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7.4.2 DES algorithm

DES is a Feistel cipher which processes plaintext blocks of n = 64 bits, producing 64-bit
ciphertext blocks (Figure 7.8). The effective size of the secret keyK is k = 56 bits; more
precisely, the input key K is specified as a 64-bit key, 8 bits of which (bits 8, 16, . . . , 64)
may be used as parity bits. The 256 keys implement (at most) 256 of the 264! possible bijec-
tions on 64-bit blocks. A widely held belief is that the parity bits were introduced to reduce
the effective key size from 64 to 56 bits, to intentionally reduce the cost of exhaustive key
search by a factor of 256.

64 64
P CC

56
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keyK

ciphertext C

plaintext P
56
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PDES DES−1

Figure 7.8: DES input-output.

Full details of DES are given in Algorithm 7.82 and Figures 7.9 and 7.10. An overview
follows. Encryption proceeds in 16 stages or rounds. From the input keyK, sixteen 48-bit
subkeysKi are generated, one for each round. Within each round, 8 fixed, carefully selected
6-to-4 bit substitution mappings (S-boxes) Si, collectively denoted S, are used. The 64-bit
plaintext is divided into 32-bit halves L0 and R0. Each round is functionally equivalent,
taking 32-bit inputs Li−1 and Ri−1 from the previous round and producing 32-bit outputs
Li and Ri for 1 ≤ i ≤ 16, as follows:

Li = Ri−1; (7.4)

Ri = Li−1 ⊕ f(Ri−1, Ki), where f(Ri−1, Ki) = P (S(E(Ri−1)⊕Ki))(7.5)

HereE is a fixed expansion permutation mappingRi−1 from 32 to 48 bits (all bits are used
once; some are used twice). P is another fixed permutation on 32 bits. An initial bit per-
mutation (IP) precedes the first round; following the last round, the left and right halves are
exchanged and, finally, the resulting string is bit-permuted by the inverse of IP. Decryption
involves the same key and algorithm, but with subkeys applied to the internal rounds in the
reverse order (Note 7.84).

A simplified view is that the right half of each round (after expanding the 32-bit input
to 8 characters of 6 bits each) carries out a key-dependent substitution on each of 8 charac-
ters, then uses a fixed bit transposition to redistribute the bits of the resulting characters to
produce 32 output bits.

Algorithm 7.83 specifies how to compute the DES round keysKi, each of which con-
tains 48 bits of K. These operations make use of tables PC1 and PC2 of Table 7.4, which
are called permuted choice 1 and permuted choice 2. To begin, 8 bits (k8, k16, . . . , k64) of
K are discarded (by PC1). The remaining 56 bits are permuted and assigned to two 28-bit
variables C and D; and then for 16 iterations, both C and D are rotated either 1 or 2 bits,
and 48 bits (Ki) are selected from the concatenated result.
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7.82 Algorithm Data Encryption Standard (DES)

INPUT: plaintextm1 . . .m64; 64-bit keyK = k1 . . . k64 (includes 8 parity bits).
OUTPUT: 64-bit ciphertext block C = c1 . . . c64. (For decryption, see Note 7.84.)

1. (key schedule) Compute sixteen 48-bit round keysKi fromK using Algorithm 7.83.
2. (L0, R0) ← IP(m1m2 . . .m64). (Use IP from Table 7.2 to permute bits; split the

result into left and right 32-bit halvesL0 = m58m50 . . .m8,R0 = m57m49 . . .m7.)
3. (16 rounds) for i from 1 to 16, compute Li and Ri using Equations (7.4) and (7.5)

above, computing f(Ri−1, Ki) = P (S(E(Ri−1)⊕Ki)) as follows:

(a) ExpandRi−1 = r1r2 . . . r32 from 32 to 48 bits using E per Table 7.3:
T ← E(Ri−1). (Thus T = r32r1r2 . . . r32r1.)

(b) T ′ ← T⊕Ki. Represent T ′ as eight 6-bit character strings: (B1, . . . , B8) =
T ′.

(c) T ′′ ← (S1(B1), S2(B2), . . . S8(B8)). (Here Si(Bi) maps Bi = b1b2 . . . b6
to the 4-bit entry in row r and column c of Si in Table 7.8, page 260 where
r = 2 · b1+ b6, and b2b3b4b5 is the radix-2 representation of 0 ≤ c ≤ 15. Thus
S1(011011) yields r = 1, c = 13, and output 5, i.e., binary 0101.)

(d) T ′′′ ← P (T ′′). (UseP per Table 7.3 to permute the 32 bits ofT ′′ = t1t2 . . . t32,
yielding t16t7 . . . t25.)

4. b1b2 . . . b64 ← (R16, L16). (Exchange final blocks L16, R16.)

5. C ← IP−1(b1b2 . . . b64). (Transpose using IP−1 from Table 7.2;C = b40b8 . . . b25.)

IP
58 50 42 34 26 18 10 2
60 52 44 36 28 20 12 4
62 54 46 38 30 22 14 6
64 56 48 40 32 24 16 8
57 49 41 33 25 17 9 1
59 51 43 35 27 19 11 3
61 53 45 37 29 21 13 5
63 55 47 39 31 23 15 7

IP−1

40 8 48 16 56 24 64 32
39 7 47 15 55 23 63 31
38 6 46 14 54 22 62 30
37 5 45 13 53 21 61 29
36 4 44 12 52 20 60 28
35 3 43 11 51 19 59 27
34 2 42 10 50 18 58 26
33 1 41 9 49 17 57 25

Table 7.2: DES initial permutation and inverse (IP and IP−1).

E

32 1 2 3 4 5
4 5 6 7 8 9
8 9 10 11 12 13

12 13 14 15 16 17
16 17 18 19 20 21
20 21 22 23 24 25
24 25 26 27 28 29
28 29 30 31 32 1

P

16 7 20 21
29 12 28 17

1 15 23 26
5 18 31 10
2 8 24 14

32 27 3 9
19 13 30 6
22 11 4 25

Table 7.3: DES per-round functions: expansion E and permutation P .
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Figure 7.9: DES computation path.
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Figure 7.10: DES inner function f .

7.83 Algorithm DES key schedule

INPUT: 64-bit keyK = k1 . . . k64 (including 8 odd-parity bits).
OUTPUT: sixteen 48-bit keysKi, 1 ≤ i ≤ 16.

1. Define vi, 1 ≤ i ≤ 16 as follows: vi = 1 for i ∈ {1, 2, 9, 16}; vi = 2 otherwise.
(These are left-shift values for 28-bit circular rotations below.)

2. T ← PC1(K); represent T as 28-bit halves (C0, D0). (Use PC1 in Table 7.4 to select
bits fromK: C0 = k57k49 . . . k36,D0 = k63k55 . . . k4.)

3. For i from 1 to 16, computeKi as follows: Ci ← (Ci−1 ←↩ vi), Di ← (Di−1 ←↩
vi),Ki ← PC2(Ci, Di). (Use PC2 in Table 7.4 to select 48 bits from the concatena-
tion b1b2 . . . b56 of Ci andDi: Ki = b14b17 . . . b32. ‘←↩’ denotes left circular shift.)

If decryption is designed as a simple variation of the encryption function, savings result
in hardware or software code size. DES achieves this as outlined in Note 7.84.

7.84 Note (DES decryption) DES decryption consists of the encryption algorithm with the same
key but reversed key schedule, using in order K16,K15, . . . ,K1 (see Note 7.85). This
works as follows (refer to Figure 7.9). The effect of IP−1 is cancelled by IP in decryp-
tion, leaving (R16, L16); consider applying round 1 to this input. The operation on the left
half yields, rather than L0⊕f(R0,K1), now R16⊕f(L16,K16) which, since L16 = R15
and R16 = L15⊕f(R15,K16), is equal to L15⊕f(R15,K16)⊕f(R15,K16) = L15. Thus
round 1 decryption yields (R15, L15), i.e., inverting round 16. Note that the cancellation
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PC1
57 49 41 33 25 17 9

1 58 50 42 34 26 18
10 2 59 51 43 35 27
19 11 3 60 52 44 36

above for Ci; below forDi
63 55 47 39 31 23 15

7 62 54 46 38 30 22
14 6 61 53 45 37 29
21 13 5 28 20 12 4

PC2
14 17 11 24 1 5
3 28 15 6 21 10

23 19 12 4 26 8
16 7 27 20 13 2
41 52 31 37 47 55
30 40 51 45 33 48
44 49 39 56 34 53
46 42 50 36 29 32

Table 7.4: DES key schedule bit selections (PC1 and PC2).

of each round is independent of the definition of f and the specific value ofKi; the swap-
ping of halves combined with the XOR process is inverted by the second application. The
remaining 15 rounds are likewise cancelled one by one in reverse order of application, due
to the reversed key schedule.

7.85 Note (DES decryption key schedule) Subkeys K1, . . . ,K16 may be generated by Algo-
rithm 7.83 and used in reverse order, or generated in reverse order directly as follows. Note
that afterK16 is generated, the original values of the 28-bit registers C andD are restored
(each has rotated 28 bits). Consequently, and due to the choice of shift-values, modifying
Algorithm 7.83 as follows generates subkeys in orderK16, . . . ,K1: replace the left-shifts
by right-shift rotates; change the shift value v1 to 0.

7.86 Example (DES test vectors) The plaintext “Now is the time for all ”, represented as a
string of 8-bit hex characters (7-bit ASCII characters plus leading 0-bit), and encrypted us-
ing the DES key specified by the hex string K = 0123456789ABCDEF results in the
following plaintext/ciphertext:
P = 4E6F772069732074 68652074696D6520 666F7220616C6C20

C = 3FA40E8A984D4815 6A271787AB8883F9 893D51EC4B563B53. �

7.4.3 DES properties and strength

There are many desirable characteristics for block ciphers. These include: each bit of the
ciphertext should depend on all bits of the key and all bits of the plaintext; there should be no
statistical relationship evident between plaintext and ciphertext; altering any single plain-
text or key bit should alter each ciphertext bit with probability 12 ; and altering a ciphertext
bit should result in an unpredictable change to the recovered plaintext block. Empirically,
DES satisfies these basic objectives. Some known properties and anomalies of DES are
given below.

(i) Complementation property

7.87 Fact Let E denote DES, and x the bitwise complement of x. Then y = EK(x) implies
y = EK(x). That is, bitwise complementing both the keyK and the plaintext x results in
complemented DES ciphertext.

Justification: Compare the first round output (see Figure 7.10) to (L0, R0) for the uncom-
plemented case. The combined effect of the plaintext and key being complemented results
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in the inputs to the XOR preceding the S-boxes (the expanded Ri−1 and subkeyKi) both
being complemented; this double complementation cancels out in the XOR operation, re-
sulting in S-box inputs, and thus an overall result f(R0,K1), as before. This quantity is
then XORed (Figure 7.9) to L0 (previouslyL0), resulting in L1 (rather than L1). The same
effect follows in the remaining rounds.

The complementation property is normally of no help to a cryptanalyst in known-plain-
text exhaustive key search. If an adversary has, for a fixed unknown key K, a chosen-
plaintext set of (x, y) data (P1, C1), (P1, C2), then C2 = EK(P1) implies C2 = EK(P1).
Checking if the key K with plaintext P1 yields either C1 or C2 now rules out two keys
with one encryption operation, thus reducing the expected number of keys required before
success from 255 to 254. This is not a practical concern.

(ii) Weak keys, semi-weak keys, and fixed points

If subkeys K1 to K16 are equal, then the reversed and original schedules create identical
subkeys: K1 = K16, K2 = K15, and so on. Consequently, the encryption and decryption
functions coincide. These are called weak keys (and also: palindromic keys).

7.88 Definition A DES weak key is a keyK such thatEK(EK(x)) = x for all x, i.e., defining
an involution. A pair of DES semi-weak keys is a pair (K1,K2) with EK1(EK2(x)) = x.

Encryption with one key of a semi-weak pair operates as does decryption with the other.

7.89 Fact DES has four weak keys and six pairs of semi-weak keys.

The four DES weak keys are listed in Table 7.5, along with corresponding 28-bit vari-
ables C0 and D0 of Algorithm 7.83; here {0}j represents j repetitions of bit 0. Since C0
andD0 are all-zero or all-one bit vectors, and rotation of these has no effect, it follows that
all subkeysKi are equal and an involution results as noted above.

The six pairs of DES semi-weak keys are listed in Table 7.6. Note their defining prop-
erty (Definition 7.88) occurs when subkeysK1 throughK16 of the first key, respectively,
equal subkeysK16 throughK1 of the second. This requires that a 1-bit circular left-shift of
each of C0 andD0 for the first 56-bit key results in the (C0, D0) pair for the second 56-bit
key (see Note 7.84), and thereafter left-rotating Ci and Di one or two bits for the first re-
sults in the same value as right-rotating those for the second the same number of positions.
The values in Table 7.6 satisfy these conditions. Given any one 64-bit semi-weak key, its
paired semi-weak key may be obtained by splitting it into two halves and rotating each half
through 8 bits.

7.90 Fact LetE denote DES. For each of the four DES weak keysK, there exist 232 fixed points
ofEK , i.e., plaintextsx such thatEK(x) = x. Similarly, four of the twelve semi-weak keys
K each have 232 anti-fixed points, i.e., x such that EK(x) = x.

The four semi-weak keys of Fact 7.90 are in the upper portion of Table 7.6. These are
called anti-palindromic keys, since for theseK1 = K16,K2 = K15, and so on.

(iii) DES is not a group

For a fixed DES key K, DES defines a permutation from {0, 1}64 to {0, 1}64. The set of
DES keys defines 256 such (potentially different) permutations. If this set of permutations
was closed under composition (i.e., given any two keysK1,K2, there exists a third keyK3
such thatEK3(x) = EK2(EK1(x)) for all x) then multiple encryption would be equivalent
to single encryption. Fact 7.91 states that this is not the case for DES.

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.



258 Ch. 7 Block Ciphers

weak key (hexadecimal) C0 D0

0101 0101 0101 0101 {0}28 {0}28

FEFE FEFE FEFE FEFE {1}28 {1}28

1F1F 1F1F 0E0E 0E0E {0}28 {1}28

E0E0 E0E0 F1F1 F1F1 {1}28 {0}28

Table 7.5: Four DES weak keys.

C0 D0 semi-weak key pair (hexadecimal) C0 D0

{01}14 {01}14 01FE 01FE 01FE 01FE, FE01 FE01 FE01 FE01 {10}14 {10}14

{01}14 {10}14 1FE0 1FE0 0EF1 0EF1, E01F E01F F10E F10E {10}14 {01}14

{01}14 {0}28 01E0 01E0 01F1 01F1, E001 E001 F101 F101 {10}14 {0}28

{01}14 {1}28 1FFE 1FFE 0EFE 0EFE, FE1F FE1F FE0E FE0E {10}14 {1}28

{0}28 {01}14 011F 011F 010E 010E, 1F01 1F01 0E01 0E01 {0}28 {10}14

{1}28 {01}14 E0FE E0FE F1FE F1FE, FEE0 FEE0 FEF1 FEF1 {1}28 {10}14

Table 7.6: Six pairs of DES semi-weak keys (one pair per line).

7.91 Fact The set of 256 permutations defined by the 256 DES keys is not closed under func-
tional composition. Moreover, a lower bound on the size of the group generated by com-
posing this set of permutations is 102499.

The lower bound in Fact 7.91 is important with respect to using DES for multiple en-
cryption. If the group generated by functional composition was too small, then multiple
encryption would be less secure than otherwise believed.

(iv) Linear and differential cryptanalysis of DES

Assuming that obtaining enormous numbers of known-plaintext pairs is feasible, linear
cryptanalysis provides the most powerful attack on DES to date; it is not, however, con-
sidered a threat to DES in practical environments. Linear cryptanalysis is also possible in a
ciphertext-only environment if some underlying plaintext redundancy is known (e.g., parity
bits or high-order 0-bits in ASCII characters).

Differential cryptanalysis is one of the most general cryptanalytic tools to date against
modern iterated block ciphers, including DES, Lucifer, and FEAL among many others. It is,
however, primarily a chosen-plaintext attack. Further information on linear and differential
cryptanalysis is given in §7.8.

7.92 Note (strength of DES) The complexity (see §7.2.1) of the best attacks currently known
against DES is given in Table 7.7; percentages indicate success rate for specified attack pa-
rameters. The ‘processing complexity’ column provides only an estimate of the expected
cost (operation costs differ across the various attacks); for exhaustive search, the cost is in
DES operations. Regarding storage complexity, both linear and differential cryptanalysis
require only negligible storage in the sense that known or chosen texts can be processed
individually and discarded, but in a practical attack, storage for accumulated texts would
be required if ciphertext was acquired prior to commencing the attack.
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attack method data complexity storage processing

known chosen complexity complexity

exhaustive precomputation — 1 256 1 (table lookup)

exhaustive search 1 — negligible 255

linear cryptanalysis 243 (85%) — for texts 243

238 (10%) — for texts 250

differential cryptanalysis — 247 for texts 247

255 — for texts 255

Table 7.7: DES strength against various attacks.

7.93 Remark (practicality of attack models) To be meaningful, attack comparisons based on
different models (e.g., Table 7.7) must appropriately weigh the feasibility of extracting (ac-
quiring) enormous amounts of chosen (known) plaintexts, which is considerably more dif-
ficult to arrange than a comparable number of computing cycles on an adversary’s own ma-
chine. Exhaustive search with one known plaintext-ciphertext pair (for ciphertext-only, see
Example 7.28) and 255 DES operations is significantly more feasible in practice (e.g., using
highly parallelized custom hardware) than linear cryptanalysis (LC) requiring 243 known
pairs.

While exhaustive search, linear, and differential cryptanalysis allow recovery of a DES
key and, therefore, the entire plaintext, the attacks of Note 7.8, which become feasible once
about 232 ciphertexts are available, may be more efficient if the goal is to recover only part
of the text.

7.5 FEAL

The Fast Data Encipherment Algorithm (FEAL) is a family of algorithms which has played
a critical role in the development and refinement of various advanced cryptanalytic tech-
niques, including linear and differential cryptanalysis. FEAL-N maps 64-bit plaintext to
64-bit ciphertext blocks under a 64-bit secret key. It is anN -round Feistel cipher similar to
DES (cf. Equations (7.4), (7.5)), but with a far simpler f -function, and augmented by initial
and final stages which XOR the two data halves as well as XOR subkeys directly onto the
data halves.

FEAL was designed for speed and simplicity, especially for software on 8-bit micro-
processors (e.g., chipcards). It uses byte-oriented operations (8-bit addition mod 256, 2-bit
left rotation, and XOR), avoids bit-permutations and table look-ups, and offers small code
size. The initial commercially proposed version with 4 rounds (FEAL-4), positioned as a
fast alternative to DES, was found to be considerably less secure than expected (see Ta-
ble 7.10). FEAL-8 was similarly found to offer less security than planned. FEAL-16 or
FEAL-32 may yet offer security comparable to DES, but throughput decreases as the num-
ber of rounds rises. Moreover, whereas the speed of DES implementations can be improved
through very large lookup tables, this appears more difficult for FEAL.

Algorithm 7.94 specifies FEAL-8. The f -function f(A, Y )maps an input pair of 32×
16 bits to a 32-bit output. Within the f function, two byte-oriented data substitutions (S-
boxes) S0 and S1 are each used twice; each maps a pair of 8-bit inputs to an 8-bit output
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row column number
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15]

S1
[0] 14 4 13 1 2 15 11 8 3 10 6 12 5 9 0 7
[1] 0 15 7 4 14 2 13 1 10 6 12 11 9 5 3 8
[2] 4 1 14 8 13 6 2 11 15 12 9 7 3 10 5 0
[3] 15 12 8 2 4 9 1 7 5 11 3 14 10 0 6 13

S2
[0] 15 1 8 14 6 11 3 4 9 7 2 13 12 0 5 10
[1] 3 13 4 7 15 2 8 14 12 0 1 10 6 9 11 5
[2] 0 14 7 11 10 4 13 1 5 8 12 6 9 3 2 15
[3] 13 8 10 1 3 15 4 2 11 6 7 12 0 5 14 9

S3
[0] 10 0 9 14 6 3 15 5 1 13 12 7 11 4 2 8
[1] 13 7 0 9 3 4 6 10 2 8 5 14 12 11 15 1
[2] 13 6 4 9 8 15 3 0 11 1 2 12 5 10 14 7
[3] 1 10 13 0 6 9 8 7 4 15 14 3 11 5 2 12

S4
[0] 7 13 14 3 0 6 9 10 1 2 8 5 11 12 4 15
[1] 13 8 11 5 6 15 0 3 4 7 2 12 1 10 14 9
[2] 10 6 9 0 12 11 7 13 15 1 3 14 5 2 8 4
[3] 3 15 0 6 10 1 13 8 9 4 5 11 12 7 2 14

S5
[0] 2 12 4 1 7 10 11 6 8 5 3 15 13 0 14 9
[1] 14 11 2 12 4 7 13 1 5 0 15 10 3 9 8 6
[2] 4 2 1 11 10 13 7 8 15 9 12 5 6 3 0 14
[3] 11 8 12 7 1 14 2 13 6 15 0 9 10 4 5 3

S6
[0] 12 1 10 15 9 2 6 8 0 13 3 4 14 7 5 11
[1] 10 15 4 2 7 12 9 5 6 1 13 14 0 11 3 8
[2] 9 14 15 5 2 8 12 3 7 0 4 10 1 13 11 6
[3] 4 3 2 12 9 5 15 10 11 14 1 7 6 0 8 13

S7
[0] 4 11 2 14 15 0 8 13 3 12 9 7 5 10 6 1
[1] 13 0 11 7 4 9 1 10 14 3 5 12 2 15 8 6
[2] 1 4 11 13 12 3 7 14 10 15 6 8 0 5 9 2
[3] 6 11 13 8 1 4 10 7 9 5 0 15 14 2 3 12

S8
[0] 13 2 8 4 6 15 11 1 10 9 3 14 5 0 12 7
[1] 1 15 13 8 10 3 7 4 12 5 6 11 0 14 9 2
[2] 7 11 4 1 9 12 14 2 0 6 10 13 15 3 5 8
[3] 2 1 14 7 4 10 8 13 15 12 9 0 3 5 6 11

Table 7.8: DES S-boxes.
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(see Table 7.9). S0 and S1 add a single bit d ∈ {0, 1} to 8-bit arguments x and y, ignore
the carry out of the top bit, and left rotate the result 2 bits (ROT2):

Sd(x, y) = ROT2(x+ y + d mod 256) (7.6)

The key schedule uses a function fK(A,B) similar to the f -function (see Table 7.9; Ai,
Bi, Yi, ti, and Ui are 8-bit variables), mapping two 32-bit inputs to a 32-bit output.

U ← f(A,Y ) U ← fK(A,B)

t1 = (A0⊕A1)⊕Y0 A0⊕A1
t2 = (A2⊕A3)⊕Y1 A2⊕A3
U1 = S1(t1, t2) S1(t1, t2⊕B0)
U2 = S0(t2, U1) S0(t2, U1⊕B1)
U0 = S0(A0, U1) S0(A0, U1⊕B2)
U3 = S1(A3, U2) S1(A3, U2⊕B3)

Table 7.9: Output U = (U0, U1, U2, U3) for FEAL functions f , fK (Algorithm 7.94).

As the operations of 2-bit rotation and XOR are both linear, the only nonlinear elemen-
tary operation in FEAL is addition mod 256.

7.94 Algorithm Fast Data Encipherment Algorithm (FEAL-8)

INPUT: 64-bit plaintextM = m1 . . .m64; 64-bit keyK = k1 . . . k64.
OUTPUT: 64-bit ciphertext block C = c1 . . . c64. (For decryption, see Note 7.96.)

1. (key schedule) Compute sixteen 16-bit subkeysKi fromK using Algorithm 7.95.
2. DefineML = m1 · · ·m32,MR = m33 · · ·m64.
3. (L0, R0)← (ML,MR) ⊕ ((K8,K9), (K10,K11)). (XOR initial subkeys.)
4. R0 ← R0⊕L0.
5. For i from 1 to 8 do: Li ← Ri−1, Ri ← Li−1⊕f(Ri−1,Ki−1). (Use Table 7.9 for
f(A, Y ) with A = Ri−1 = (A0, A1, A2, A3) and Y = Ki−1 = (Y0, Y1).)

6. L8 ← L8⊕R8.
7. (R8, L8)← (R8, L8) ⊕ ((K12,K13), (K14,K15)). (XOR final subkeys.)
8. C ← (R8, L8). (Note the order of the final blocks is exchanged.)

7.95 Algorithm FEAL-8 key schedule

INPUT: 64-bit keyK = k1 . . . k64.
OUTPUT: 256-bit extended key (16-bit subkeysKi, 0 ≤ i ≤ 15).

1. (initialize) U (−2) ← 0, U (−1) ← k1 . . . k32, U (0) ← k33 . . . k64.

2. U
def
= (U0, U1, U2, U3) for 8-bit Ui. ComputeK0, . . . ,K15 as i runs from 1 to 8:

(a) U ← fK(U (i−2), U (i−1)⊕U (i−3)). (fK is defined in Table 7.9, where A and
B denote 4-byte vectors (A0, A1, A2, A3), (B0, B1, B2, B3).)

(b) K2i−2 = (U0, U1), K2i−1 = (U2, U3), U (i) ← U .

7.96 Note (FEAL decryption) Decryption may be achieved using Algorithm 7.94 with the same
key K and ciphertext C = (R8, L8) as the plaintext inputM , but with the key schedule
reversed. More specifically, subkeys ((K12,K13), (K14,K15)) are used for the initial XOR
(step 3), ((K8,K9), (K10,K11)) for the final XOR (step 7), and the round keys are used
fromK7 back toK0 (step 5). This is directly analogous to decryption for DES (Note 7.84).
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7.97 Note (FEAL-N) FEAL with 64-bit key can be generalized toN -rounds,N even. N = 2x

is recommended; x = 3 yields FEAL-8 (Algorithm 7.94). FEAL-N usesN +8 sixteen-bit
subkeys: K0, . . . ,KN−1, respectively, in round i; KN , . . . ,KN+3 for the initial XOR;
and KN+4, . . .KN+7 for the final XOR. The key schedule of Algorithm 7.95 is directly
generalized to compute keysK0 throughKN+7 as i runs from 1 to (N/2) + 4.

7.98 Note (FEAL-NX) Extending FEAL-N to use a 128-bit key results in FEAL-NX, with al-
tered key schedule as follows. The key is split into 64-bit halves (KL,KR). KR is parti-
tioned into 32-bit halves (KR1,KR2). For 1 ≤ i ≤ (N/2) + 4, define Qi = KR1⊕KR2
for i ≡ 1 mod 3; Qi = KR1 for i ≡ 2 mod 3; and Qi = KR2 for i ≡ 0 mod 3.
The second argument (U (i−1)⊕U (i−3)) to fK in step 2a of Algorithm 7.95 is replaced by
U (i−1)⊕U (i−3)⊕Qi. For KR = 0, FEAL-NX matches FEAL-N with KL as the 64-bit
FEAL-N keyK.

7.99 Example (FEAL test vectors) For hex plaintextM = 00000000 00000000 and hex
key K = 01234567 89ABCDEF, Algorithm 7.95 generates subkeys (K0, . . . ,K7) =
DF3BCA36 F17C1AEC 45A5B9C7 26EBAD25, (K8, . . . ,K15) = 8B2AECB7
AC509D4C 22CD479B A8D50CB5. Algorithm 7.94 generates FEAL-8 ciphertext C =
CEEF2C86 F2490752. For FEAL-16, the corresponding ciphertext is C′ = 3ADE0D2A
D84D0B6F; for FEAL-32, C′′ = 69B0FAE6 DDED6B0B. For 128-bit key (KL,KR)
with KL = KR = K as above, M has corresponding FEAL-8X ciphertext C′′′ =
92BEB65D 0E9382FB. �

7.100 Note (strength of FEAL) Table 7.10 gives various published attacks on FEAL; LC and DC
denote linear and differential cryptanalysis, and times are on common personal computers
or workstations.

attack data complexity storage processing

method known chosen complexity complexity

FEAL-4 – LC 5 — 30K bytes 6 minutes

FEAL-6 – LC 100 — 100K bytes 40 minutes

FEAL-8 – LC 224 10 minutes

FEAL-8 – DC 27 pairs 280K bytes 2 minutes

FEAL-16 – DC — 229 pairs 230 operations

FEAL-24 – DC — 245 pairs 246 operations

FEAL-32 – DC — 266 pairs 267 operations

Table 7.10: FEAL strength against various attacks.
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7.6 IDEA

The cipher named IDEA (International Data Encryption Algorithm) encrypts 64-bit plain-
text to 64-bit ciphertext blocks, using a 128-bit input key K. Based in part on a novel
generalization of the Feistel structure, it consists of 8 computationally identical rounds fol-
lowed by an output transformation (see Figure 7.11). Round r uses six 16-bit subkeysK(r)i ,
1 ≤ i ≤ 6, to transform a 64-bit inputX into an output of four 16-bit blocks, which are in-
put to the next round. The round 8 output enters the output transformation, employing four
additional subkeys K(9)i , 1 ≤ i ≤ 4 to produce the final ciphertext Y = (Y1, Y2, Y3, Y4).
All subkeys are derived fromK.

A dominant design concept in IDEA is mixing operations from three different alge-
braic groups of 2n elements. The corresponding group operations on sub-blocks a and b of
bitlength n = 16 are bitwise XOR: a⊕b; addition mod 2n: (a+b)AND 0xFFFF, denoted
a�b; and (modified) multiplication mod 2n+1, with 0 ∈ Z2n associated with 2n ∈ Z2n+1:
a�b (see Note 7.104).

bitwise XOR

addition mod 216

multiplication mod 216 + 1 (with 0 interpreted as 216)

16

K
(1)
5

X1 X2

K
(1)
3K

(1)
2

round 1

output
transformation

16 16 16

K
(1)
4

16 16 16

Y1 Y2 Y3 Y4

16

X3 X4

K
(9)
2 K

(9)
3 K

(9)
4

(2 ≤ r ≤ 8)
round r

K
(1)
6

MA-box t2

t0

t1

16161616
K
(1)
1

K
(9)
1

ciphertext (Y1, Y2, Y3, Y4)

subkeysK(r)i for round r

plaintext (X1, X2, X3, X4)

Figure 7.11: IDEA computation path.
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7.101 Algorithm IDEA encryption

INPUT: 64-bit plaintextM = m1 . . .m64; 128-bit keyK = k1 . . . k128.
OUTPUT: 64-bit ciphertext block Y = (Y1, Y2, Y3, Y4). (For decryption, see Note 7.103.)

1. (key schedule) Compute 16-bit subkeysK(r)1 , . . . ,K
(r)
6 for rounds 1 ≤ r ≤ 8, and

K
(9)
1 , . . . ,K

(9)
4 for the output transformation, using Algorithm 7.102.

2. (X1, X2, X3, X4)← (m1 . . .m16,m17 . . .m32,m33 . . .m48,m49 . . .m64),
whereXi is a 16-bit data store.

3. For round r from 1 to 8 do:

(a) X1 ← X1�K
(r)
1 ,X4 ← X4�K

(r)
4 , X2 ← X2 �K(r)2 , X3 ← X3 �K(r)3 .

(b) t0 ← K
(r)
5 �(X1⊕X3), t1 ← K

(r)
6 �(t0 � (X2⊕X4)), t2 ← t0 � t1.

(c) X1 ← X1⊕t1,X4 ← X4⊕t2, a← X2⊕t2,X2 ← X3⊕t1, X3 ← a.

4. (output transformation) Y1 ← X1�K
(9)
1 , Y4 ← X4�K

(9)
4 , Y2 ← X3�K(9)2 , Y3 ←

X2 �K(9)3 .

7.102 Algorithm IDEA key schedule (encryption)

INPUT: 128-bit keyK = k1 . . . k128.
OUTPUT: 52 16-bit key sub-blocksK(r)i for 8 rounds r and the output transformation.

1. Order the subkeysK(1)1 . . .K
(1)
6 ,K

(2)
1 . . .K

(2)
6 , . . . ,K

(8)
1 . . .K

(8)
6 ,K

(9)
1 . . .K

(9)
4 .

2. PartitionK into eight 16-bit blocks; assign these directly to the first 8 subkeys.
3. Do the following until all 52 subkeys are assigned: cyclic shiftK left 25 bits; parti-

tion the result into 8 blocks; assign these blocks to the next 8 subkeys.

The key schedule of Algorithm 7.102 may be converted into a table which lists, for
each of the 52 keys blocks, which 16 (consecutive) bits of the input keyK form it.

7.103 Note (IDEA decryption) Decryption is achieved using Algorithm 7.101 with the cipher-
text Y provided as input M , and the same encryption key K, but the following change
to the key schedule. First use K to derive all encryption subkeys K(r)i ; from these com-

pute the decryption subkeysK ′(r)i per Table 7.11; then useK ′(r)i in place ofK(r)i in Algo-
rithm 7.101. In Table 7.11,−Ki denotes the additive inverse (mod 216) ofKi: the integer
u = (216−Ki) AND 0xFFFF, 0 ≤ u ≤ 216− 1. K−1i denotes the multiplicative inverse
(mod 216 + 1) ofKi, also in {0, 1, . . . , 216 − 1}, derivable by the Extended Euclidean al-
gorithm (Algorithm 2.107), which on inputs a ≥ b ≥ 0 returns integers x and y such that
ax + by = gcd(a, b). Using a = 216 + 1 and b = Ki, the gcd is always 1 (except for
Ki = 0, addressed separately) and thusK−1i = y, or 216 + 1+ y if y < 0. WhenKi = 0,
this input is mapped to 216 (since the inverse is defined byKi�K

−1
i = 1; see Note 7.104)

and (216)−1 = 216 is then defined to giveK−1i = 0.

7.104 Note (definition of �) In IDEA, a�b corresponds to a (modified) multiplication, modulo
216+1, of unsigned 16-bit integers a and b, where 0 ∈ Z216 is associated with 216 ∈ Z∗216+1
as follows:2 if a = 0 or b = 0, replace it by 216 (which is ≡ −1 mod 216 + 1) prior to
modular multiplication; and if the result is 216, replace this by 0. Thus, � maps two 16-
bit inputs to a 16-bit output. Pseudo-code for � is as follows (cf. Note 7.105, for ordinary

2Thus the operands of � are from a set of cardinality 216 (Z∗
216+1

) as are those of⊕ and �.
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round r K ′
(r)
1 K ′

(r)
2 K ′

(r)
3 K ′

(r)
4 K ′

(r)
5 K ′

(r)
6

r = 1 (K
(10−r)
1 )−1 −K(10−r)2 −K(10−r)3 (K

(10−r)
4 )−1 K

(9−r)
5 K

(9−r)
6

2 ≤ r ≤ 8 (K
(10−r)
1 )−1 −K(10−r)3 −K(10−r)2 (K

(10−r)
4 )−1 K

(9−r)
5 K

(9−r)
6

r = 9 (K
(10−r)
1 )−1 −K(10−r)2 −K(10−r)3 (K

(10−r)
4 )−1 — —

Table 7.11: IDEA decryption subkeys K′(r)i derived from encryption subkeys K(r)i .

multiplication mod 216 + 1), for c a 32-bit unsigned integer: if (a = 0) r ← (0x10001
− b) (since 216b ≡ −b), elseif (b = 0) r ← (0x10001 − a) (by similar reasoning), else
{c← ab; r← ((c AND 0xFFFF) − (c >> 16)); if (r < 0) r ← (0x10001 + r)}, with
return value (r AND 0xFFFF) in all 3 cases.

7.105 Note (implementing ab mod 2n+1) Multiplication mod 216+1may be efficiently imple-
mented as follows, for 0 ≤ a, b ≤ 216 (cf. §14.3.4). Let c = ab = c0 · 232+ cH · 216+ cL,
where c0 ∈ {0, 1} and 0 ≤ cL, cH < 216. To compute c′ = c mod (216 + 1), first obtain
cL and cH by standard multiplication. For a = b = 216, note that c0 = 1, cL = cH = 0,
and c′ = (−1)(−1) = 1, since 216 ≡ −1mod (216+1); otherwise, c0 = 0. Consequently,
c′ = cL − cH + c0 if cL ≥ cH , while c′ = cL − cH + (216 + 1) if cL < cH (since then
−216 < cL − cH < 0).

7.106 Example (IDEA test vectors) Sample data for IDEA encryption of 64-bit plaintextM us-
ing 128-bit keyK is given in Table 7.12. All entries are 16-bit values displayed in hexadeci-
mal. Table 7.13 details the corresponding decryption of the resulting 64-bit ciphertext C
under the same keyK. �

128-bit keyK = (1, 2, 3, 4, 5, 6, 7, 8) 64-bit plaintextM = (0, 1, 2, 3)

r K
(r)
1 K

(r)
2 K

(r)
3 K

(r)
4 K

(r)
5 K

(r)
6 X1 X2 X3 X4

1 0001 0002 0003 0004 0005 0006 00f0 00f5 010a 0105
2 0007 0008 0400 0600 0800 0a00 222f 21b5 f45e e959
3 0c00 0e00 1000 0200 0010 0014 0f86 39be 8ee8 1173
4 0018 001c 0020 0004 0008 000c 57df ac58 c65b ba4d
5 2800 3000 3800 4000 0800 1000 8e81 ba9c f77f 3a4a
6 1800 2000 0070 0080 0010 0020 6942 9409 e21b 1c64
7 0030 0040 0050 0060 0000 2000 99d0 c7f6 5331 620e
8 4000 6000 8000 a000 c000 e001 0a24 0098 ec6b 4925
9 0080 00c0 0100 0140 — — 11fb ed2b 0198 6de5

Table 7.12: IDEA encryption sample: round subkeys and ciphertext (X1,X2,X3,X4).

7.107 Note (security of IDEA) For the full 8-round IDEA, other than attacks on weak keys (see
page 279), no published attack is better than exhaustive search on the 128-bit key space.
The security of IDEA currently appears bounded only by the weaknesses arising from the
relatively small (compared to its keylength) blocklength of 64 bits.
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K = (1, 2, 3, 4, 5, 6, 7, 8) C = (11fb,ed2b,0198,6de5)

r K′
(r)
1 K′

(r)
2 K′

(r)
3 K′

(r)
4 K′

(r)
5 K′

(r)
6 X1 X2 X3 X4

1 fe01 ff40 ff00 659a c000 e001 d98d d331 27f6 82b8
2 fffd 8000 a000 cccc 0000 2000 bc4d e26b 9449 a576
3 a556 ffb0 ffc0 52ab 0010 0020 0aa4 f7ef da9c 24e3
4 554b ff90 e000 fe01 0800 1000 ca46 fe5b dc58 116d
5 332d c800 d000 fffd 0008 000c 748f 8f08 39da 45cc
6 4aab ffe0 ffe4 c001 0010 0014 3266 045e 2fb5 b02e
7 aa96 f000 f200 ff81 0800 0a00 0690 050a 00fd 1dfa
8 4925 fc00 fff8 552b 0005 0006 0000 0005 0003 000c
9 0001 fffe fffd c001 — — 0000 0001 0002 0003

Table 7.13: IDEA decryption sample: round subkeys and variables (X1,X2,X3,X4).

7.7 SAFER, RC5, and other block ciphers

7.7.1 SAFER

SAFER K-64 (Secure And Fast Encryption Routine, with 64-bit key) is an iterated block
cipher with 64-bit plaintext and ciphertext blocks. It consists of r identical rounds followed
by an output transformation. The original recommendation of 6 rounds was followed by a
recommendation to adopt a slightly modified key schedule (yielding SAFER SK-64, which
should be used rather than SAFER K-64 – see Note 7.110) and to use 8 rounds (maximum
r = 10). Both key schedules expand the 64-bit external key into 2r+1 subkeys each of 64-
bits (two for each round plus one for the output transformation). SAFER consists entirely
of simple byte operations, aside from byte-rotations in the key schedule; it is thus suitable
for processors with small word size such as chipcards (cf. FEAL).

Details of SAFER K-64 are given in Algorithm 7.108 and Figure 7.12 (see also page
280 regarding SAFER K-128 and SAFER SK-128). The XOR-addition stage beginning
each round (identical to the output transformation) XORs bytes 1, 4, 5, and 8 of the (first)
round subkey with the respective round input bytes, and respectively adds (mod 256) the re-
maining 4 subkey bytes to the others. The XOR and addition (mod 256) operations are inter-
changed in the subsequent addition-XOR stage. The S-boxes are an invertible byte-to-byte
substitution using one fixed 8-bit bijection (see Note 7.111). A linear transformation f (the
Pseudo-Hadamard Transform) used in the 3-level linear layer was specially constructed for
rapid diffusion. The introduction of additive key biases in the key schedule eliminates weak
keys (cf. DES, IDEA). In contrast to Feistel-like and many other ciphers, in SAFER the op-
erations used for encryption differ from those for decryption (see Note 7.113). SAFER may
be viewed as an SP network (Definition 7.79).

Algorithm 7.108 uses the following definitions (L, R denote left, right 8-bit inputs):

1. f(L,R) = (2L+R, L+R). Addition here is mod 256 (also denoted by �);
2. tables S and Sinv, and the constant table for key biases Bi[j] as per Note 7.111.
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f f f f

f f f f

f f f f

Y1 Y2 Y3 Y4

transformation
output
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round i
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X1 X2 X3 X4 X6 X7 X8
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8

64-bit plaintext

64-bit ciphertext
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Figure 7.12: SAFER K-64 computation path (r rounds).
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7.108 Algorithm SAFER K-64 encryption (r rounds)

INPUT: r, 6 ≤ r ≤ 10; 64-bit plaintextM = m1 · · ·m64 and keyK = k1 · · · k64.
OUTPUT: 64-bit ciphertext block Y = (Y1, . . . , Y8). (For decryption, see Note 7.113.)

1. Compute 64-bit subkeysK1, . . . ,K2r+1 by Algorithm 7.109 with inputsK and r.
2. (X1, X2, . . . , X8)← (m1 · · ·m8, m9 · · ·m16, . . . , m57 · · ·m64).
3. For i from 1 to r do: (XOR-addition, S-box, addition-XOR, and 3 linear layers)

(a) For j = 1, 4, 5, 8: Xj ← Xj ⊕ K2i−1[j].
For j = 2, 3, 6, 7: Xj ← Xj �K2i−1[j].

(b) For j = 1, 4, 5, 8: Xj ← S[Xj ]. For j = 2, 3, 6, 7: Xj ← Sinv[Xj].
(c) For j = 1, 4, 5, 8: Xj ← Xj �K2i[j]. For j = 2, 3, 6, 7: Xj ← Xj ⊕ K2i[j].
(d) For j = 1, 3, 5, 7: (Xj , Xj+1)← f(Xj , Xj+1).
(e) (Y1, Y2)← f(X1, X3), (Y3, Y4)← f(X5, X7),
(Y5, Y6)← f(X2, X4), (Y7, Y8)← f(X6, X8).
For j from 1 to 8 do: Xj ← Yj .

(f) (Y1, Y2)← f(X1, X3), (Y3, Y4)← f(X5, X7),
(Y5, Y6)← f(X2, X4), (Y7, Y8)← f(X6, X8).
For j from 1 to 8 do: Xj ← Yj . (This mimics the previous step.)

4. (output transformation):
For j = 1, 4, 5, 8: Yj ← Xj ⊕ K2r+1[j]. For j = 2, 3, 6, 7: Yj ← Xj �K2r+1[j].

7.109 Algorithm SAFER K-64 key schedule

INPUT: 64-bit keyK = k1 · · · k64; number of rounds r.
OUTPUT: 64-bit subkeysK1, . . . ,K2r+1. Ki[j] is byte j ofKi (numbered left to right).

1. Let R[i] denote an 8-bit data store and let Bi[j] denote byte j of Bi (Note 7.111).
2. (R[1], R[2], . . . , R[8])← (k1 · · ·k8, k9 · · · k16, . . . , k57 · · · k64).
3. (K1[1],K1[2], . . . ,K1[8])← (R[1], R[2], . . . , R[8]).
4. For i from 2 to 2r+ 1 do: (rotate key bytes left 3 bits, then add in the bias)

(a) For j from 1 to 8 do: R[j]← (R[j]←↩ 3).
(b) For j from 1 to 8 do: Ki[j]← R[j]�Bi[j]. (See Note 7.110.)

7.110 Note (SAFER SK-64 – strengthened key schedule) An improved key schedule for Algo-
rithm 7.108, resulting in SAFER SK-64, involves three changes as follows. (i) After ini-
tializing the R[i] in step 1 of Algorithm 7.109, set R[9] ← R[1]⊕R[2]⊕· · ·⊕R[8]. (ii)
Change the upper bound on the loop index in step 4a from 8 to 9. (iii) Replace the iterated
line in step 4b by: Ki[j]← R[((i+ j − 2) mod 9)+ 1]�Bi[j]. Thus, key bytes 1, . . . , 8
ofR[·] are used forK1; bytes 2, . . . , 9 forK2; bytes 3, . . . 9, 1 forK3, etc. Here and origi-
nally,� denotes addition mod 256. No attack against SAFER SK-64 better than exhaustive
key search is known.

7.111 Note (S-boxes and key biases in SAFER) The S-box, inverse S-box, and key biases for Al-
gorithm 7.108 are constant tables as follows. g ← 45. S[0] ← 1, Sinv[1] ← 0. for i from
1 to 255 do: t ← g · S[i − 1] mod 257, S[i] ← t, Sinv[t] ← i. Finally, S[128] ← 0,
Sinv[0]← 128. (Since g generates Z∗257, S[i] is a bijection on {0, 1, . . . , 255}. (Note that
g128 ≡ 256 (mod 257), and associating 256 with 0 makes S a mapping with 8-bit input
and output.) The additive key biases are 8-bit constants used in the key schedule (Algo-
rithm 7.109), intended to behave as random numbers, and definedBi[j] = S[S[9i+j]] for i
from 2 to 2r+1 and j from 1 to 8. For example: B2 = (22, 115, 59, 30, 142, 112, 189, 134)
and B13 = (143, 41, 221, 4, 128, 222, 231, 49).
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7.112 Remark (S-box mapping) The S-box of Note 7.111 is based on the function S(x) = gx

mod 257 using a primitive element g = 45 ∈ Z257. This mapping is nonlinear with respect
to both Z257 arithmetic and the vector space of 8-tuples over F2 under the XOR operation.
The inverse S-box is based on the base-g logarithm function.

7.113 Note (SAFER K-64 decryption) For decryption of Algorithm 7.108, the same key K and
subkeys Ki are used as for encryption. Each encryption step is undone in reverse order,
from last to first. Begin with an input transformation (XOR-subtraction stage) with key
K2r+1 to undo the output transformation, replacing modular addition with subtraction. Fol-
low with r decryption rounds using keysK2r throughK1 (two-per-round), inverting each
round in turn. Each starts with a 3-stage inverse linear layer using finv(L,R) = (L −
R, 2R − L), with subtraction here mod 256, in a 3-step sequence defined as follows (to
invert the byte-permutations between encryption stages):
Level 1 (for j = 1, 3, 5, 7): (Xj , Xj+1)← finv(Xj , Xj+1).
Levels 2 and 3 (each): (Y1, Y2)← finv(X1, X5), (Y3, Y4)← finv(X2, X6),
(Y5, Y6)← finv(X3, X7), (Y7, Y8)← finv(X4, X8); for j from 1 to 8 do: Xj ← Yj .
A subtraction-XOR stage follows (replace modular addition with subtraction), then an in-
verse substitution stage (exchange S and S−1), and an XOR-subtraction stage.

7.114 Example (SAFER test vectors) Using 6-round SAFER K-64 (Algorithm 7.108) on the 64-
bit plaintextM = (1, 2, 3, 4, 5, 6, 7, 8) with the key K = (8, 7, 6, 5, 4, 3, 2, 1) results in
the ciphertext C = (200, 242, 156, 221, 135, 120, 62, 217), written as 8 bytes in decimal.
Using 6-round SAFER SK-64 (Note 7.110) on the plaintextM above with the key K =
(1, 2, 3, 4, 5, 6, 7, 8) results in the ciphertext C = (95, 206, 155, 162, 5, 132, 56, 199). �

7.7.2 RC5

The RC5 block cipher has a word-oriented architecture for variable word sizesw = 16, 32,
or 64 bits. It has an extremely compact description, and is suitable for hardware or software.
The number of rounds r and the key byte-length b are also variable. It is successively more
completely identified as RC5–w, RC5–w/r, and RC5–w/r/b. RC5-32/12/16 is considered
a common choice of parameters; r = 12 rounds are recommended for RC5–32, and r = 16
for RC5–64.

Algorithm 7.115 specifies RC5. Plaintext and ciphertext are blocks of bitlength 2w.
Each of r rounds updates bothw-bit data halves, using 2 subkeys in an input transformation
and 2 more for each round. The only operations used, all on w-bit words, are addition mod
2w (�), XOR (⊕), and rotations (left←↩ and right ↪→). The XOR operation is linear, while
the addition may be considered nonlinear depending on the metric for linearity. The data-
dependent rotations featured in RC5 are the main nonlinear operation used: x←↩ y denotes
cyclically shifting a w-bit word left y bits; the rotation-count y may be reduced modw (the
low-order lg(w) bits of y suffice). The key schedule expands a key of b bytes into 2r + 2
subkeysKi of w bits each. Regarding packing/unpacking bytes into words, the byte-order
is little-endian: for w = 32, the first plaintext byte goes in the low-order end of A, the
fourth in A’s high-order end, the fifth in B’s low order end, and so on.
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7.115 Algorithm RC5 encryption (w-bit wordsize, r rounds, b-byte key)

INPUT: 2w-bit plaintextM = (A,B); r; keyK = K[0] . . .K[b− 1].
OUTPUT: 2w-bit ciphertext C. (For decryption, see Note 7.117.)

1. Compute 2r+ 2 subkeysK0, . . . ,K2r+1 by Algorithm 7.116 from inputsK and r.
2. A← A�K0, B ← B �K1. (Use addition modulo 2w.)
3. For i from 1 to r do: A← ((A⊕B)←↩ B)�K2i, B ← ((B⊕A)←↩ A)�K2i+1.
4. The output is C ← (A,B).

7.116 Algorithm RC5 key schedule

INPUT: word bitsize w; number of rounds r; b-byte keyK[0] . . .K[b− 1].
OUTPUT: subkeysK0, . . . ,K2r+1 (whereKi is w bits).

1. Let u = w/8 (number of bytes per word) and c = db/ue (number of wordsK fills).
Pad K on the right with zero-bytes if necessary to achieve a byte-count divisible by
u (i.e.,K[j]← 0 for b ≤ j ≤ c · u− 1). For i from 0 to c− 1 do: Li ←

∑u−1
j=0 2

8j

K[i · u+ j] (i.e., fill Li low-order to high-order byte using each byte ofK[·] once).
2. K0 ← Pw; for i from 1 to 2r + 1 do: Ki ← Ki−1 �Qw. (Use Table 7.14.)
3. i← 0, j ← 0, A← 0, B ← 0, t← max(c, 2r+ 2). For s from 1 to 3t do:

(a) Ki ← (Ki �A�B)←↩ 3, A← Ki, i← i+ 1 mod (2r + 2).
(b) Lj ← (Lj �A�B)←↩ (A�B), B ← Lj , j ← j + 1 mod c.

4. The output isK0,K1, . . . ,K2r+1. (The Li are not used.)

7.117 Note (RC5 decryption) Decryption uses the Algorithm 7.115 subkeys, operating on ci-
phertext C = (A,B) as follows (subtraction is mod 2w, denoted �). For i from r down
to 1 do: B ← ((B � K2i+1) ↪→ A)⊕A, A ← ((A � K2i) ↪→ B)⊕B. Finally M ←
(A�K0, B �K1).

w : 16 32 64

Pw : B7E1 B7E15163 B7E15162 8AED2A6B
Qw : 9E37 9E3779B9 9E3779B9 7F4A7C15

Table 7.14: RC5 magic constants (given as hex strings).

7.118 Example (RC5–32/12/16 test vectors) For the hexadecimal plaintextM = 65C178B2
84D197CC and keyK = 5269F149 D41BA015 2497574D 7F153125, RC5 with
w = 32, r = 12, and b = 16 generates ciphertextC = EB44E415 DA319824. �

7.7.3 Other block ciphers

LOKI’91 (and earlier, LOKI’89) was proposed as a DES alternative with a larger 64-bit key,
a matching 64-bit blocksize, and 16 rounds. It differs from DES mainly in key-scheduling
and the f -function. The f -function of each round uses four identical 12-to-8 bit S-boxes,
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4 input bits of which select one of 16 functions, each of which implements exponentia-
tion with a fixed exponent in a different representation of GF(28). While no significant ex-
ploitable weaknesses have been found in LOKI’91 when used for encryption, related-key
attacks (see page 281) are viewed as a certificational weakness.

Khufu and Khafre are DES-like ciphers which were proposed as fast software-oriented
alternatives to DES. They have 64-bit blocks, 8 × 32 bit S-boxes, and a variable number
of rounds (typically 16, 24, or 32). Khufu keys may be up to 512 bits. Khafre keys have
bitlength that is a multiple of 64 (64 and 128-bit keys are typical); 64 key bits are XORed
onto the data block before the first and thereafter following every 8 rounds. Whereas a DES
round involves eight 6-to-4 bit S-boxes, one round of Khufu involves a single 8-to-32 bit
table look-up, with a different S-box for every 8 rounds. The S-boxes are generated pseu-
dorandomly from the user key. Khafre uses fixed S-boxes generated pseudorandomly from
an initial S-box constructed from random numbers published by the RAND corporation in
1955. Under the best currently known attacks, 16-round Khufu and 24-round Khafre are
each more difficult to break than DES.

7.8 Notes and further references
§7.1

The extensive and particularly readable survey by Diffie and Hellman [347], providing a
broad introduction to cryptography especially noteworthy for its treatment of Hagelin and
rotor machines and the valuable annotated bibliography circa 1979, is a source for much
of the material in §7.2, §7.3, and §7.4 herein. Aside from the appearance of DES [396] in
the mid 1970s and FEAL [884] later in the 1980s, prior to 1990 few fully-specified seri-
ous symmetric block cipher proposals were widely available or discussed. (See Chapter 15
for Pohlig and Hellman’s 1978 discrete exponentiation cipher.) With the increasing feasi-
bility of exhaustive search on 56-bit DES keys, the period 1990-1995 resulted in a large
number of proposals, beginning with PES [728], the preliminary version of IDEA [730].
The Fast Software Encryption workshops (Cambridge, U.K., Dec. 1993; Leuven, Belgium,
Dec. 1994; and again Cambridge, Feb. 1996) were a major stimulus and forum for new pro-
posals.

The most significant cryptanalytic advances over the 1990-1995period were Matsui’s linear
cryptanalysis [796, 795], and the differential cryptanalysis of Biham and Shamir [138] (see
also [134, 139]). Extensions of these included the differential-linear analysis by Langford
and Hellman [741], and the truncated differential analysis of Knudsen [686]. For additional
background on linear cryptanalysis, see Biham [132]; see also Matsui and Yamagishi [798]
for a preliminary version of the method. Additional background on differential cryptanal-
ysis is provided by many authors including Lai [726], Lai, Massey, and Murphy [730], and
Coppersmith [271]; although more efficient 6-round attacks are known, Stinson [1178] pro-
vides detailed examples of attacks on 3-round and 6-round DES. Regarding both linear and
differential cryptanalysis, see also Knudsen [684] and Kaliski and Yin [656].

§7.2
Lai [726, Chapter 2] provides an excellent concise introduction to block ciphers, including a
lucid discussion of design principles (recommendedfor all block cipher designers). Regard-
ing text dictionary and matching ciphertext attacks (Note 7.8), see Coppersmith, Johnson,
and Matyas [278]. Rivest and Sherman [1061] provide a unified framework for random-
ized encryption (Definition 7.3); a common example is the use of random “salt” appended
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to passwords prior to password encryption in some operating systems (§10.2.3). Fact 7.9 is
due to Shannon [1121], whose contributions are many (see below).

The four basic modes of operation (including k-bit OFB feedback) were originally defined
specifically for DES in 1980 by FIPS 81 [398] and in 1983 by ANSI X3.106 [34], while ISO
8732 [578] and ISO/IEC 10116 [604], respectively, defined these modes for general 64-bit
and generaln-bit block ciphers, mandatingn-bit OFB feedback (see also Chapter 15). Bras-
sard [192] gives a concise summary of modes of operation; Davies and Price [308] provide a
comprehensive discussion, including OFB cycling (Note 7.24; see also Jueneman [643] and
Davies and Parkin [307]), and a method for encrypting incomplete CBC final blocks with-
out data expansion, which is important if plaintext must be encrypted and returned into its
original store. See Voydock and Kent [1225] for additional requirements on IV s. Recom-
mending r = s for maximum strength, ISO/IEC 10116 [604] specifies the CFB variation of
Example 7.19, and provides extensive discussion of properties of the various modes. The
counter mode (Example 7.23) was suggested by Diffie and Hellman [347].

The 1977 exhaustive DES key search machine (Example 7.27) proposed by Diffie and Hell-
man [346] contained 106 DES chips, with estimated cost US$20 million (1977 technology)
and 12-hour expected search time; Diffie later revised the estimate upwards one order of
magnitude in a BNR Inc. report (US$50 million machine, 2-day expected search time, 1980
technology). Diffie and Hellman noted the feasibility of a ciphertext-only attack (Exam-
ple 7.28), and that attempting to preclude exhaustive search by changing DES keys more
frequently, at best, doubles the expected search time before success.

Subsequently Wiener [1241] provided a gate-level design for a US$1 million machine (1993
technology) using 57 600 DES chips with expected success in 3.5 hours. Each chip con-
tains 16 pipelined stages, each stage completing in one clock tick at 50 MHz; a chip with
full pipeline completes a key test every 20 nanoseconds, providing a machine 57 600× 50
times faster than the 1142 years noted in FIPS 74 [397] as the time required to check 255

keys if one key can be tested each microsecond. Comparable key search machines of equiv-
alent cost by Eberle [362] and Wayner [1231] are, respectively, 55 and 200 times slower,
although the former does not require a chip design, and the latter uses a general-purpose
machine. Wiener also noted adaptations of the ECB known-plaintext attack to other 64-bit
modes (CBC, OFB, CFB) and 1-bit and 8-bit CFB.

Even and Goldreich [376] discuss the unicity distance of cascade ciphers under known-
plaintext attack (Fact 7.35), present a generalized time-memory meet-in-the-middle trade-
off (Note 7.38), and give several other concise results on cascades, including that under
reasonable assumptions, the number of permutations realizable by a cascade of L random
cipher stages is, with high probability, 2Lk.

Diffie and Hellman [346] noted the meet-in-the-middle attack on double encryption (Fact
7.33), motivating their recommendation that multiple encipherment, if used, should be at
least three-fold; Hoffman [558] credits them with suggesting E-E-E triple encryption with
three independent keys. Merkle’s June 1979 thesis [850] explains the attack on two-key
triple-encryption of Fact 7.39 (see also Merkle and Hellman [858]), and after noting Tuch-
man’s proposal of two-key E-D-E triple encryption in a June 1978 conference talk (National
Computer Conference, Anaheim, CA; see also [1199]), recommended that E-D-E be used
with three independent keys: EK3(E

−1
K2(EK1(x))). The two-key E-D-E idea, adopted in

ANSI X9.17 [37] and ISO 8732 [578], was reportedly conceived circa April 1977 by Tuch-
man’s colleagues, Matyas and Meyer. The attack of Fact 7.40 is due to van Oorschot and
Wiener [1206]. See Coppersmith, Johnson, and Matyas [278] for a proposed construction
for a triple-DES algorithm. Other techniques intended to extend the strength of DES in-
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clude the DESX proposal of Rivest as analyzed by Kilian and Rogaway [672], and the work
of Biham and Biryukov [133].

Hellman [549] proposes a time-memory tradeoff for exhaustive key search on a cipher with
N = 2m ciphertexts requiring a chosen-plaintext attack,O(N2/3) time andO(N2/3) space
after an O(N) precomputation; search time can be reduced somewhat by use of Rivest’s
suggestion of distinguished points (see Denning [326, p.100]). Kusuda and Matsumoto
[722] recently extended this analysis. Fiat and Naor [393] pursue time-memory tradeoffs
for more general functions. Amirazizi and Hellman [25] note that time-memory tradeoff
with constant time-memory product offers no asymptotic cost advantage over exhaustive
search; they examine tradeoffs between time, memory, and parallel processing, and using
standard parallelization techniques, propose under a simplified model a search machine ar-
chitecture for which doubling the machine budget (cost) increases the solution rate four-
fold. This approach may be applied to exhaustive key search on double-encryption, as can
the parallel collision search technique of van Oorschot and Wiener [1207, 1208]; see also
Quisquater and Delescaille [1017, 1018].

Regarding Note 7.41, see Biham [131] (and earlier [130]) as well as Coppersmith, John-
son, and Matyas [278]. Biham’s analysis on DES and FEAL shows that, in many cases, the
use of intermediate data as feedback into an intermediate stage reduces security. 15 years
earlier, reflecting on his chosen-plaintext attack on two-key triple-encryption, Merkle [850,
p.149] noted “multiple encryption with any cryptographic system is liable to be much less
secure than a system designed originally for the longer key”.

Maurer and Massey [822] formalize Fact 7.42, where “break” means recovering plaintext
from ciphertext (under a known-plaintext attack) or recovering the key; the results hold also
for chosen-plaintext and chosen-ciphertext attack. They illustrate, however, that the ear-
lier result and commonly-held belief proven by Even and Goldreich [376] – that a cascade
is as strong as any of its component ciphers – requires the important qualifying (and non-
practical) assumption that an adversary will not exploit statistics of the underlying plaintext;
thus, the intuitive result is untrue for most practical ciphertext-only attacks.

§7.3
Kahn [648] is the definitive historical reference for classical ciphers and machines up to
1967, including much of §7.3 and the notes below. The selection of classical ciphers pre-
sented largely follows Shannon’s lucid 1949 paper [1121]. Standard references for classical
cryptanalysis include Friedman [423], Gaines [436], and Sinkov [1152]. More recent books
providing expository material on classical ciphers, machines, and cryptanalytic examples
include Beker and Piper [84], Meyer and Matyas [859], Denning [326], and Davies and
Price [308].

Polyalphabetic ciphers were invented circa 1467 by the Florentine architect Alberti, who
devised a cipher disk with a larger outer and smaller inner wheel, respectively indexed by
plaintext and ciphertext characters. Letter alignments defined a simple substitution, modi-
fied by rotating the disk after enciphering a few words. The first printed book on cryptogra-
phy, Polygraphia, written in 1508 by the German monk Trithemius and published in 1518,
contains the first tableau – a square table on 24 characters listing all shift substitutions for a
fixed ordering of plaintext alphabet characters. Tableau rows were used sequentially to sub-
stitute one plaintext character each for 24 letters, where-after the same tableau or one based
on a different alphabet ordering was used. In 1553 Belaso (from Lombardy) suggested us-
ing an easily changed key (and key-phrases as memory aids) to define the fixed alphabetic
(shift) substitutions in a polyalphabetic substitution. The 1563 book of Porta (from Naples)
noted the ordering of tableau letters may define arbitrary substitutions (vs. simply shifted
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alphabets).

Various polyalphabetic auto-key ciphers, wherein the key changes with each message (the
alteration depending on the message), were explored in the 16th century, most significantly
by the Frenchman B. de Vigenère. His 1586 book Traicté des Chiffres proposed the com-
bined use of a mixed tableau (mixed alphabet on both the tableau top and side) and an auto-
keying technique (cf. Example 7.61). A single character served as a priming key to select
the tableau row for the first character substitution, where-after the ith plaintext character
determined the alphabet (tableau row) for substituting the next. The far less secure simple
Vigenère cipher (Definition 7.53) is incorrectly attributed to Vigenère.

The Playfair cipher (Example 7.51), popularized by L. Playfair in England circa 1854 and
invented by the British scientist C. Wheatstone, was used as a British field cipher [648, p.6].
J. Mauborgne (see also the Vernam and PURPLE ciphers below) is credited in 1914 with
the first known solution of this digram cipher.

The Jefferson cylinder was designed by American statesman T. Jefferson, circa 1790-1800.
In 1817, fellow American D. Wadsworth introduced the principle of plaintext and cipher-
text alphabets of different lengths. His disk (cf. Alberti above) implemented a cipher similar
to Trithemius’ polyalphabetic substitution, but wherein the various alphabets were brought
into play irregularly in a plaintext-dependent manner, foreshadowing both the polyalpha-
betic ciphers of later 20th century rotor machines, and the concept of chaining. The inner
disk had 26 letters while the outer had an additional 7 digits; one full revolution of the larger
caused the smaller to advance 7 characters into its second revolution. The driving disk was
always turned in the same clockwise sense; when the character revealed through an aperture
in the plaintext disk matched the next plaintext character, that visible through a correspond-
ing ciphertext aperture indicated the resulting ciphertext. In 1867, Wheatstone displayed
an independently devised similar device thereafter called the Wheatstone disc, receiving
greater attention although less secure (having disks of respectively 26 and 27 characters,
the extra character a plaintext space).

Vernam [1222] recorded his idea for telegraph encryption in 1917; a patent filed in Septem-
ber 1918 was issued July 1919. Vernam’s device combined a stream of plaintext (5-bit Bau-
dot coded) characters, via XOR, with a keystream of 5-bit (key) values, resulting in the Ver-
nam cipher (a term often used for related techniques). This, the first polyalphabetic substi-
tution automated using electrical impulses, had period equal to the length of the key stream;
each 5-bit key value determined one of 32 fixed mono-alphabetic substitutions. Credit for
the actual one-time system goes to J. Mauborgne (U.S. Army) who, after seeing Vernam’s
device with a repeated tape, realized that use of a random, non-repeated key improved se-
curity. While Vernam’s device was a commercial failure, a related German system engi-
neered by W. Kunze, R. Schauffler, and E. Langlotz was put into practice circa 1921-1923
for German diplomatic communications; their encryption system, which involved manu-
ally adding a key string to decimal-coded plaintext, was secured by using as the numerical
key a random non-repeating decimal digit stream – the original one-time pad. Pads of 50
numbered sheets were used, each with 48 five-digit groups; no pads were repeated aside for
one identical pad for a communicating partner, and no sheet was to be used twice; sheets
were destroyed once used. The Vernam cipher proper, when used as a one-time system, in-
volves only 32 alphabets, but provides more security than rotor machines with a far greater
number of alphabets because the latter eventually repeat, whereas there is total randomness
(for each plaintext character) in selecting among the 32 Vernam alphabets.

The matrix cipher of Example 7.52 was proposed in 1929 by Hill [557], providing a practi-
cal method for polygraphic substitution, albeit a linear transformationsusceptible to known-
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plaintext attack. Hill also recognized that using an involution as the encryption mapping al-
lowed the same function to provide decryption. Recent contributions on homophonic sub-
stitution include Günther [529] and Jendal, Kuhn, and Massey [636].

Among the unrivalled cryptanalytic contributions of the Russian-born American Friedman
is his 1920 Riverbank Publication no.22 [426] on cryptanalysis using the index of coinci-
dence. Friedman coined the term cryptanalysis in 1920, using it in his 1923 book Elements
of Cryptanalysis [425], a 1944 expansion of which, Military Cryptanalysis [423], remains
highly recommended. The method of Kasiski (from West Prussia) was originally published
in 1863; see Kahn [648, pp.208-213] for a detailed example. The discussion on IC and MR
follows that of Denning [326], itself based on Sinkov [1152]. Fact 7.75 follows from a stan-
dard expectation computation weighted by κp or κr depending on whether the second of a
pair of randomly selected ciphertext characters is from the same ciphertext alphabet or one
of the t − 1 remaining alphabets. The values in Table 7.1 are from Kahn [648], and vary
somewhat over time as languages evolve.

Friedman teaches how to cryptanalyze running-key ciphers in his (circa 1918) Riverbank
Publication no.16, Methods for the Solution of Running-Key Ciphers; the two basic tech-
niques are outlined by Diffie and Hellman [347]. The first is a probable word attack wherein
an attacker guesses an (e.g., 10 character) word hopefully present in underlying text, and
subtracts that word (mod 26) from all possible starting locations in the ciphertext in hopes
of finding a recognizable 10-character result, where-after the guessed word (as either par-
tial running-key or plaintext) might be extended using context. Probable-word attacks also
apply to polyalphabetic substitution. The second technique is based on the fact that each
ciphertext letter c results from a pair of plaintext/running-key letters (mi,m′i), and is most
likely to result from such pairs wherein bothmi andm′i are high-frequency characters; one
isolates the highest-probability pairs for each such ciphertext character value c, makes trial
assumptions, and attempts to extend apparently successful guesses by similarly decrypting
adjacent ciphertext characters; see Denning [326, p.83] for a partial example. Diffie and
Hellman [347] note Fact 7.59 as an obvious method that is little-used (modern ciphers be-
ing more convenient); their suggestion that use of four iterative running keys is unbreakable
follows from English being 75% redundant. They also briefly summarize various scram-
bling techniques (encryption via analog rather than digital methods), noting that analog
scramblers are sometimes used in practice due to lower bandwidth and cost requirements,
although such known techniques appear relatively insecure (possibly an inherent character-
istic) and their use is waning as digital networks become prevalent.

Denning [326] tabulates digrams into high, medium, low, and rare classes. Konheim [705,
p.24] provides transition probabilities p(t|s), the probability that the next letter is t given
that the current character is s in English text, in a table also presented by H. van Tilborg
[1210]. Single-letter distributions in plaintext languages other than English are given by
Davies and Price [308]. The letter frequencies in Figure 7.5, which should be interpreted
only as an estimate, were derived by Meyer and Matyas [859] using excerpts totaling 4 mil-
lion characters from the 1964 publication: W. Francis, A Standard Sample of Present-Day
Edited American English for Use with Digital Computers, Linguistics Dept., Brown Uni-
versity, Providence, Rhode Island, USA. Figure 7.6 is based on data from Konheim [705,
p.19] giving an estimated probability distribution of 2-grams in English, derived from a
sample of size 67 320 digrams.

See Shannon [1122] and Cover and King [285] regarding redundancy and Fact 7.67. While
not proven in any concrete manner, Fact 7.68 is noted by Friedman [424] and generally
accepted. Unicity distance was defined by Shannon [1121]. Related issues are discussed in
detail in various appendices of Meyer and Matyas [859]. Fact 7.71 and the random cipher
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model are due to Shannon [1121]; see also Hellman [548].

Diffie and Hellman [347] give an instructive overview of rotor machines (see also Denning
[326]), and note their use in World War II by the Americans in their highest level system, the
British, and the Germans (Enigma); they also give Fact 7.63 and the number of characters
required under ciphertext-only and known-plaintext attacks (Note 7.66). Beker and Piper
[84] provide technical details of the Hagelin M-209, as does Kahn [648, pp.427-431] who
notes its remarkable compactness and weight: 3.25 x 5.5 x 7 inches and 6 lb. (including
case); see also Barker [74], Morris [906], and Rivest [1053]. Davies and Price [308] briefly
discuss the Enigma, noting it was cryptanalyzed during World War II in Poland, France, and
then in the U.K. (Bletchley Park); see also Konheim [705].

The Japanese PURPLE cipher, used during World War II, was a polyalphabetic cipher crypt-
analyzed August 1940 [648, p.18-23] by Friedman’s team in the U.S. Signal Intelligence
Service, under (Chief Signal Officer) Mauborgne. The earlier RED cipher used two rotor
arrays; preceding it, the ORANGE system implemented a vowels-to-vowels, consonants-
to-consonants cipher using sets of rotors.

§7.4
The concept of fractionation, related to product ciphers, is noted by Feistel [387], Shannon
[1121], and Kahn [648, p.344] who identifies this idea in an early product cipher, the WWI
German ADFGVX field cipher. As an example, an encryption function might operate on
a block of t = 8 plaintext characters in three stages as follows: the first substitutes two
symbols for each individual character; the second transposes (mixes) the substituted sym-
bols among themselves; the third re-groups adjacent resulting symbols and maps them back
to the plaintext alphabet. The action of the transposition on partial (rather than complete)
characters contributes to the strength of the principle.

Shannon [1121, §5 and §23-26] explored the idea of the product of two ciphers, noted the
principles of confusion and diffusion (Remark 1.36), and introduced the idea of a mixing
transformation F (suggesting a preliminary transposition followed by a sequence of alter-
nating substitution and simple linear operations), and combining ciphers in a product using
an intervening transformation F . Transposition and substitution, respectively, rest on the
principles of diffusion and confusion. Harpes, Kramer, and Massey [541] discuss a general
model for iterated block ciphers (cf. Definition 7.80).

The name Lucifer is associated with two very different algorithms. The first is an SP net-
work described by Feistel [387], which employs (bitwise nonlinear) 4 × 4 invertible S-
boxes; the second, closely related to DES (albeit significantly weaker), is described by
Smith [1160] (see also Sorkin [1165]). Principles related to both are discussed by Feis-
tel, Notz, and Smith [388]; both are analyzed by Biham and Shamir [138], and the latter in
greater detail by Ben-Aroya and Biham [108] whose extension of differential cryptanaly-
sis allows, using 236 chosen plaintexts and complexity, attack on 55% of the key space in
Smith’s Lucifer – still infeasible in practice, but illustrating inferiority to DES despite the
longer 128-bit key.

Feistel’s product cipher Lucifer [387], instantiated by a blocksize n = 128, consists of an
unspecified number of alternating substitution and permutation (transposition) stages, using
a fixed (unpublished) n-bit permutation P and 32 parallel identical S-boxes each effecting
a mapping S0 or S1 (fixed but unpublished bijections on {0, 1}4), depending on the value
of one key bit; the unpublished key schedule requires 32-bits per S-box stage. Each stage
operates on all n bits; decryption is by stage-wise inversion of P and Si.

The structure of so-called Feistel ciphers (Definition 7.81) was first introduced in the Lu-
cifer algorithm of Smith [1160], the direct predecessor of DES. This 16-round algorithm
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with 128-bit key operates on alternating half-blocks of a 128-bit message block with a sim-
plified f function based on two published invertible 4×4 bit S-boxesS0 and S1 (cf. above).
Feistel, Notz, and Smith [388] discuss both the abstract Feistel cipher structure (suggesting
its use with non-invertible S-boxes) and SP networks based on invertible (distinct) S-boxes.
Suggestions for SP networks include the use of single key bits to select one of two map-
pings (a fixed bijection or its inverse) from both S-boxes and permutation boxes; decryption
then uses a reversed key schedule with complemented key. They also noted the multi-round
avalanche effect of changing a single input bit, subsequently pursued by Kam and Davida
[659] in relation to SP networks and S-boxes having a completeness property: for every pair
of bit positions i, j, there must exist at least two input blocks x, y which differ only in bit i
and whose outputs differ in at least bit j. More simply, a function is complete if each output
bit depends on all input bits. Webster and Tavares [1233] proposed the more stringent strict
avalanche criterion: whenever one input bit is changed, every output bit must change with
probability 1/2.

DES resulted from IBM’s submission to the 1974 U.S. National Bureau of Standards (NBS)
solicitation for encryption algorithms for the protection of computer data. The original
specification is the 1977 U.S. Federal Information Processing Standards Publication 46
[396], reprinted in its entirety as Appendix A in Meyer and Matyas [859]. DES is now spec-
ified in FIPS 46–2, which succeeded FIPS 46–1; the same cipher is defined in the American
standard ANSI X3.92 [33] and referred to as the Data Encryption Algorithm (DEA). Differ-
ences between FIPS 46/46–1 and ANSI X3.92 included the following: these earlier FIPS
required that DES be implemented in hardware and that the parity bits be used for parity;
ANSI X3.92 specifies that the parity bits may be used for parity. Although no purpose was
stated by the DES designers for the permutations IP and IP−1, Preneel et al. [1008] provided
some evidence of their cryptographic value in the CFB mode.

FIPS 81 [398] specifies the common modes of operation. Davies and Price [308] provide a
comprehensive discussion of both DES and modes of operation; see also Diffie and Hellman
[347], and the extensive treatment of Meyer and Matyas [859]. The survey of Smid and
Branstad [1156] discusses DES, its history, and its use in the U.S. government. Test vectors
for various modes of DES, including the ECB vectors of Example 7.86, may be found in
ANSI X3.106 [34]. Regarding exhaustive cryptanalysis of DES and related issues, see also
the notes under §7.2.

The 1981 publication FIPS 74 [397] notes that DES is not (generally) commutative under
two keys, and summarizes weak and semi-weak keys using the term dual keys to include
both (weak keys being self-dual); see also Davies [303] and Davies and Price [308]. Cop-
persmith [268] noted Fact 7.90; Moore and Simmons [900] pursue weak and semi-weak
DES keys and related phenomena more rigorously.

The 56-bit keylength of DES was criticized from the outset as being too small (e.g., see
Diffie and Hellman [346], and p.272 above). Claims which have repeatedly arisen and been
denied (e.g., see Tuchman [1199]) over the past 20 years regarding built-in weaknesses of
DES (e.g., trap-door S-boxes) remain un-substantiated. Fact 7.91 is significant in that if the
permutation group were closed under composition, DES would fall to a known-plaintext
attack requiring 228 steps – see Kaliski, Rivest, and Sherman [654], whose cycling exper-
iments provided strong evidence against this. Campbell and Wiener [229] prove the fact
conclusively (and give the stated lower bound), through their own cycling experiments uti-
lizing collision key search and an idea outlined earlier by Coppersmith [268] for establish-
ing a lower bound on the group size; they attribute to Coppersmith the same result (in un-
published work), which may also be deduced from the cycle lengths published by Moore
and Simmons [901].
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Countless papers have analyzed various properties of DES; Davies and Price [308, pp.73-
75] provide a partial summary to 1987. Subsequent to the discovery of differential crypt-
analysis (DC) by Biham and Shamir, Coppersmith [271] explains how DES was specifically
designed 15 years earlier to counter DC, citing national security concerns regarding the de-
sign team publishing neither the attack nor design criteria; then gives the (relevant) design
criteria – some already noted by others, e.g., see Hellman et al. [552] – for DES S-boxes
and the permutation P , explaining how these preclude DC. Coppersmith notes elements of
DC were present in the work of den Boer [322], followed shortly by Murphy [913]. DES
was not, however, specifically designed to preclude linear cryptanalysis (LC); Matsui [797]
illustrates the order of the 8 DES S-boxes, while a strong (but not optimal) choice against
DC, is relatively weak against LC, and that DES can be strengthened (vs. DC and LC) by
carefully re-arranging these. Despite Remark 7.93, a DES key has actually been recovered
by Matsui [795] using LC under experimental conditions (using 243 known-plaintext pairs
from randomly generated plaintexts, and 243 complexity running twelve 99 MHz machines
over 50 days); such a result remains to be published for exhaustive search or DC.

Ben-Aroya and Biham [108] note that often suggestions to redesign DES, some based on de-
sign criteria and attempts to specifically resist DC, have resulted in (sometimes far) weaker
systems, including the RDES (randomized DES) proposal of Koyama and Terada [709],
which fall to variant attacks. The lesson is that in isolation, individual design principles do
not guarantee security.

DES alternatives are sought not only due to the desire for a keylength exceeding 56 bits,
but also because its bit-oriented operations are inconvenient in conventional software im-
plementations, often resulting in poor performance; this makes triple-DES less attractive.
Regarding fast software implementations of DES, see Shepherd [1124], Pfitzmann and Aß-
mann [970], and Feldmeier and Karn [391].

§7.5
FEAL stimulated the development of a sequence of advanced cryptanalytic techniques of
unparalleled richness and utility. While it appears to remain relatively secure when iterated
a sufficient number of rounds (e.g., 24 or more), this defeats its original objective of speed.
FEAL-4 as presented at Eurocrypt’87 (Abstracts of Eurocrypt’87, April 1987) was found to
have certain vulnerabilities by den Boer (unpublished Eurocrypt’87 rump session talk), re-
sulting in Shimizu and Miyaguchi [1126] (or see Miyaguchi, Shiraishi, and Shimizu [887])
increasing FEAL to 8 rounds in the final proceedings. In 1988 den Boer [322] showed
FEAL-4 vulnerable to an adaptive chosen plaintext attack with 100 to 10 000 plaintexts. In
1990, Gilbert and Chassé [455] devised a chosen-plaintext attack (called a statistical meet-
in-the-middle attack) on FEAL-8 requiring 10 000 pairs of plaintexts, the bitwise XOR of
each pair being selected to be an appropriate constant (thus another early variant of differ-
ential cryptanalysis).

FEAL-N with N rounds, and its extension FEAL-NX with 128-bit key (Notes 7.97 and
7.98) were then published by Miyaguchi [884] (or see Miyaguchi et al. [885]), who nonethe-
less opined that chosen-plaintext attacks on FEAL-8 were not practical threats. However,
improved chosen-plaintext attacks were subsequently devised, as well as known-plaintext
attacks. Employing den Boer’s G function expressing linearity in the FEAL f -function,
Murphy [913] defeated FEAL-4 with 20 chosen plaintexts in under 4 hours (under 1 hour
for most keys) on a Sun 3/60 workstation. A statistical method of Tardy-Corfdir and Gilbert
[1187] then allowed a known-plaintext attack on FEAL-4 (1000 texts; or 200 in an an-
nounced improvement) and FEAL-6 (2× 10 000 texts), involving linear approximation of
FEAL S-boxes. Thereafter, the first version of linear cryptanalysis (LC) introduced by Mat-
sui and Yamagishi [798] allowed known-plaintext attack of FEAL-4 (5 texts, 6 minutes on
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a 25MHz 68040 processor), FEAL-6 (100 texts, 40 minutes), and FEAL-8 (228 texts, in
time equivalent to exhaustive search on 50-bit keys); the latter betters the 238 texts required
for FEAL-8 by Biham and Shamir [136] in their known-plaintext conversion of differen-
tial cryptanalysis (DC). Biham and Shamir [138, p.101] later implemented a DC chosen-
plaintext attack recovering FEAL-8 keys in two minutes on a PC using 128 chosen pairs,
the program requiring 280K bytes of storage. Biham [132] subsequently used LC to defeat
FEAL-8 with 224 known-plaintexts in 10 minutes on a personal computer. Ohta and Aoki
[943] suggest that FEAL-32 is as secure as DES against DC, while FEAL-16 is as secure
as DES against certain restricted forms of LC.

Differential-linear cryptanalysis was introduced by Langford and Hellman [741], combin-
ing linear and differential cryptanalysis to allow a reduced 8-round version of DES to be
attacked with fewer chosen-plaintexts than previous attacks. Aoki and Ohta [53] refined
these ideas for FEAL-8 yielding a differential-linear attack requiring only 12 chosen texts
and 35 days of computer time (cf. Table 7.10).

Test vectors for FEAL-N and FEAL-NX (Example 7.99) are given by Miyaguchi [884].
The DC attack of Biham and Shamir [137], which finds FEAL-N subkeys themselves, is
equally as effective on FEAL-NX. Biham [132] notes that an LC attack on FEAL-N is pos-
sible with less than 264 known plaintexts (and complexity) for up toN = 20. For additional
discussion of properties of FEAL, see Biham and Shamir [138, §6.3].

§7.6
The primary reference for IDEA is Lai [726]. A preliminary version introduced by Lai and
Massey [728] was named PES (Proposed Encryption Standard). Lai, Massey, and Murphy
[730] showed that a generalization (see below) of differential cryptanalysis (DC) allowed
recovery of PES keys, albeit requiring all 264 possible ciphertexts (cf. exhaustive search
of 2128 operations). Minor modifications resulted in IPES (Improved PES): in stage r, 1 ≤
r ≤ 9, the group operations keyed byK(r)2 andK(r)4 (� and� in Figure 7.11) were reversed
from PES; the permutation on 16-bit blocks after stage r, 1 ≤ r ≤ 9, was altered; and
necessary changes were made in the decryption (but not encryption) key schedule. IPES
was commercialized under the name IDEA, and is patented (see Chapter 15).

The ingenious design of IDEA is supported by a careful analysis of the interaction and alge-
braic incompatibilities of operations across the groups (F2

n,⊕), (Z2n ,�), and (Z∗2n+1,�).
The design of the MA structure (see Figure 7.11) results in IDEA being “complete” after a
single round; for other security properties, see Lai [726]. Regarding mixing operations from
different algebraic systems, see also the 1974 examination by Grossman [522] of transfor-
mations arising by alternating mod 2n and mod 2 addition (⊕), and the use of arithmetic
modulo 232 − 1 and 232 − 2 in MAA (Algorithm 9.68).

Daemen [292, 289] identifies several classes of so-called weak keys for IDEA, and notes a
small modification to the key schedule to eliminate them. The largest is a class of 251 keys
for which membership can be tested in two encryptions plus a small number of computa-
tions, whereafter the key itself can be recovered using 16 chosen plaintext-difference en-
cryptions, on the order of 216 group operations, plus 217 key search encryptions. The prob-
ability of a randomly chosen key being in this class is 251/2128 = 2−77. A smaller number
of weak key blocks were observed earlier by Lai [726], and dismissed as inconsequential.
The analysis of Meier [832] revealed no attacks feasible against full 8-round IDEA, and
supports the conclusion of Lai [726] that IDEA appears to be secure against DC after 4 of
its 8 rounds (cf. Note 7.107). Daemen [289] also references attacks on reduced-round vari-
ants of IDEA. While linear cryptanalysis (LC) can be applied to any iterated block cipher,
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Harpes, Kramer, and Massey [541] provide a generalization thereof; IDEA and SAFER K-
64 are argued to be secure against this particular generalization.

Lai, Massey, and Murphy [730] (see also Lai [726]) generalized DC to apply to Markov
ciphers (which they introduced for this purpose; DES, FEAL, and LOKI are all examples
under the assumption of independent round keys) including IDEA; broadened the notion of
a difference from that based on ⊕ to: ∆X = X ⊗ (X∗)−1 where ⊗ is a specified group
operation and (X∗)−1 is the group inverse of an elementX∗; and defined an i-round differ-
ential (as opposed to an i-round characteristic used by Biham and Shamir [138] on DES) to
be a pair (α, β) such that two distinct plaintexts with difference∆X = α results in a pair
of round i outputs with difference β.

Decimal values corresponding to Tables 7.12 and 7.13 may be found in Lai [726]. A table-
based alternative for multiplication mod 216 + 1 (cf. Note 7.104) is to look up the anti-log
of logα(a) + logα(b) mod 2

16, relative to a generator α of Z∗216+1; the required tables,
however, are quite large.

§7.7
Massey [787] introduced SAFER K-64 with a 64-bit key and initially recommended 6
rounds, giving a reference implementation and test vectors (cf. Example 7.114). It is not
patented. Massey [788] then published SAFER K-128 (with a reference implementation),
differing only in its use of a non-proprietary (and backwards compatible) key schedule ac-
commodating 128-bit keys, proposed by a Singapore group; 10 rounds were recommended
(12 maximum). Massey [788] gave further justification for design components of SAFER
K-64. Vaudenay [1215] showed SAFER K-64 is weakened if the S-box mapping (Re-
mark 7.112) is replaced by a random permutation.

Knudsen [685] proposed the modified key schedule of Note 7.110 after finding a weakness
in 6-round SAFER K-64 that, while not of practical concern for encryption (with 245 chosen
plaintexts, it finds 8 bits of the key), permitted collisions when using the cipher for hashing.
This and a subsequent certificational attack on SAFER K-64 by S. Murphy (to be published)
lead Massey (“Strengthened key schedule for the cipher SAFER”, posted to the USENET
newsgroup sci.crypt, September 9 1995) to advise adoption of the new key schedule, with
the resulting algorithm distinguished as SAFER SK-64 with 8 rounds recommended (min-
imum 6, maximum 10); an analogous change to the 128-bit key schedule yields SAFER
SK-128 for which 10 rounds remain recommended (maximum 12). A new variant of DC
by Knudsen and Berson [687] using truncated differentials (building on Knudsen [686])
yields a certificational attack on 5-round SAFER K-64 with 245 chosen plaintexts; the at-
tack, which does not extend to 6 rounds, indicates that security is less than argued by Massey
[788], who also notes that preliminary attempts at linear cryptanalysis of SAFER were un-
successful.

RC5 was designed by Rivest [1056], and published along with a reference implementation.
The magic constants of Table 7.14 are based on the golden ratio and the base of natural log-
arithms. The data-dependent rotations (which vary across rounds) distinguish RC5 from
iterated ciphers which have identical operations each round; Madryga [779] proposed an
earlier (less elegant) cipher involving data-dependent rotations. A preliminary examination
by Kaliski and Yin [656] suggested that, while variations remain to be explored, standard
linear and differential cryptanalysis appear impractical for RC5–32 (64-bit blocksize) for
r = 12: their differential attacks on 9 and 12 round RC5 require, respectively, 245, 262

chosen-plaintext pairs, while their linear attacks on 4, 5, and 6-round RC5–32 require, re-
spectively, 237, 247, 257 known plaintexts. Both attacks depend on the number of rounds
and the blocksize, but not the byte-length of the input key (since subkeys are recovered di-
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rectly). Knudsen and Meier [689] subsequently presented differential attacks on RC5 which
improved on those of Kaliski and Yin by a factor up to 512, and showed that RC5 has so-
called weak keys (independent of the key schedule) for which these differential attacks per-
form even better.

LOKI was introduced by Brown, Pieprzyk, and Seberry [215] and renamed LOKI’89 after
the discovery of weaknesses lead to the introduction of LOKI’91 by Brown et al. [214].
Knudsen [682] noted each LOKI’89 key fell into a class of 16 equivalent keys, and the
differential cryptanalysis of Biham and Shamir [137] was shown to be effective against
reduced-round versions. LOKI’91 failed to succumb to differential analysis by Knudsen
[683]; Tokita et al. [1193] later confirmed the optimality of Knudsen’s characteristics, sug-
gesting that LOKI’89 and LOKI’91 were resistant to both ordinary linear and differential
cryptanalysis. However, neither should be used for hashing as originally proposed (see
Knudsen [682]) or in other modes (see Preneel [1003]). Moreover, both are susceptible
to related-key attacks (Note 7.6), popularized by Biham [128, 129]; but see also the ear-
lier ideas of Knudsen [683]. Distinct from these are key clustering attacks (see Diffie and
Hellman [347, p.410]), wherein a cryptanalyst first finds a key “close” to the correct key,
and then searches a cluster of “nearby” keys to find the correct one.

8 × 32 bit S-boxes first appeared in the Snefru hash function of Merkle [854]; here such
fixed S-boxes created from random numbers were used in its internal encryption mapping.
Regarding large S-boxes, see also Gordon and Retkin [517], Adams and Tavares [7], and
Biham [132]. Merkle [856] again used 8 × 32 S-boxes in Khufu and Khafre (see also
§15.2.3(viii)). In this 1990 paper, Merkle gives a chosen-plaintext differential attack de-
feating 8 rounds of Khufu (with secret S-box). Regarding 16-round Khafre, a DC attack by
Biham and Shamir [138, 137] requires somewhat over 1500 chosen plaintexts and one hour
on a personal computer, and their known-plaintext differential attack requires 237.5 plain-
texts; for 24-round Khafre, they require 253 chosen plaintexts or 258.5 known plaintexts.
Khufu with 16 rounds was examined by Gilbert and Chauvaud [456], who gave an attack
using 243 chosen plaintexts and about 243 operations.

CAST is a design procedure for a family of DES-like ciphers, featuring fixed m × n bit
S-boxes (m < n) based on bent functions. Adams and Tavares [7] examine the construc-
tion of large S-boxes resistant to differential cryptanalysis, and give a partial example (with
64-bit blocklength and 8× 32 bit S-boxes) of a CAST cipher. CAST ciphers have variable
keysize and numbers of rounds. Rijmen and Preneel [1049] presented a cryptanalytic tech-
nique applicable to Feistel ciphers with non-surjective round functions (e.g., LOKI’91 and
an example CAST cipher), noting cases where 6 to 8 rounds is insufficient.

Blowfish is a 16-round DES-like cipher due to Schneier [1093], with 64-bit blocks and keys
of length up to 448 bits. The computationally intensive key expansion phase creates eigh-
teen 32-bit subkeys plus four 8 × 32 bit S-boxes derived from the input key (cf. Khafre
above), for a total of 4168 bytes. See Vaudenay [1216] for a preliminary analysis of Blow-
fish.

3-WAY is a block cipher with 96-bit blocksize and keysize, due to Daemen [289] and intro-
duced by Daemen, Govaerts, and Vandewalle [290] along with a reference C implementa-
tion and test vectors. It was designed for speed in both hardware and software, and to resist
differential and linear attacks. Its core is a 3-bit nonlinear S-box and a linear mapping rep-
resentable as polynomial multiplication in Z122 .

SHARK is an SP-network block cipher due to Rijmen et al. [1048] (coordinates for a refer-
ence implementation are given) which may be viewed as a generalization of SAFER, em-
ploying highly nonlinear S-boxes and the idea of MDS codes (cf. Note 12.36) for diffusion
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to allow a small number of rounds to suffice. The block ciphers BEAR and LION of An-
derson and Biham [30] are 3-round unbalanced Feistel networks, motivated by the earlier
construction of Luby and Rackoff [776] (see also Maurer [816] and Lucks [777]) which
provides a provably secure (under suitable assumptions) block cipher from pseudorandom
functions using a 3-round Feistel structure. SHARK, BEAR, and LION all remain to be
subjected to independent analysis in order to substantiate their conjectured security levels.

SKIPJACK is a classified block cipher whose specification is maintained by the U.S. Na-
tional Security Agency (NSA). FIPS 185 [405] notes that its specification is available to
organizations entering into a Memorandum of Agreement with the NSA, and includes in-
terface details (e.g., it has an 80-bit secret key). A public report contains results of a pre-
liminary security evaluation of this 64-bit block cipher (“SKIPJACK Review, Interim Re-
port, The SKIPJACK Algorithm”, 1993 July 28, by E.F. Brickell, D.E. Denning, S.T. Kent,
D.P. Maher, and W. Tuchman). See also Roe [1064, p.312] regarding curious results on the
cyclic closure tests on SKIPJACK, which give evidence related to the size of the cipher
keyspace.

GOST 28147-89 is a Soviet government encryption algorithm with a 32-round Feistel struc-
ture and unspecified S-boxes; see Charnes et al. [241].

RC2 is a block cipher proprietary to RSA Data Security Inc. (as is the stream cipher RC4).
WAKE is a block cipher due to Wheeler [1237] employing a key-dependent table, intended
for fast encryption of bulk data on processors with 32-bit words. TEA (Tiny Encryption
Algorithm) is a block cipher proposed by Wheeler and Needham [1238].
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