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Number Sets

o We represent the set of integers as
Z2=4{..,-3-2,-1,0,1,2,3,...}

o We denote the set of positive integers modulo n as
Z,={0,1,...,n—1}

o Elements of Z, can be thought of as equivalency classes

o For n > 2, every integer in a € Z maps into one of the elements
r € Z, using the division law a = g - n + r which is represented as
a=r (mod n)
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Number Sets

o Let Z5 ={0,1,2,3,4}

o Therefore, 0 represents the infinite set of negative and positive
integers: 0= {...,—15,-10,-5,0,5,10,15...}

o Similarly, 1 represents the infinite set of negative and positive
integers: 1 ={...,—14,-9,—-4,1,6,11,16,...}
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Number Sets

o The symbol Z; represents the set of positive integers that are less
than n and relatively prime to n

o If ae Z}, then ged(a,n) =1

o When n = p is prime, the set would be Z7 = {1,2,...,p— 1}

o When n is not a prime, the number of elements that are less than n
and relatively prime to n is given as ¢(n) = | Z}]

Euler's Phi (totient) Function ¢(n) is defined as the number of
numbers in the range [1,n — 1] that are relatively prime to n
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Greatest Common Divisor

o Given two positive integers a and b, their greatest common divisor
(GCD) is denoted as g = gcd(a, b)
o We can compute gcd(a, b) from the prime factorizations of a and b

fi f -
b — pll-p22---p,f:

o Zero exponents are used to make the set of primes p1, po,..., p, the
same for both a and b

o The GCD is computed as
ged(a, b) = p:flnin(elvfl) i pgnin(ez,fz) .. prin(er £)

o However, integer factorization algorithms require exponential time
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GCD and Euclidean Algorithm

@ The most commonly used algorithm for computing the greatest
common divisor of two integers is the Euclidean algorithm

o The Euclidean algorithm is based the property
ged(a, b) = ged(b,a — Q - b)

where Q is the integer division Q = |a/b]
o By applying this reduction rule repeatedly, the Euclidean algorithm
obtains ged(a, b) = ged(g,0) = g
o For example, to compute gecd(56,21), we perform the iterations
ged(56,21) — [56/21] =2 — gcd(21,56 —2-21)
ged(21,14) — [21/14] =1 — gcd(14,21—1-14)
ged(14,7) — [14/7] =2 — gcd(7,14—2-7)
ged(7,0) = 7
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GCD and Euclidean Algorithm

o Given the positive integers a and b with a > b, the Euclidean
algorithm computes the greatest common divisor g in O(k) steps
where k is the number of bits in a

function EA(a, b)
Input: a, b with a > b
Output: g = gcd(a, b)
1: while b#0

2: Q<+ a/b

3: r<—a—Q-»b
4. a< b

5: b« r

6: return a
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GCD and Euclidean Algorithm Example

o Given a =117 and b = 45, the Euclidean Algorithm computes

a b Q r newa newb
117 45 2 27 45 27
45 27 1 18 27 18

1
2

27 18 9 18 9
18 9 0 9 0
9 0

o The EA function returns 9 since gcd(117,45) =9
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Extended Euclidean Algorithm

@ Another important property of the GCD is that, if gcd(a, b) = g, then
there exists integers s and t such that

s-a+t-b=g

o We can compute s and t using the extended Euclidean algorithm by
working back through the remainders in the Euclidean algorithm

o For example, to find gcd(833,301) = 7, we write

833 -2-301 = 231

301 -1-231 70
231-3-70 = 21
70-3-21 =7
21-3-7 =
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Extended Euclidean Algorithm

o Since g = 7, we start with the 4th equation and plug in the remainder
value from the previous equation to this equation, and then move up
70-3-(231-3-70) =
10-70—-3-231
10-(301 —1-231)—-3-231 =
10-301 —-13-231 =
10-301 —13-(833—-2-301) =
—13-833+36-301

~N N NN NN

@ Therefore, we find s = —13 and t = 36
o Thisimpliesg=s-a+t-b=7=(—13)-833+36-301
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Computation of Multiplicative Inverse

o The EEA allows us to compute the multiplicative inverse of an integer
a modulo another integer n, if gcd(a, n) =1

o The EEA obtains the identity g = s - a+ t - b which implies

s-a+t-n =1
s-a = 1 (mod n)
al = s (modn)

For example, gcd(23,25) = 1, and the extended Euclidean algorithm
returns s = 12 and t = 11, such that

1=12.23-11-25

therefore 2371 = 12 (mod 25)
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Fermat's Little Theorem

Theorem: If p is prime and gcd(a, p) = 1, then a?~t =1 (mod p)

For example, p =7 and a = 2, we have a7 =2% =64 =1 (mod 7)

@ FLT can be used to compute the multiplicative inverse if the modulus
is a prime number
al=a"2 (mod p)

lla=aP2.a=aP1=1modp

The converse of the FLT is not true: If "' =1 (mod n) and
gecd(a, n) = 1, then n may or may not be a prime.

Example: gcd(2,341) =1 and 2340 = 1 (mod 341), but 341 is not
prime: 341 =11-31

since a~
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Euler's Phi Function

Euler's Phi (totient) Function ¢(n) is defined as the number of

numbers in the range [1, n — 1] that are relatively prime to n

Let n =7, then ¢(7) = 6 since for all a € [1, 6], we have gcd(a,7) =1
If pis a prime, ¢p(p) =p—1

For a positive power of prime, we have d)(pk) = pk — pk-1

If n and m are relatively prime, then ¢(n- m) = ¢(n) - ¢(m)

If all prime factors of n is known, then ¢(n) is easily computed:

1
=TI
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Euler's Theorem

o Theorem: If gcd(a, n) =1, then a®(") =1 (mod n)
o Example: n =15 and a = 2, we have 2¢(15) = 28 — 256 = 1 mod 15

o Euler's theorem can be used to compute the multiplicative inverse for
any modulus:
at=a%M"1 (mod n)

however, this requires the computation of the ¢(n) and therefore the
factorization of n

o To compute 2371 mod 25, we need ¢(25) = ¢(5°) = 5% — 5! = 20,
and therefore,

2371 =2320"1 — 2319 — 12 (mod 25)
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Representing Numbers mod n

o The elements of Z,, can be represented in two distinct ways:
the Least Positive (LP) representation
the Least Magnitude (LM) representation

o The Least Positive representation uses
Z,=40,1,2,...,n—1}

o Example: the least positive representation mod 10
Zlo = {Oa 1’ 27 37 47 57 67 77 87 9}

o Example: the least positive representation mod 11
211 ={0,1,2,3,4,5,6,7,8,9,10}
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Representing Numbers mod n

o The Least Magnitude representation for n is odd
Z,={-(n-1)/2,...,-2,-1,0,1,2,...,(n—1)/2}
Example: the least magnitude representation mod 11
le = {_5’ _4a _37 _27 _17 07 1a 2a 37 47 5}

o The Least Magnitude representation for n is even
Either: 2, ={-n/2+1,...,-2,-1,0,1,2,...,n/2}
Or: Z2,={-n/2,...,-2,-1,0,1,2,...,n/2 — 1}

Example: the least magnitude representation mod 10
Either: 219 = {—4,-3,-2,-1,0,1,2,3,4,5}
Or: Zy9={-5,-4,-3,-2,-1,0,1,2,3,4}

The LM property: ais LM mod n if |a] < |n— 4
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Modular Arithmetic Operations

o Given a positive odd n, how does one compute modular additions,
subtractions, multiplications, and exponentiations?

@ s=a+ b (mod n) is computed in two steps: 1) add, 2) reduce

o If a, b < n to start with, then the reduction step requires a subtraction

if s>n, then s=s—n

@ s=a— b (mod n) is computed similarly: 1) subtract, 2) reduce

o The least positive representation is often preferred

o The least positive representation uses unsigned arithmetic

o Negative numbers are brought to the range [0, n — 1]
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Modular Multiplication

@ Modular Multiplication a- b (mod n) can be computed in two steps:

o Multiplication step: c <—a- b
o Reduction step: r < ¢ mod n

The reduction step may require division by n to obtain the remainder
a-b=c=Q -n+r

However, we do not need the quotient!

o The division by n is an expensive operation

@ The Montgomery Multiplication: A new algorithm for performing
modular multiplication that does not require division by n
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Modular Exponentiation

o The computation of b = a® (mod n): Perform the steps of the
exponentiation a®, reducing numbers at each step mod n

o Reduction is required, otherwise a¢ doubles in size at each size

o Exponentiation algorithms: binary method, m-ary methods, sliding
windows, power tree method, factor method

@ The binary method is the most commonly used algorithm

o The binary method uses the binary expansion of the exponent

e = (ex—16x—2 - €e1€p), and performs squaring and multiplication
operations at each step
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Modular Exponentiation with Binary Method

o Given the inputs a, n, and e = (ex_1€x—2 - - - €1€p)2, the binary
method computes b = a® (mod n) as follows

1. ife_y=1then b+ aelse b+ 1
2. for =k —2 downto 0

2a: b+« b-b (mod n)

2b: if e, =1then b+ b-a (mod n)
3:  return b

0 e=(110111) =55
o k=6

i— 4 3 2 1 0
e — 1 0

Step 2a | a?
Step 2b | a3

Oe=1=b+a
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