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Figure 24.5 Eventually, 24 walls have been knocked down, and all the 
elements are in the same set. 

The running time of the algorithm is dominated by the unionlfind 
costs. The size of the unionlfind universe is the number of cells. The num- 
ber of f i n d  operations is proportional to the number of cells because the 
number of removed walls is 1 less than the number of cells. If we look 
carefully, however, we can see that there are only about twice as many 
walls as cells in the first place. Thus, if N is the number of cells and as 
there are two f i n d s  per randomly targeted wall, we get an estimate of 
between (roughly) 2N and 4N f i n d  operations throughout the algorithm. 
Therefore the algorithm's running time depends on the cost of O ( N )  u n i o n  
and O(N)  f i n d  operations. 

24.2.2 Application: Minimum Spanning Trees 

The minimum A spanning tree of an undirected graph is a tree formed by graph edges that 
spanning tree is a 
connected subgraph 
of G that spans all 
vertices at minimum 

connect all the vertices of the graph. Unlike the graphs in Chapter 15, an 
edge (u, v) in a graph G is identical to an edge (v, u). The cost of a spanning 
tree is the sum of the costs of the edges in the tree. The minimum spanning 

total cost. tree is a connected subgraph of G tha t  spans all vertices at minimurn cost. A 
minimum spanning tree exists only if the subgraph of G is connected. As we 
show shortly, testing a graph's connectivity can be done as part of the mini- 
mum spanning tree computation. 

In Figure 24.6(b), the graph is a minimum spanning tree of the graph in 
Figure 24.6(a) (it happens to be unique, which is unusual if the graph has 
many edges of equal cost). Note that the number of edges in the minimum 
spanning tree is 1 V1 - 1. The minimum spanning tree is a tree because it is 
acyclic, it is spanning because it covers every vertex, and it is minimum for 
the obvious reason. Suppose that we need to connect several towns with 
roads, minimizing the total construction cost, with the provision that we can 
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Figure 24.6 (a) A graph G and (b) its minimum spanning tree. 

transfer to another road only at a town (in other words, no extra junctions are 
allowed). Then we need to solve a minimum spanning tree problem, where 
each vertex is a town, and each edge is the cost of building a road between 
the two cities it connects. 

A related problem is the minimum Sreiner tree problem, which is like 
the minimum spanning tree problem, except that junctions can be created 
as part of the solution. The minimum Steiner tree problem is much more 
difficult to solve. However, it can be shown that if the cost of a connection 
is proportional to the Euclidean distance, the minimum spanning tree is at 
most 15 percent more expensive than the minimum Steiner tree. Thus a min- 
imum spanning tree, which is easy to compute, provides a good approxima- 
tion for the minimum Steiner tree, which is hard to compute. 

A simple algorithm, commonly called Kruskal's algorithm, is used to Kruskal'salgorithmis 

select edges continually in order of smallest weight and to add an edge to select edges 
in order of increasing 

the tree if it does not cause a cycle. Formally, Kruskal's algorithm main- cost and adds an 
tains a forest-a collection of trees. Initially, there are (VI single-node edge to the tree if it 

trees. Adding an edge merges two trees into one. When the algorithm ter- doesnotcreatea 

minates, there is only one tree, which is the minimum spanning tree.2 By cycle. 

counting the number of accepted edges, we can determine when the algo- 
rithm should terminate. 

Figure 24.7 shows the action of Kruskal's algorithm on the graph shown 
in Figure 24.6. The first five edges are all accepted because they do not create 
cycles. The next two edges, (v,, v3) (of cost 3) and then (v,,, v2) (of cost 4), are 
rejected because each would create a cycle in the tree. The next edge consid- 
ered is accepted, and because it is the sixth edge in a seven-vertex graph, we 
can terminate the algorithm. 

2. If the graph is not connected, the algorithm will terminate with more than one tree. Each 
tree then represents a minimum spanning tree for each connected component of the graph. 
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Figure 24.7 Kruskal's algorithm after each edge has been considered. The 
stages proceed left-to-right, top-to-bottom, as numbered. 

Theedgescan be Ordering the edges for testing is simple enough to do. We can sort them 
sorted, Or a priority at a cost of E log 1 E and then step through the ordered array of edges. 
queue can be used. Alternatively, we can construct a priority queue of El edges and repeatedly 

obtain edges by calling deleteMin. Although the worst-case bound is 
unchanged, using a priority queue is sometimes better because Kruskal's 
algorithm tends to test only a small fraction of the edges on random graphs. 
Of course, in the worst case, all the edges may have to be tried. For instance, 
if there were an extra vertex vg and edge (v,. vg) of cost 100, all the edges 
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would have to be examined. In this case, a quicksort at the start would be 
faster. In effect, the choice between a priority queue and an initial sort is a 
gamble on how many edges are likely t i  hav; to-be examined. 

More interesting is the issue of how we decide whether an edge (u, v) The test for cycles is 

should be accepted or rejected. Clearly, adding the edge (u, v) causes a cycle by using a 
unionlfind data 

if (and only if) u and v are already connected in the current spanning forest, structure. 
which is a collection of trees. Thus we merely maintain each connected 
component in the spanning forest as a disjoint set. Initially, each vertex is in 
its own disjoint set. If u and v are in the same disjoint set, as determined by 
two f i n d  operations, the edge is rejected because u and v are already con- 
nected. Otherwise, the edge is accepted and a union operation is performed - 
on the two disjoint sets containing u and v, in effect, combining the con- 
nected components. This result is what we want because once edge (u, v )  has 
been added to the spanning forest, if uf was connected to u and .r was con- 
nected to v, x and w must be connected and thus belong in the same set. 

24.2.3 Application: The Nearest Common Ancestor Problem 

Another illustration of the unionlfind data structure is the offline nearest 
common ancestor (NCA) problem. 

OFFLINE NEAREST COMMON ANCESTOR PROBLEM 
GIVEN A TREE AND A LIST OF PAIRS OF NODES IN THE TREE, FIND THE NEAREST 

COMMON ANCESTOR FOR EACH PAIR OF NODES. 

As an example, Figure 24.8 shows a tree with a pair list containing five 
requests. For the pair of nodes u and z node C is the nearest ancestor of both. 
(A and B are also ancestors, but they are not the closest.) The problem is 
offline because we can see the entire request sequence prior to providing the 
first answer. Solution of this problem is important in graph theory applications 
and computational biology (where the tree represents evolution) applications. 

The algorithm works by performing a postorder tree traversal. When we 
are about to return from processing a node, we examine the pair list to deter- 
mine whether any ancestor calculations are to be performed. If u is the cur- 
rent node, (u, v) is in the pair list and we have already finished the recursive 
call to v, we have enough information to determine NCA(u, v). 

Figure 24.9 helps in understanding how this algorithm works. Here, we 
are about to finish the recursive call to D. All shaded nodes have been visited 
by a recursive call, and except for the nodes on the path to D, all the recur- 
sive calls have already finished. We mark a node after its recursive call has 
been completed. If 1, is marked, then NCA(D, v) is some node on the path to 
D. The anchor of a visited (but not necessarily marked) node v is the node 

Solutions of the NCA 
is important in graph 
algorithm and 
computational 
biology applications. 

A postorder traversal 
can be used to solve 
the problem. 

The anchor of a 
visited (but not 
necessarily marked) 
node v is the node on 
the current access 
path that is closest 
to v. 




