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Classical Model of Cryptography 




Basic Assumptions: 
•  Adversary knows the algorithm 
•  Adversary can intercept the ciphertext 

  Further Scenarios: 
•  Known ciphertext attack: C1, C2, C3, … 
•  Known plaintext attack: (M1, C1), (M2, C2), … 
•  Chosen plaintext attack: (M’1, C1), (M’2, C2), … 
•  Chosen ciphertext attack: (M1, C’1), (M2, C’2), … 
•  …  



Side-Channel Model of Cryptography 

Cryptographic algorithms must run on a real device  
  Devices have physical properties   
  Devices will emanate information regarding cryptographic 
algorithm, key, and message  
  Adversary having access to these side channels will extract 
information 

•  Timing 
•  Power 
•  Electromagnetic 

Side channels 



Side-Channel Cryptanalysis 

  A new area of applied cryptography 
  The study of breaking cryptosystems using side-channel information 

plaintext 
ciphertext 

Timing attacks exploit time 
differences occurring  
for various input values 

ti  (running time) 

Power attacks exploit the 
instantaneous power 
consumption 

t 

I(t) 



Side-Channel Attacks on Computers 

  Historical targets of side-channel attacks: smart cards 
  The vulnerability of computer systems (e.g., remote servers) was not 
known until Brumley and Boneh Attack (2003) 
  This remote timing attack on RSA (OpenSSL implementation on a 
web server) shows the practicality of such attacks 
  The attack revealed 1024-bit RSA key of a server over a LAN 
  Remote RSA attack was improved by Acıiçmez, Schindler, and Koç, 
now requiring < 100k queries (while the original attack needed 1.4 
million queries) 

Knows: 
n, R 

Secrets: 
p, q, d 



  Recently, the side-channel attacks hit the PC as a new victim platform: 
•  Especially interesting since maturing Trusted Computing efforts promise a “trusted 

environment” with isolated execution for applications, etc. 

  These new side-channel attacks are different from embedded platforms 
•  The PC platform environment is quite different from the embedded security platforms.  

•  Only pure “unprivileged” software-based attacks are really interesting. 

  Timing variances exploited in previous timing attacks are caused by: 
•  Different data-dependent execution paths 
•  Different (number of) instructions executed in those paths 

  Micro-architectural attacks exploit timing and access variations caused 
by the components of the CPU (even if the same sequence instructions 
are always executed) 

Side-Channel Attacks on Computers 



  Micro-Architectural Side-Channel attacks are a special new class of 
attacks that exploit the microarchitectural and throughput-oriented internal 
functionality of modern processor components.   

  Micro-Architectural attacks exploit the execution time / power consumption 
variations caused by CPU components 

  Currently there are 4 types of Micro-Architectural Attacks: 
•  Cache Analysis 
•  Branch Prediction Analysis 
•  Instruction Cache  
•  Shared Functional Units 

  These attacks capitalize on the situations where several applications share 
the same processor resources, and the shared usage between spy and 
crypto process allows a spy process 
•  running in parallel to the victim process 

to extract critical information like secret keys. 

Micro-Architectural Analysis 



  On powerful PC-platforms many applications can run in parallel: 
•  Either quasi-parallel enabled by OS scheduling, or 
•  More or less explicitly parallel depending on the degree of additional 

hardware: 
– Dual Processors, Dual Cores, Simultaneous Multi Threading, … 

  Thus, several applications share the same processor and its resources, 
and also at more or less the same time.  

  Therefore, when a highly critical crypto algorithm is executed, there is the 
potential threat that a malicious or so called spy process is executed in 
parallel with the crypto process which might try to extract critical or secret 
information by “spying” on the crypto process during its execution. 

Micro-Architectural Analysis 
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[Hu 1992] – Covert channels by caches 
[Trostle 1998] – Cache attack against trusted keyboard input 
… 
[Page 2002] – Theoretical cache attacks via power trace 
[Tsunoo Tsujihara Minematsu Miyuachi 2002], 
[Tsunoo Saito Suzaki Shigeri Miyauchi 2003] – Timing attacks via internal cache collisions 
… 
[Bernstein 2004] – Pure timing attack on AES 
[Percival 2005] – Cache attack on RSA 
[Tromer Shamir Osvik 2005/2006] – First work which fully demonstrated an efficient cache 
attack on AES in a real-life setting 
[Neve Seifert 2006] – Improvements of Tromer Shamir Osvik AES cache attack 
[Acıiçmez Koç Schindler 2007] – Remote cache attack on AES 
[Acıiçmez Koç Seifert 2006/2007] – Branch Prediction Attacks 
[Acıiçmez 2007] – Instruction Cache Attack 
[Acıiçmez Schindler 2007] – A recent RSA vulnerability in OpenSSL due to MA 

Related and Previous Work 



  Cache is a small and fast storage area used by the CPU to reduce the 
average time to access main memory.  

  It stores copies of the most frequently used data. 

  When a CPU needs to read a location in main memory, it first checks 
to see if the data is already in the cache.  
•   Cache Hit: data is already in the cache. CPU immediately  

 uses this data in cache. 

•   Cache Miss: data is not in the cache. CPU reads it from the  
 memory and stores a copy in the cache.  

  Cache Line (Block): The minimum amount of data that can be read 
from the main memory into the cache at once.  

–  Each cache miss causes a cache block to be retrieved from  
a higher level memory. 

Basics of Cache Attacks 



  Cache attacks exploit the cache behavior (i.e. cache hit/miss 
statistics) of cryptosystems 

  Cache architecture leaks information about memory access patterns 

  The sources of information leakage: 
•  Execution Time: cache misses take more time to execute than a cache hit 
•  Power Consumption: cache misses require more power than a cache hit 

  Cryptosystems have data dependent memory access patterns. Once 
the access patterns are extracted, an adversary can recover the secret 
key 

Basics of Cache Attacks 



•  An access to “Data Structure 1” may evict adversary’s data and vice versa 

•  An adversary can understand if/when “Data Structure 1” is accessed during 
the encryption 

Basics of Cache Attacks 



Adversary reads the garbage data via the “Spy Process” 

Case 1:  “Data Structure 1” is accessed 

Case 2:  It is not accessed 

Spy process reads the garbage data again. 
•  Case 1: takes more time to read it 
•  Case 2: takes less time to read it 

Basics of Cache Attacks 



  A very new software side-channel enabled by the branch prediction 
capability common to all modern CPUs.  

  The penalty paid (extra clock cycles) for a mispredicted branch can be 
used for cryptanalysis of cryptographic primitives that employ a data-
dependent program flow.  

  BPA allows an unprivileged process to attack other processes running 
in parallel on the same processor 

  Works despite of sophisticated partitioning methods such as memory 
protection, sandboxing or even virtualization 

  Public-key ciphers like RSA and ECC are susceptible to BP attacks  

Branch Prediction Attacks 



  Superscalar processors have to execute instructions speculatively to 
overcome control hazards. 

  Branch prediction units try to predict the most likely execution path 
after a branch.  

  A branch instruction is a point in the instruction stream of a program 
where the next instruction is not necessarily the next sequential one. 

  For conditional branches, the decision to take the branch or not to 
take depends on some condition that must be evaluated in order to 
make the correct decision.  

  During this evaluation period, the processor speculatively executes 
instructions from one of the possible execution paths instead of stalling 
and awaiting for the decision to come through. 

Branch Prediction Attacks 



branch 

branch 

Single misprediction in branch outcome: < 150 cycles 

Branch Prediction Unit 

Branch could stall  
pipeline! 

Branch Prediction Attacks 



  A branch predictor is that part of a processor that determines whether a 
conditional branch in the instruction flow of a program is likely to be taken 
or not.  

•  This is called branch prediction.  
•  Branch predictors are crucial in today's modern, 

superscalar processors for achieving high performance.  
•  They allow processors to fetch and execute instructions 

without waiting for a branch to be resolved. 
•  Almost all pipelined processors do branch prediction of 

some form, because they must guess the address of the 
next instruction to fetch before the current instruction 
has been executed.  

  Branch prediction is not the same as branch target prediction.  

  Branch target prediction attempts to guess the target of the branch or 
unconditional jump before it is computed by parsing the instruction itself. 

Branch Prediction Attacks 



  BPU consists of mainly two “logical” 
parts: the branch target buffer (BTB) 
and the predictor. 
   BTB is the buffer where the CPU 
stores the target addresses of the 
previously executed branches. 
  BTB is limited in size, the CPU can 
store only a number of such target 
addresses, and previously stored 
addresses are evicted from the BTB if a 
new address needs to be stored 
instead. 
 The predictor is that part of the BPU 
that makes the prediction on the 
outcome of the branch


Branch Prediction Attacks 



  A very new group of software side-channel attacks developed by 
Acıiçmez, Seifert, and Koç in 2006 

  They use the branch misprediction delays to break cryptographic 
primitives that employ a data-dependent program flow (e.g. RSA and 
ECC) 

  BPA also allows an unprivileged process to attack other processes 
running in parallel on the same processor even in the presence of 
sophisticated partitioning methods such as memory protection, 
sandboxing or even virtualization 

  Several BP attacks are proposed:  
•  Attack 1 - Exploiting the Predictor directly (Direct Timing Attack) 
•  Attack 2 - Forcing the BPU to the Same Prediction (Asynchronous Attack) 
•  Attack 3 - Forcing the BPU to the Same Prediction (Synchronous Attack) 
•  Attack 4 - Trace-driven Attack against the BTB (a.k.a. Simple Branch 

Prediction Attack) 



Branch Prediction Attacks 



  Relies on the fact that the prediction algorithms are deterministic (i.e. 
predictable) 

  Assume that an adversary attacks an RSA cipher with a private 
exponent d and knows the first i bits of d and is trying to reveal di.  

  Recall Montgomery Multiplication (MM) and the extra reduction step: 

Branch Prediction Attacks 



  For any message m, the adversary can simulate the first i steps of the 
operation and obtain the intermediate result that will be the input of the 
(i +1)th squaring.  

 Then, the attacker creates 4 different sets M1, M2, M3, and M4, where 

 If the difference between timing characteristics, e.g., average 
execution time, of M1 and M2 is more significant than that of M3 and M4, 
then he guesses that di = 1. Otherwise di is guessed to be 0 

Branch Prediction Attacks 



  We assume that the cipher runs on an SMT machine and the 
adversary can run a dummy process simultaneously with the cipher 
process. 

  Adversary can clear the BTB via the operations of the dummy process 
and causes a BTB miss during the execution of the target branch. 

  BPU automatically predicts the branch not to be taken if it misses the 
target address in the BTB. 

  There will be a misprediction whenever the actual outcome of the 
target branch is `taken‘. 

  In Attack-1, adversary has to know details of prediction algorithm. We 
remove this necessity on SMT systems. 

Branch Prediction Attacks 



  If the adversary finds a way to establish a synchronization:  

•  he can determine for (e.g.) the i th step of the exponentiation and can 
clear the BTB just before the i th step 

•  he can introduce misprediction delays at certain points during the 
computation 

  Assume that the RSA implementation employs S&M exponentiation 
and the if statement in S&M exponentiation (c.f. Line 4) is used as the 
target branch. 

Branch Prediction Attacks 



  The adversary runs RSA for a known plaintext and measures the 
execution time.  

  Then he runs it again for the same input but this time he clears the 
single BTB set during the encryption just before the i th execution of the 
conditional branch of Line 4 

  This conditional branch is taken or not taken depending only on the 
value of di.  

 If it turns out to be taken, the second encryption will take longer time 
than the first execution because of the misprediction delay.  

 Therefore, the adversary can easily determine the value of this bit by 
successively analyzing the execution time. 

Branch Prediction Attacks 



  In the previous three attacks, we have considered analyzing the 
execution time of the cipher. In this attack, we will follow a different 
approach : analyzing spy process’ execution time 
  Spy process continuously executes unconditional branches and all of 
these branches map to the same BTB set with the conditional branch 
under attack 
  The adversary starts the spy process before the cipher, so when the 
cipher starts encryption/signing, the CPU cannot find the target address 
of the target branch in BTB and the prediction must be not-taken 
  If the branch turns out to be taken, then a misprediction will occur and 
the target address of the branch needs to be stored in BTB. When the 
spy-process re-executes its branches, it will encounter  mispredictions 
  Adversary can simply determine the complete execution flow of the 
cipher process by continuously performing the same operations 

Branch Prediction Attacks 



  The figure shows us the statistics of the execution time in two different 
cases:  
•  The separation under the correct assumption (Correct S.)  
•  The separation under the wrong assumption (Random S.)  

  There is a clear distinction between these two cases !!!  
  Total Eviction Method: The spy clears the entire BTB 

Branch Prediction Attacks 



  The timing differences under the correct and random separations 

  The results are the measured differences under a random key and a 
sample of plaintext. 

  The x-axis represent the location of the bit under consideration, i.e., i 
where i Є {0, 1, …, 511} 

Branch Prediction Attacks 



gap 

Branch Prediction Attacks 



Implications of Micro-Architectural Attacks 

  Works despite of sophisticated partitioning/protection methods such 
as memory protection, sandboxing, virtualization, etc. 
  Impact: 
•  Multiuser systems 
•  VPNs 
•  Virtual machines 
•  Trusted computing 
•  Sandboxes (JVM, JavaScript) 
•  Remote attacks 
•  … 
  Easy to deploy – pure software 
  Hard to detect 
  Hard to protect efficiently 



Future Directions 

  Current known attacks exploit Data Cache, Branch Prediction Unit, 
Instruction Cache, and Shared Functional Units 
  What are the other sources of Micro-architectural side-channel leakage?   



  We have to develop effective countermeasures against micro-
architectural attacks 

–  Hardware countermeasures for microprocessor architects 
–  Software countermeasures for software developers 

  OpenSSL had gone into several revisions and implemented many 
software countermeasures  

  Yet, new micro-architectural vulnerabilities of OpenSSL are being 
discovered 

  Are software countermeasures sufficient? 
–  Solving the problem in software means solving it one by one 
–  Software solutions are algorithm- and attack-specific 
–  They incur high performance overhead 

Future Directions 



Future Directions


  Hardware countermeasures:  
–  Solving it in hardware may mean solving it for all 
–  They may not be algorithm-specific  
–  They may have much less overhead 

•  Possible branch prediction countermeasures: 
–  Randomizable branch prediction 
–  Partitioned Branch Target Buffers 
–  Locking mechanism for BTB 
–  Protected BTB area 
–  Flushing mechanism for BTB 
–  Dynamically disabling branch predictions 
– … 






Future Directions


  Branch prediction hardware countermeasure examples:


  Randomizable Prediction:  
  Modify the prediction output 

  BPU can output random predictions for 
critical branches  

  Protected Branch Target Buffer:  
  Allow critical code to benefit from using a 
protected buffer 

  The entries in PBTB can be handled in a 
more secure way  



  Investigate interplay between system software and micro-architectural 
attacks 

  What is the actual impact of these attacks on trusted computing? 

  Trusted Computing Group’s approach: 
–  Hardware as the trust anchor 
–  The TPM itself is perhaps not vulnerable to micro-architectural attacks  
–  But the systems built on higher layers are susceptible 
–  These attacks undermines isolation principle 

  Microsoft’s approach: Next Generation Secure Computing Base  
–  To be studied … 

Future Directions 



Future Directions


  So far, we had focused on cryptosystem vulnerabilities. 
What else can be done with these attacks? 
  Can applications snoop into one another’s data?  
  How about virtual machines?  

– Spy process can run in one virtual machine and look into the 
others 

– How can we achieve high degree of isolation between different 
VMs on a shared physical device?  

– Can hypervisors and virtual machine monitors solve the problem 
in software efficiently? For example, they can flush all caches 
before switching between virtual machines at the expense of 
performance degradation.  
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