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Claude Elwood Shannon

Claude Elwood Shannon (1916-2001) was an American
mathematician, electronic engineer, and cryptographer — he is known
as “The father of Information Theory”

Two landmark papers he had written established the foundations of
information theory and modern cryptography

He is also credited with founding digital circuit design theory in 1937,
when as a 21-year old master’s degree student at MIT, he wrote his
thesis demonstrating the applications of boolean algebra to construct
digital circuits — this work is considered as the most important
master’s thesis of all times!

Shannon established the concept of perfect secrecy in his 1948-paper
“Communication Theory of Secrecy Systems” (Bell Systems
Technical Journal, vol 28, pages 656-715)
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Shannon’s Theory of Secrecy

Consider the block cipher encryption and decryption functions

C = EK (M) and M = DK (C )

such that for any key K , the functions E (·) and D(·) are one-to-one,
and DK (EK (·)) is the identity transformation

Let {M1,M2, . . . ,Mm} be the message space, where the probability
p(Mi ) of each message is known a priori, which are not necessarily
equal (uniform distribution is not assumed)

Let {K1,K2, . . . ,Kk} be the key space, where probability of each key
is known as p(Ki ), which are usually equal: p(Ki ) = 1/k for
i = 1, 2, . . . , k (keys are uniformly distributed)
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Bipartite Graph of Mapping

Keys map all messages to all ciphertexts, giving a bipartite graph
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Shift Cipher

The message space {a, b, . . . , z} and m = 26, such that the messages
are encoded as integers from Z26 = {0, 1, 2, . . . , 25}
The message probabilities are determined by the language of the
communication, and not necessarily equal, for example p(a) = 0.082,
p(e) = 0.127, p(z) = 0.001, however

∑
p(M) = 1

The key space Z26 = {0, 1, 2, . . . , 25} and k = 26, such that a key K
is uniformly selected from Z26, and thus, p(K ) = 1/26

Any message, for example M = e, is encrypted to any of the
ciphertexts C ∈ {a, b, . . . , z}, based on the value of the key:
C = M + K (mod 26)

Since each key K ∈ Z26 is equally likely, each ciphertext
C ∈ {a, b, . . . , z} is equally likely for a given, fixed message, i.e.,
p(C ) = 1/26
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Shift Cipher Bipartite Graph
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Affine Cipher

The message space {a, b, . . . , z} and m = 26; similarly, the messages
are encoded as integers from Z26 = {0, 1, 2, . . . , 25} and the message
probabilities are known a priori

A message, for example M = e, is encrypted to any of the ciphertexts
C ∈ {a, b, . . . , z}, based on the value of the key pair (α, β), via the
encryption function C = α ·M + β (mod 26)

The key space (α, β) with α ∈ {1, 3, 5, 7, 9, 11, 15, 17, 19, 21, 23, 25}
and β ∈ Z26, and therefore, k = 12 · 26 = 312

The number of keys is more than the number of messages k > m

We also assume that a key K is uniformly selected: p(K ) = 1/312
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Affine Cipher

There are 312 keys (more than the number of ciphertexts), and thus,
a ciphertext C will appear more than once in the encryption of a
given, fixed message M

There are different key pairs (α1, β1) and (α2, β2) that map the same
plaintext to the same ciphertext: α1M + β1 = α2M + β2 (mod 26)

For example, for the plaintext M = e, the following 12 key pairs
(α, β) computes the ciphertext as C = d

(1, 25) (3, 17) (5, 9) (7, 1) (9, 19) (11, 11)
(15, 21) (17, 13) (19, 5) (21, 23) (23, 15) (25, 7)

In fact, each of the 26 ciphertexts appears exactly 12 times, therefore,
for a given, fixed message each ciphertext is equally likely, as all 312
key pairs are scanned, p(C ) = 12/312 = 1/26
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Perfect Cipher

A cipher is perfect if for any pair (M,C ), the probability of M is equal
to the probability of M with the corresponding C is known

p(M|C ) = p(M)

This implies that the knowledge of ciphertext does not yield
information about the plaintext

A perfect cipher is immune against ciphertext only attacks

Even if the adversary has infinite computational power, he/she cannot
discover the plaintext in a ciphertext only attack scenario — this is
called unconditional security in the context of ciphertext only attacks
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http://koclab.org


Perfect Secrecy Shannon, Perfect Ciphers, One-Time Pad

Perfect Cipher

Consider the Bayes’ theorem: p(M)p(C |M) = p(C )p(M|C )

Therefore, a cipher is perfect if and only if

∀ M,C p(C ) = p(C |M)

Since we have
p(C |M) =

∑
K

EK (M)=C

p(K )

Therefore, a cipher is perfect if and only

∀ C

 ∑
K

EK (M)=C

p(K ) is independent of M


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Perfect Cipher

Theorem: For a perfect cipher k ≥ m, that the number of keys is
larger than or equal to the number of messages

Proof: Assume k < m and consider a ciphertex C ∗ such that
p(C ∗) > 0. There exists L messages (where 1 ≤ L ≤ m) such that
M = DK (C ∗) for some K . Let M∗ not obtainable from DK (C ∗)
(there are m − L such messages), then

p(C ∗|M∗) =
∑
K

EK (M∗)=C∗

p(K ) =
∑
K∈∅

p(K ) = 0

This is a contradiction since in a perfect cipher we must have

p(C ∗|M∗) = p(C ∗) > 0
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Shift Cipher

Consider the shift cipher for M ∈ {a, b, . . . , z} for mapping a single
letter

We have 26 keys and 26 messages: k = m = 26, and

p(C ) = p(C |M) = 1/26

When we encrypt 2 letters, we have k = 26, and n = 262, and thus,
p(C ) = 1/262

This implies each M has only 26 values for C , and thus, for those C s:
p(C |M) = 1/26, while for the other C s: p(C |M) = 0

In particular, p(C = XY |M = aa) = 0 for any X 6= Y
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Vernam Cipher

Vernam cipher is a generalization of the Vigenere cipher, where the
key is as long as the message

Assuming k = m and the keys are selected randomly, we have
p(K ) = 1/k = 1/m, and thus

p(C |M) = p(K = C −M) =
1

m
=

1

k

Since p(C |M) = 1/m for any pair (M,C ), therefore, p(C |M) = p(C )

For all possible ciphertext, all messages are possible, as given M and
C , there is a unique key that encrypts M to C
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One-Time Pad

Vernam cipher is called one-time pad when M,C ,K are single bits,
and ri is randomly generated with uniform probability p(ri ) = 1/2

r1 r2 · · · ri · · · rn
⊕ m1 m2 · · · mi · · · mn

c1 c2 · · · ci · · · cn

The message mi ∈ {0, 1} probabilities p(0) and p(1) may or may not
be known, however, they are not assumed to be equal, but
p(0) + p(1) = 1

For every value of ci ∈ {0, 1}, there are 2 messages and 2 keys:
ci = 0 implies (ri ,mi ) = (0, 0) or (ri ,mi ) = (1, 1)
ci = 1 implies (ri ,mi ) = (0, 1) or (ri ,mi ) = (1, 0)
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One-Time Pad Bipartite Graph

p(ci = 0|mi = 0) = p(ri = 0) = 1/2 and p(ci = 0|mi = 1) = p(ri = 1) = 1/2
p(ci = 1|mi = 0) = p(ri = 1) = 1/2 and p(ci = 1|mi = 1) = p(r0 = 1) = 1/2
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3-bit One-Time Pad

Similarly, consider the 3-bit ciphertext (c1c2c3): this ciphertext was
obtained by a bitwise XOR operation of the 3-bit plaintext (m1m2m3)
and the 3-bit random key (r1r2r3) such that ci = mi ⊕ ri

The 3-bit key (r1r2r3) is one of the following 8 values, with equal 1/8
probability: {000, 001, 010, 011, 100, 101, 110, 111}
We may or may not know the plaintext probabilities, however, each
(m1m2m3) appears with some probability 0 < p(m1m2m3) < 1

Regardless of what the plaintext is, each ciphertext is equally likely,
with probability 1/8, for example, if (m1m2m3) = (101) then, any of
these 8 key and ciphertext pairs are equally likely:

r1r2r3 : 000 001 010 011 100 101 110 111
c1c2c3 : 101 100 111 110 001 000 011 010
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Electronic Codebook Mode

Given a long message M = M1M2 · · ·MN , we encrypt each block Mi

to Ci = EK (Mi ) using the same key, and append the individual
ciphertexts to obtain the result C = C1C2 · · ·CN

This does not constitute a perfect cipher since for N > 1, the number
of keys < the number of messages

Note that p(C = XY |M = aa) = 0, however, p(C = XY ) 6= 0 when
X 6= Y

Thus, we can gain some information on the key or the message under
a ciphertext only scenario
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