
-

The D~sjoint Set Class

Figure 24.5 Eventually, 24 walls have been knocked down, and all the
elements are in the same set.

The running time of the algorithm is dominated by the unionlfind
costs. The size of the unionlfind universe is the number of cells. The num-
ber of f i n d operations is proportional to the number of cells because the
number of removed walls is 1 less than the number of cells. If we look
carefully, however, we can see that there are only about twice as many
walls as cells in the first place. Thus, if N is the number of cells and as
there are two f i n d s per randomly targeted wall, we get an estimate of
between (roughly) 2N and 4N f i n d operations throughout the algorithm.
Therefore the algorithm's running time depends on the cost of O (N) u n i o n
and O(N) f i n d operations.

24.2.2 Application: Minimum Spanning Trees

The minimum A spanning tree of an undirected graph is a tree formed by graph edges that
spanning tree is a
connected subgraph
of G that spans all
vertices at minimum

connect all the vertices of the graph. Unlike the graphs in Chapter 15, an
edge (u, v) in a graph G is identical to an edge (v, u). The cost of a spanning
tree is the sum of the costs of the edges in the tree. The minimum spanning

total cost. tree is a connected subgraph of G tha t spans all vertices at minimurn cost. A
minimum spanning tree exists only if the subgraph of G is connected. As we
show shortly, testing a graph's connectivity can be done as part of the mini-
mum spanning tree computation.

In Figure 24.6(b), the graph is a minimum spanning tree of the graph in
Figure 24.6(a) (it happens to be unique, which is unusual if the graph has
many edges of equal cost). Note that the number of edges in the minimum
spanning tree is 1 V1 - 1. The minimum spanning tree is a tree because it is
acyclic, it is spanning because it covers every vertex, and it is minimum for
the obvious reason. Suppose that we need to connect several towns with
roads, minimizing the total construction cost, with the provision that we can

Dynamic Equivalence and Two ~ ~ ~ l i c a t i o ~

Figure 24.6 (a) A graph G and (b) its minimum spanning tree.

transfer to another road only at a town (in other words, no extra junctions are
allowed). Then we need to solve a minimum spanning tree problem, where
each vertex is a town, and each edge is the cost of building a road between
the two cities it connects.

A related problem is the minimum Sreiner tree problem, which is like
the minimum spanning tree problem, except that junctions can be created
as part of the solution. The minimum Steiner tree problem is much more
difficult to solve. However, it can be shown that if the cost of a connection
is proportional to the Euclidean distance, the minimum spanning tree is at
most 15 percent more expensive than the minimum Steiner tree. Thus a min-
imum spanning tree, which is easy to compute, provides a good approxima-
tion for the minimum Steiner tree, which is hard to compute.

A simple algorithm, commonly called Kruskal's algorithm, is used to Kruskal'salgorithmis

select edges continually in order of smallest weight and to add an edge to select edges
in order of increasing

the tree if it does not cause a cycle. Formally, Kruskal's algorithm main- cost and adds an
tains a forest-a collection of trees. Initially, there are (VI single-node edge to the tree if it

trees. Adding an edge merges two trees into one. When the algorithm ter- doesnotcreatea

minates, there is only one tree, which is the minimum spanning tree.2 By cycle.

counting the number of accepted edges, we can determine when the algo-
rithm should terminate.

Figure 24.7 shows the action of Kruskal's algorithm on the graph shown
in Figure 24.6. The first five edges are all accepted because they do not create
cycles. The next two edges, (v,, v3) (of cost 3) and then (v,,, v2) (of cost 4), are
rejected because each would create a cycle in the tree. The next edge consid-
ered is accepted, and because it is the sixth edge in a seven-vertex graph, we
can terminate the algorithm.

2. If the graph is not connected, the algorithm will terminate with more than one tree. Each
tree then represents a minimum spanning tree for each connected component of the graph.

The Disjoint Set Class

Figure 24.7 Kruskal's algorithm after each edge has been considered. The
stages proceed left-to-right, top-to-bottom, as numbered.

Theedgescan be Ordering the edges for testing is simple enough to do. We can sort them
sorted, Or a priority at a cost of E log 1 E and then step through the ordered array of edges.
queue can be used. Alternatively, we can construct a priority queue of El edges and repeatedly

obtain edges by calling deleteMin. Although the worst-case bound is
unchanged, using a priority queue is sometimes better because Kruskal's
algorithm tends to test only a small fraction of the edges on random graphs.
Of course, in the worst case, all the edges may have to be tried. For instance,
if there were an extra vertex vg and edge (v,. vg) of cost 100, all the edges

Dynamic Equivalence and Two Applications

would have to be examined. In this case, a quicksort at the start would be
faster. In effect, the choice between a priority queue and an initial sort is a
gamble on how many edges are likely t i hav; to-be examined.

More interesting is the issue of how we decide whether an edge (u, v) The test for cycles is

should be accepted or rejected. Clearly, adding the edge (u, v) causes a cycle by using a
unionlfind data

if (and only if) u and v are already connected in the current spanning forest, structure.
which is a collection of trees. Thus we merely maintain each connected
component in the spanning forest as a disjoint set. Initially, each vertex is in
its own disjoint set. If u and v are in the same disjoint set, as determined by
two f i n d operations, the edge is rejected because u and v are already con-
nected. Otherwise, the edge is accepted and a union operation is performed -
on the two disjoint sets containing u and v, in effect, combining the con-
nected components. This result is what we want because once edge (u, v) has
been added to the spanning forest, if uf was connected to u and .r was con-
nected to v, x and w must be connected and thus belong in the same set.

24.2.3 Application: The Nearest Common Ancestor Problem

Another illustration of the unionlfind data structure is the offline nearest
common ancestor (NCA) problem.

OFFLINE NEAREST COMMON ANCESTOR PROBLEM
GIVEN A TREE AND A LIST OF PAIRS OF NODES IN THE TREE, FIND THE NEAREST

COMMON ANCESTOR FOR EACH PAIR OF NODES.

As an example, Figure 24.8 shows a tree with a pair list containing five
requests. For the pair of nodes u and z node C is the nearest ancestor of both.
(A and B are also ancestors, but they are not the closest.) The problem is
offline because we can see the entire request sequence prior to providing the
first answer. Solution of this problem is important in graph theory applications
and computational biology (where the tree represents evolution) applications.

The algorithm works by performing a postorder tree traversal. When we
are about to return from processing a node, we examine the pair list to deter-
mine whether any ancestor calculations are to be performed. If u is the cur-
rent node, (u, v) is in the pair list and we have already finished the recursive
call to v, we have enough information to determine NCA(u, v).

Figure 24.9 helps in understanding how this algorithm works. Here, we
are about to finish the recursive call to D. All shaded nodes have been visited
by a recursive call, and except for the nodes on the path to D, all the recur-
sive calls have already finished. We mark a node after its recursive call has
been completed. If 1, is marked, then NCA(D, v) is some node on the path to
D. The anchor of a visited (but not necessarily marked) node v is the node

Solutions of the NCA
is important in graph
algorithm and
computational
biology applications.

A postorder traversal
can be used to solve
the problem.

The anchor of a
visited (but not
necessarily marked)
node v is the node on
the current access
path that is closest
to v.

