CS 130A Data Struc \& Alg 1

1. Given the hash function $h(x)=x \bmod 17$, and the following set of numbers as input: $\{133,148,164,206,96,102,300,517,8,793,736\}$, show the resulting:
(a) Separate chaining hash table.
(b) Open addressing hash table with linear probing.
(c) Open addressing hash table with quadratic probing.
2. Given input $\{4371,1323,6173,4199,4344,9679,1989\}$ and a hash function $h(x)=x \bmod 10$, show the resulting:
(a) Separate chaining hash table.
(b) Hash table using linear probing.
(c) Hash table using quadratic probing.
(d) Hash table with second hash function $h_{2}(x)=7-(x \bmod 7)$.
3. Consider the following hash function $h(x)=x \bmod 11$ with linear probing as the collision handling strategy, and the current table as

0	1	2	3	4	5	6	7	8	9	10
	1	24	14	12	16	28	7		31	

Do the following:
(a) Insert $x=9$ into the hash table. Show the steps.
(b) Insert $x=42$ into the hash table. Show the steps.
(c) Find $x=9$ in the hash table. Show the steps.
(d) Find $x=42$ in the hash table. Show the steps.
(e) Delete $x=9$ from the hash table using lazy deletion. Show the steps.
(f) Find $x=42$ in the hash table. Show the steps.
(g) Explain what would happen if $x=9$ was deleted by leaving an empty cell, instead of lazy deletion (leaving a mark). Can we find $x=42$ if this was the case?
4. Consider the perfect hash scheme given in our class notes (05universal.pdf), and the current state of the hash tables as below:

Show the steps of the following operations (in the given order): Insert(49), Find(60), Find(61), Delete(52), Delete(75), Insert(52)

[^0]
[^0]: Deliver the assignment via Gradescope. Late submissions are not accepted.

