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Addition Operation

In this section, we study algorithms for computing the sum of two k-bit integers A
and B. Let Ai and Bi for i = 1, 2, . . . , k − 1 represent the bits of the integers A and
B, respectively. We would like to compute the sum bits Si for i = 1, 2, . . . , k− 1 and
the final carry-out Ck as follows:

Ak−1 Ak−2 · · · A1 A0

+ Bk−1 Bk−2 · · · B1 B0

Ck Sk−1 Sk−2 · · · S1 S0

We will study the following algorithms: the carry propagate adder (CPA), the carry
completion sensing adder (CCSA), the carry look-ahead adder (CLA), the carry save
adder (CSA), and the carry delayed adder (CDA) for computing the sum and the
final carry-out.

Full-Adder and Half-Adder Cells

The building blocks of these adders are the full-adder (FA) and half-adder (HA)
cells. Thus, we briefly introduce them here. A full-adder is a combinational circuit
with 3 input and 2 outputs. The inputs Ai, Bi, Ci and the outputs Si and Ci+1 are
boolean variables. It is assumed that Ai and Bi are the ith bits of the integers A
and B, respectively, and Ci is the carry bit received by the ith position. The FA cell
computes the sum bit Si and the carry-out bit Ci+1 which is to be received by the
next cell. The truth table of the FA cell is as follows:

Ai Bi Ci Ci+1 Si

0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

The boolean functions of the output values are as

Ci+1 = AiBi + AiCi + BiCi ,

Si = Ai ⊕Bi ⊕ Ci .

Similarly, an half-adder is a combinational circuit with 2 inputs and 2 outputs. The
inputs Ai, Bi and the outputs Si and Ci+1 are boolean variables. It is assumed that Ai
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and Bi are the ith bits of the integers A and B, respectively. The HA cell computes
the sum bit Si and the carry-out bit Ci+1. Thus, an half-adder is easily obtained by
setting the third input bit Ci to zero. The truth table of the HA cell is as follows:

Ai Bi Ci+1 Si

0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0

The boolean functions of the output values are as Ci+1 = AiBi and Si = Ai ⊕ Bi,
which can be obtained by setting the carry bit input Ci of the FA cell to zero. The
following figure illustrates the FA and HA cells.
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Carry Propagate Adder

The carry propagate adder is a linearly connected array of full-adder (FA) cells. The
topology of the CPA is illustrated below for k = 8.
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The total delay of the carry propagate adder is k times the delay of a single full-adder
cell. This is because the ith cell needs to receive the correct value of the carry-in bit
Ci in order to compute its correct outputs. Tracing back to the 0th cell, we conclude
that a total of k full-adder delays is needed to compute the sum vector S and the
final carry-out Ck. Furthermore, the total area of the k-bit CPA is equal to k times a
single full-adder cell area. The CPA scales up very easily, by adding additional cells
starting from the most significant.
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The subtraction operation can be performed on a carry propagate adder by using
2’s complement arithmetic. Assuming we have a k-bit CPA available, we encode
the positive numbers in the range [0, 2k−1 − 1] as k-bit binary vectors with the most
significant bit being 0. A negative number is then represented with its most significant
bit as 1. This is accomplished as follows: Let x ∈ [0, 2k−1], then −x is represented by
computing 2k− x. For example, for k = 3, the positive numbers are 0, 1, 2, 3 encoded
as 000, 001, 010, 011, respectively. The negative 1 is computed as 23 − 1 = 8 − 1 =
7 = 111. Similarly, −2, −3, and −4 are encoded as 110, 101, and 100, respectively.
This encoding system has two advantages which are relevant in performing modular
arithmetic operations:

• The sign detection is easy: the most significant bit gives the sign.

• The subtraction is easy: In order to compute x− y, we first represent −y using
2’s complement encoding, and then add x to −y.

The CPA has several advantages but one clear disadvantage: the computation time
is too long for our application, in which the operand size is in the order of several
hundreds, up to 2048 bits. Thus, we need to explore other techniques with the hope
of building circuits which require less time without significantly increasing the area.

Carry Completion Sensing Adder

The carry completion sensing adder is an asynchronous circuit with area requirement
proportional to k. It is based on the observation that the average time required for
the carry propagation process to complete is much less than the worst case which is k
full-adder delays. For example, the addition of 15213 by 19989 produces the longest
carry length as 5, as shown below:

0 0 1 1 1 0 1 1 0 1 1 0 1 1 0A

0 1 0 0 1 1 1 0 0 0 0 1 0 1 0 1

1

4 1 15

B

=

=

A statistical analysis shows that the average longest carry sequence is approximately
4.6 for a 40-bit adder [?]. In general, the average longest carry produced by the
addition of two k-bit integers is upper bounded by log2 k. Thus, we can design a
circuit which detects the completion of all carry propagation processes, and completes
in log2 k time in the average.

In order to accomplish this task, we introduce a new variable N in addition to
the carry variable C. The value of C and N for ith position is computed using the
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values of A and B for the ith position, and the previous C and N values, as follows:

(Ai, Bi) = (0, 0) =⇒ (Ci, Ni) = (0, 1)

(Ai, Bi) = (1, 1) =⇒ (Ci, Ni) = (1, 0)

(Ai, Bi) = (0, 1) =⇒ (Ci, Ni) = (Ci−1, Ni−1)

(Ai, Bi) = (1, 0) =⇒ (Ci, Ni) = (Ci−1, Ni−1)

Initially, the C and N vectors are set to zero. The cells which produce C and N
values start working as soon as the values of A and B are applied to them in parallel.
The output of a cell (Ci, Ni) settles when its inputs (Ci−1, Ni−1) are settled. When
all carry propagation processes are complete, we have either (Ci, Ni) = (0, 1) or
(Ci, Ni) = (1, 0) for all i = 1, 2, . . . , k. Thus, the end of carry completion is detected
when all Xi = Ci +Ni = 1 for all i = 1, 2, . . . , k, which can be accomplished by using
a k-input AND gate.
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