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Claude Elwood Shannon

o Claude Elwood Shannon (1916-2001) was an American
mathematician, electronic engineer, and cryptographer — he is known
as “The father of Information Theory”

@ Two landmark papers he had written established the foundations of
information theory and modern cryptography

o He is also credited with founding digital circuit design theory in 1937,
when as a 21-year old master’s degree student at MIT, he wrote his
thesis demonstrating the applications of boolean algebra to construct
digital circuits — this work is considered as the most important
master’s thesis of all times!

@ Shannon established the concept of perfect secrecy in his 1948-paper
“Communication Theory of Secrecy Systems” (Bell Systems
Technical Journal, vol 28, pages 656-715)
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Shannon's Theory of Secrecy

o Consider the block cipher encryption and decryption functions
C = EK(M) and M = DK(C)

such that for any key K, the functions E(-) and D(-) are one-to-one,
and Dk (Ek(-)) is the identity transformation

o Let {My, My, ..., M} be the message space, where the probability
p(M;) of each message is known a priori, which are not necessarily
equal (uniform distribution is not assumed)

o Let {K1, Ko, ..., Kk} be the key space, where probability of each key
is known as p(Kj), which are usually equal: p(K;) =1/k for
i=1,2,...,k (keys are uniformly distributed)
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Bipartite Graph of Mapping

o Keys map all messages to all ciphertexts, giving a bipartite graph
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Shift Cipher

o The message space {a,b,...,z} and m = 26, such that the messages
are encoded as integers from Z = {0,1,2,...,25}

The message probabilities are determined by the language of the
communication, and not necessarily equal, for example p(a) = 0.082,
p(e) = 0.127, p(z) = 0.001, however > p(M) =1

The key space 256 = {0,1,2,...,25} and k = 26, such that a key K
is uniformly selected from 256, and thus, p(K) = 1/26

@ Any message, for example M = e, is encrypted to any of the
ciphertexts C € {a,b,...,z}, based on the value of the key:
C=M+ K (mod 26)

Since each key K € Zy¢ is equally likely, each ciphertext
C €{a,b,...,z} is equally likely for a given, fixed message, i.e.,
p(C)=1/26
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Shift Cipher Bipartite Graph
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Affine Cipher

The message space {a,b,...,z} and m = 26; similarly, the messages
are encoded as integers from Z6 = {0,1,2,...,25} and the message
probabilities are known a priori

o A message, for example M = e, is encrypted to any of the ciphertexts
C € {a,Db,...,z}, based on the value of the key pair («, 3), via the
encryption function C = a- M+ 3 (mod 26)

The key space (o, 8) with « € {1,3,5,7,9,11,15,17,19,21, 23,25}
and B € Zy6, and therefore, k =12 - 26 = 312

The number of keys is more than the number of messages kK > m

We also assume that a key K is uniformly selected: p(K) =1/312
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Affine Cipher

o There are 312 keys (more than the number of ciphertexts), and thus,
a ciphertext C will appear more than once in the encryption of a
given, fixed message M

@ There are different key pairs (a1, 51) and (a2, £2) that map the same
plaintext to the same ciphertext: axM + 1 = apM + B2 (mod 26)

o For example, for the plaintext M = e, the following 12 key pairs
(v, B) computes the ciphertext as C = d

(1,25) (3,17) (5,9) (7,1) (9,19) (11,11)
(15,21) (17,13) (19,5) (21,23) (23,15) (25,7)

In fact, each of the 26 ciphertexts appears exactly 12 times, therefore,
for a given, fixed message each ciphertext is equally likely, as all 312
key pairs are scanned, p(C) = 12/312 =1/26
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Perfect Cipher

o A cipher is perfect if for any pair (M, C), the probability of M is equal
to the probability of M with the corresponding C is known

p(M|C) = p(M)

o This implies that the knowledge of ciphertext does not yield
information about the plaintext

o A perfect cipher is immune against ciphertext only attacks

o Even if the adversary has infinite computational power, he/she cannot
discover the plaintext in a ciphertext only attack scenario — this is
called unconditional security in the context of ciphertext only attacks
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Perfect Cipher

o Consider the Bayes' theorem: p(M)p(C|M) = p(C)p(M|C)

o Therefore, a cipher is perfect if and only if
vV M,C p(C)=p(CIM)

o Since we have
p(CIM)= > p(K)
Ex(M)=C

Therefore, a cipher is perfect if and only

v C Z p(K) is independent of M

K
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Perfect Cipher

o Theorem: For a perfect cipher k > m, that the number of keys is
larger than or equal to the number of messages

@ Proof: Assume k < m and consider a ciphertex C* such that
p(C*) > 0. There exists L messages (where 1 < L < m) such that
M = Dk (C*) for some K. Let M* not obtainable from Dy (C*)
(there are m — L such messages), then

p(C*IM*) = > p(K) = Y p(K) =0

K Kel
Ex(M*)=C*

This is a contradiction since in a perfect cipher we must have

p(C*IM*) = p(C*) >0
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Shift Cipher

Consider the shift cipher for M € {a, b, ..., z} for mapping a single
letter

o We have 26 keys and 26 messages: k = m = 26, and

p(C) = p(CIM) = 1/26

When we encrypt 2 letters, we have k = 26, and n = 262, and thus,
p(C) = 1/262

This implies each M has only 26 values for C, and thus, for those Cs:
p(C|M) = 1/26, while for the other Cs: p(C|M) =0

In particular, p(C = XY|M = aa) =0 for any X # Y
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Vernam Cipher

@ Vernam cipher is a generalization of the Vigenere cipher, where the
key is as long as the message

@ Assuming k = m and the keys are selected randomly, we have
p(K) =1/k =1/m, and thus

p(CIM) = p(K = C— M) = © =

Since p(C|M) = 1/m for any pair (M, C), therefore, p(C|M) = p(C)

o For all possible ciphertext, all messages are possible, as given M and
C, there is a unique key that encrypts M to C
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One-Time Pad

o Vernam cipher is called one-time pad when M, C, K are single bits,
and r; is randomly generated with uniform probability p(r;) = 1/2

n r» r I'n
@ my mo mj mp
1 (o)) lof} Cn

o The message m; € {0,1} probabilities p(0) and p(1) may or may not
be known, however, they are not assumed to be equal, but
p(0) +p(1) =1
o For every value of ¢; € {0,1}, there are 2 messages and 2 keys:
¢i = 0 implies (r;, m;) = (0,0) or (r;, m;) = (1,1)
¢i = 1 implies (r;, m;) = (0,1) or (r;, m;) = (1,0)
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One-Time Pad Bipartite Graph

p(ci =0|lm; =0) = p(ri =0)=1/2 and p(c;=0|m; =1) =p(ri=1)=1/2
plci=1mi=0)=p(r,=1)=1/2 and p(¢=1m=1)=p(n=1)=1/2

p(m;=0) p(c;=0) = 1/2

p(m;=1) p(c;=1)=1/2

p(r=0) = p(ri=1) =1/2
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3-bit One-Time Pad

o Similarly, consider the 3-bit ciphertext (cicac3): this ciphertext was
obtained by a bitwise XOR operation of the 3-bit plaintext (mymyms)
and the 3-bit random key (rir2r3) such that ¢; = m; @ r;

o The 3-bit key (r1r2r3) is one of the following 8 values, with equal 1/8
probability: {000,001, 010,011,100, 101,110,111}

o We may or may not know the plaintext probabilities, however, each
(m1mym3) appears with some probability 0 < p(mymam3) < 1

o Regardless of what the plaintext is, each ciphertext is equally likely,
with probability 1/8, for example, if (mymams3) = (101) then, any of
these 8 key and ciphertext pairs are equally likely:

rnrr3: 000 001 010 011 100 101 110 111
cicpc3: 101 100 111 110 001 000 011 010
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Electronic Codebook Mode

o Given a long message M = MyM, - - - My, we encrypt each block M;
to C; = Ex(M;) using the same key, and append the individual
ciphertexts to obtain the result C = GGG --- Cy

o This does not constitute a perfect cipher since for N > 1, the number
of keys < the number of messages

o Note that p(C = XY|M = aa) = 0, however, p(C = XY) # 0 when
XY

@ Thus, we can gain some information on the key or the message under
a ciphertext only scenario
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