Groups in Cryptography

Groups in Cryptography

- A set S and a binary operation \oplus
- A group $G=(S, \oplus)$ if S and \oplus satisfy:
- Closure: If $a, b \in S$ then $a \oplus b \in S$
- Associativity: For $a, b, c \in S,(a \oplus b) \oplus c=a \oplus(b \oplus c)$
- A neutral element: $e \in S$ such that $a \oplus e=e \oplus a=a$
- Every element $a \in S$ has an inverse $\operatorname{inv}(a) \in S$:

$$
a \oplus \operatorname{inv}(a)=\operatorname{inv}(a) \oplus a=e
$$

- Commutativity: If $a \oplus b=b \oplus a$, then the group G is called an a commutative group or an Abelian group
- In cryptography we deal with Abelian groups

Multiplicative Groups

- The operation \oplus is a multiplication
- The neutral element is generally called the unit element $e=1$
- The inverse of an element a is denoted as a^{-1}
- Multiplication of an element k times by itself is denoted as

$$
a^{k}=\overbrace{a \cdot a^{\prime} \cdots a}^{k \text { copies }}
$$

- Example: $G=\left(\mathcal{Z}_{p}, * \bmod p\right)$ where p is prime
- The set $\mathcal{Z}_{p}=\{1,2, \ldots, p-1\}$
- The operation $*$ is multiplication $\bmod p$

Multiplicative Group Example

- $G=\left(\mathcal{Z}_{5}, * \bmod 5\right)$
- The set $\mathcal{Z}_{5}=\{1,2,3,4\}$
- The operation multiplication $\bmod 5$ over \mathcal{Z}_{5}
- The unit element $e=1$
- The multiplication table, powers and inverses

* mod 5	1	2	3	4	
1	1	2	3	4	$2^{1}=2$
2	2	4	1	3	$2^{2}=2 \cdot 2=4$
3	3	1	4	2	$2^{3}=2 \cdot 2 \cdot 2=3$
4	4	3	2	1	$2^{4}=2 \cdot 2 \cdot 2 \cdot 2=1$
$1^{-1}=1$					
$2^{-1}=3$					
$3^{-1}=2$					
$4^{-1}=4$					

Multiplicative Groups

- Example: $\left(\mathcal{Z}_{n}^{*}, * \bmod n\right)$
- The operation $*$ is multiplication $\bmod n$
- If n is prime, $\mathcal{Z}_{n}^{*}=\{1,2, \ldots, n-1\}$
- If n is not a prime, \mathcal{Z}_{n}^{*} consists of elements a with $\operatorname{gcd}(a, n)=1$
- In other words, \mathcal{Z}_{n}^{*} is the set of invertible elements $\bmod n$

Multiplicative Group Examples

- Consider the multiplication tables for $\bmod 5$ and $\bmod 6$

$* \bmod 5$	1	2	3	4							
1	1	2	3	4							
2	2	4	1	3							
3	3	1	4	2							
4	4	3	2	1	\quad	$* \bmod 6$	$\mathbf{1}$	2	3	4	$\mathbf{5}$
---:	---:	---:	---:	---:	---:						
$\mathbf{1}$	$\mathbf{1}$	2	3	4	$\mathbf{5}$						
2	2	4	0	2	4						
3	3	0	3	0	3						
4	4	2	0	4	2						
$\mathbf{5}$	$\mathbf{5}$	4	3	2	$\mathbf{1}$						

- $\bmod 5$ multiplication on the set $\mathcal{Z}_{5}=\{1,2,3,4\}$ forms the group \mathcal{Z}_{5}^{*}
- mod 6 multiplication on the set $\mathcal{Z}_{6}=\{1,2,3,4,5\}$ does not form a group since 2, 3 and 4 are not invertible
- However, mod 6 multiplication on the set of invertible elements forms a group: $\left(\mathcal{Z}_{6}^{*}, * \bmod 6\right)=(\{1,5\}, * \bmod 6)$

Additive Groups

- The operation \oplus is an addition
- The neutral element is generally called the zero element $e=0$
- Addition of an element a k times by itself, denoted as

$$
[k] a=\overbrace{a+\cdots+a}^{k \text { copies }}
$$

- The inverse of an element a is denoted as $-a$
- Example: $\left(\mathcal{Z}_{n},+\bmod n\right)$ is a group; the set is $\mathcal{Z}_{n}=\{0,1,2, \ldots, n-1\}$ and the operation is addition $\bmod n$

Additive Group Examples

- Consider the addition tables mod 4 and $\bmod 5$

$\bmod 4$	0	1	2	3							
0	0	1	2	3							
1	1	2	3	0							
2	2	3	0	1							
3	3	0	1	2		$+\bmod$	5	0	1	2	3
---:	---:	---:	---:	---:	---:						
	0	1	2	3	4						
1	1	2	3	4	0						
2	2	3	4	0	1						
3	3	4	0	1	2						
4	4	0	1	2	3						

- mod 4 addition on $\mathcal{Z}_{4}=\{0,1,2,3\}$ forms the $\operatorname{group}\left(\mathcal{Z}_{4},+\bmod 4\right)$
- $\bmod 5$ addition on $\mathcal{Z}_{5}=\{0,1,2,3,4\}$ forms the $\operatorname{group}\left(\mathcal{Z}_{5},+\bmod 5\right)$

Order of a Group

- The order of a group is the number of elements in the set
- The order of $\left(\mathcal{Z}_{11}^{*}, * \bmod 11\right)$ is 10 , since the set \mathcal{Z}_{11}^{*} has 10 elements: $\{1,2, \ldots, 10\}$
- The order of $\operatorname{group}\left(\mathcal{Z}_{p}^{*}, * \bmod p\right)$ is equal to $p-1$
- Note that, since p is prime, the group order $p-1$ is not prime
- The order of $\left(\mathcal{Z}_{11},+\bmod 11\right)$ is 11 , since the set \mathcal{Z}_{11} has 11 elements: $\{0,1,2, \ldots, 10\}$
- The order of $\left(\mathcal{Z}_{n},+\bmod n\right)$ is n, since the set \mathcal{Z}_{n} has n elements: $\{0,1,2, \ldots, n-1\}$; here n could be prime or composite

Order of an Element

- The order of an element a in a multiplicative group is the smallest integer k such that $a^{k}=1$, where 1 is the unit element of the group
- $\operatorname{order}(3)=5$ in $\left(\mathcal{Z}_{11}^{*}, * \bmod 11\right)$ since

$$
\left\{3^{i} \bmod 11 \mid 1 \leq i \leq 10\right\}=\{3,9,5,4,1\}
$$

- $\operatorname{order}(2)=10$ in $\left(\mathcal{Z}_{11}^{*}, * \bmod 11\right)$ since

$$
\left\{2^{i} \bmod 11 \mid 1 \leq i \leq 10\right\}=\{2,4,8,5,10,9,7,3,6,1\}
$$

- Note that $\operatorname{order}(1)=1$

Order of an Element

- The order of an element a in an additive group is the smallest integer k such that $[k] a=0$, where 0 is the zero element
- order(3) in $\left(\mathcal{Z}_{11},+\bmod 11\right)$ is computed by finding the smallest k such that $[k] 3=0$
- This is obtained by successively computing

$$
3=3, \quad 3+3=6, \quad 3+3+3=9, \quad 3+3+3+3=1, \cdots
$$

until we obtain the zero element

- We find $\operatorname{order}(3)=11$ in $\left(\mathcal{Z}_{11},+\bmod 11\right)$

$$
\{[i] 3 \bmod 11 \mid 1 \leq i \leq 11\}=\{3,6,9,1,4,7,10,2,5,8,0\}
$$

- Note that $\operatorname{order}(0)=1$

Lagrange's Theorem

Theorem

The order of an element divides the order of the group.

- The order of the group $\left(\mathcal{Z}_{11}^{*}, * \bmod 11\right)$ is equal to 10 , while $\operatorname{order}(3)=5$ in $\left(\mathcal{Z}_{11}^{*}, * \bmod 11\right)$, and 5 divides 10
- $\operatorname{order}(2)=10$ in $\left(\mathcal{Z}_{11}^{*}, * \bmod 11\right)$, and 10 divides 10
- Similarly, order $(1)=1$ in $\left(\mathcal{Z}_{11}^{*}, * \bmod 11\right)$, and 1 divides 10
- Since the divisors of 10 are $1,2,5$, and 10 , the element orders can only be $1,2,5$, or 10

Lagrange Theorem

- On the other hand, $\operatorname{order}(3)=11$ in $\left(\mathcal{Z}_{11},+\bmod 11\right)$, and $11 \mid 11$
- Similarly, $\operatorname{order}(2)=11$ in $\left(\mathcal{Z}_{11},+\bmod 11\right)$
- We also found $\operatorname{order}(0)=1$
- The order of the group $\left(\mathcal{Z}_{11},+\bmod 11\right)$ is 11
- Since 11 is a prime number, the order of any element in this group can be either 1 or 11
- 0 is the only element in $\left(\mathcal{Z}_{11},+\bmod 11\right)$ whose order is 1
- All other elements have the same order 11 which is the group order

Primitive Elements

- An element whose order is equal to the group order is called primitive
- The order of the group $\left(\mathcal{Z}_{11}^{*}, * \bmod 11\right)$ is 10 and $\operatorname{order}(2)=10$, therefore, 2 is a primitive element of the group
- $\operatorname{order}(2)=11$ and $\operatorname{order}(3)=11$ in $\left(\mathcal{Z}_{11},+\bmod 11\right)$, which is the order of the group, therefore 2 and 3 are both primitive elements in fact all elements of $\left(\mathcal{Z}_{11},+\bmod 11\right)$ are primitive except 0

Theorem

The number of primitive elements in $\left(\mathcal{Z}_{p}^{*}, * \bmod p\right)$ is $\phi(p-1)$.

- There are $\phi(10)=4$ primitive elements in $\left(\mathcal{Z}_{11}^{*}, * \bmod 11\right)$,
- The primitive elements are: $2,6,7,8$
- All of these elements are of order 10

Cyclic Groups and Generators

- We call a group cyclic if all elements of the group can be generated by repeated application of the group operation on a single element
- This element is called a generator
- Any primitive element is a generator
- For example, 2 is a generator of $\left(\mathcal{Z}_{11}^{*}, * \bmod 11\right)$ since

$$
\left\{2^{i} \mid 1 \leq i \leq 10\right\}=\{2,4,8,5,10,9,7,3,6,1\}=\mathcal{Z}_{11}^{*}
$$

- Also, 2 is a generator of $\left(\mathcal{Z}_{11},+\bmod 11\right)$ since

$$
\{[i] 2 \bmod 11 \mid 1 \leq i \leq 11\}=\{2,4,6,8,10,1,3,5,7,9,0\}=\mathcal{Z}_{11}
$$

