Chazelle, “A Minimum Spanning Tree Algorithm with Inverse-Ackermann Type Com-
plexity,” Journal of the ACM, 47 (2000), 1028–1047.

6. D. Cheriton and R. E. Tarjan, “Finding Minimum Spanning Trees,” SIAM Journal on Com-
puting, 5 (1976), 724–742.

7. J. Cheriyan and T. Hagerup, “A Randomized Maximum-Flow Algorithm,” SIAM Journal on
Computing, 24 (1995), 203–226.

8. S. Cook, “The Complexity of Theorem Proving Procedures,” Proceedings of the Third Annual
ACM Symposium on Theory of Computing (1971), 151–158.

9. N. Deo, Graph Theory with Applications to Engineering and Computer Science, Prentice Hall,
Englewood Cliffs, N.J., 1974.

10. E. W. Dijkstra, “A Note on Two Problems in Connexion with Graphs,” Numerische Mathe-
matik, 1 (1959), 269–271.

11. E. A. Dinic, “Algorithm for Solution of a Problem of Maximum Flow in Networks with
Power Estimation,” Soviet Mathematics Doklady, 11 (1970), 1277–1280.

12. J. Edmonds, “Paths, Trees, and Flowers,” Canadian Journal of Mathematics, 17 (1965),
449–467.

13. J. Edmonds and R. M. Karp, “Theoretical Improvements in Algorithmic Efficiency for
Network Flow Problems,” Journal of the ACM, 19 (1972), 248–264.

14. S. Even, Graph Algorithms, Computer Science Press, Potomac, Md., 1979.
15. L. R. Ford, Jr., and D. R. Fulkerson, Flows in Networks, Princeton University Press, Princeton,

N.J., 1962.
16. M. L. Fredman and R. E. Tarjan, “Fibonacci Heaps and Their Uses in Improved Network

Optimization Algorithms,” Journal of the ACM, 34 (1987), 596–615.
17. H. N. Gabow, “Data Structures for Weighted Matching and Nearest Common Ancestors with

Linking,” Proceedings of First Annual ACM-SIAM Symposium on Discrete Algorithms (1990),
434–443.

18. H. N. Gabow, Z. Galil, T. H. Spencer, and R. E. Tarjan, “Efficient Algorithms for Finding
Minimum Spanning Trees on Directed and Undirected Graphs,” Combinatorica, 6 (1986),
109–122.

19. Z. Galil, “Efficient Algorithms for Finding Maximum Matchings in Graphs,” ACM Computing
Surveys, 18 (1986), 23–38.

20. Z. Galil and E. Tardos, “An O(n2(m + n log n) log n) Min-Cost Flow Algorithm,” Journal of
the ACM, 35 (1988), 374–386.

21. M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of
NP-Completeness, Freeman, San Francisco, 1979.

22. A. V. Goldberg and S. Rao, “Beyond the Flow Decomposition Barrier,” Journal of the ACM,
45 (1998), 783–797.

23. A. V. Goldberg and R. E. Tarjan, “A New Approach to the Maximum-Flow Problem,” Journal
of the ACM, 35 (1988), 921–940.

24. F. Harary, Graph Theory, Addison-Wesley, Reading, Mass., 1969.
25. J. E. Hopcroft and R. M. Karp, “An n5/2 Algorithm for Maximum Matchings in Bipartite

Graphs,” SIAM Journal on Computing, 2 (1973), 225–231.
26. J. E. Hopcroft and R. E. Tarjan, “Algorithm 447: Efficient Algorithms for Graph Manipu-

lation,” Communications of the ACM, 16 (1973), 372–378.

References 447

27. J. E. Hopcroft and R. E. Tarjan, “Dividing a Graph into Triconnected Components,” SIAM
Journal on Computing, 2 (1973), 135–158.

28. J. E. Hopcroft and R. E. Tarjan, “Efficient Planarity Testing,” Journal of the ACM, 21 (1974),
549–568.

29. J. E. Hopcroft and J. K. Wong, “Linear-Time Algorithm for Isomorphism of Planar
Graphs,” Proceedings of the Sixth Annual ACM Symposium on Theory of Computing (1974),
172–184.

30. D. B. Johnson, “Efficient Algorithms for Shortest Paths in Sparse Networks,” Journal of the
ACM, 24 (1977), 1–13.

31. A. B. Kahn, “Topological Sorting of Large Networks,” Communications of the ACM, 5 (1962),
558–562.

32. D. R. Karger, P. N. Klein, and R. E. Tarjan, “A Randomized Linear-Time Algorithm to Find
Minimum Spanning Trees,” Journal of the ACM, 42 (1995), 321–328.

33. R. M. Karp, “Reducibility among Combinatorial Problems,” Complexity of Computer Compu-
tations (eds. R. E. Miller and J. W. Thatcher), Plenum Press, New York, 1972, 85–103.

34. A. V. Karzanov, “Determining the Maximal Flow in a Network by the Method of Preflows,”
Soviet Mathematics Doklady, 15 (1974), 434–437.

35. V. King, S. Rao, and R. E. Tarjan, “A Faster Deterministic Maximum Flow Algorithm,” Jour-
nal of Algorithms, 17 (1994), 447–474.

36. D. E. Knuth, The Art of Computer Programming, Vol. 1: Fundamental Algorithms, 3d ed.,
Addison-Wesley, Reading, Mass., 1997.

37. J. B. Kruskal, Jr., “On the Shortest Spanning Subtree of a Graph and the Traveling Salesman
Problem,” Proceedings of the American Mathematical Society, 7 (1956), 48–50.

38. H. W. Kuhn, “The Hungarian Method for the Assignment Problem,” Naval Research Logistics
Quarterly, 2 (1955), 83–97.

39. E. L. Lawler, Combinatorial Optimization: Networks and Matroids, Holt, Reinhart and
Winston, New York, 1976.

40. S. Lin and B. W. Kernighan, “An Effective Heuristic Algorithm for the Traveling Salesman
Problem,” Operations Research, 21 (1973), 498–516.

41. K. Melhorn, Data Structures and Algorithms 2: Graph Algorithms and NP-completeness,
Springer-Verlag, Berlin, 1984.

42. B. M. E. Moret and H. D. Shapiro, “An Empirical Analysis of Algorithms for Constructing
a Minimum Spanning Tree,” Proceedings of the Second Workshop on Algorithms and Data
Structures (1991), 400–411.

43. J. B. Orlin, “Max Flows in O(nm) Time, or Better,” Proceedings of the Forty-fifth Annual ACM
Symposium on Theory of Computing (2013).

44. C. H. Papadimitriou and K. Steiglitz, Combinatorial Optimization: Algorithms and Complexity,
Prentice Hall, Englewood Cliffs, N.J., 1982.

45. R. C. Prim, “Shortest Connection Networks and Some Generalizations,” Bell System Technical
Journal, 36 (1957), 1389–1401.

46. M. Sharir, “A Strong-Connectivity Algorithm and Its Application in Data Flow Analysis,”
Computers and Mathematics with Applications, 7 (1981), 67–72.

47. R. E. Tarjan, “Depth First Search and Linear Graph Algorithms,” SIAM Journal on Computing,
1 (1972), 146–160.

448 Chapter 9 Graph Algorithms

48. R. E. Tarjan, “Testing Flow Graph Reducibility,” Journal of Computer and System Sciences, 9
(1974), 355–365.

49. R. E. Tarjan, “Finding Dominators in Directed Graphs,” SIAM Journal on Computing, 3
(1974), 62–89.

50. R. E. Tarjan, “Complexity of Combinatorial Algorithms,” SIAM Review, 20 (1978),
457–491.

51. R. E. Tarjan, Data Structures and Network Algorithms, Society for Industrial and Applied
Mathematics, Philadelphia, 1983.

52. A. C. Yao, “An O(|E| log log |V|) Algorithm for Finding Minimum Spanning Trees,” Informa-
tion Processing Letters, 4 (1975), 21–23.

