Groups in Cryptography

http://koclab.org Çetin Kaya Koç

Groups in Cryptography

- ullet A set S and a binary operation \oplus
- A group $G = (S, \oplus)$ if S and \oplus satisfy:
 - Closure: If $a, b \in S$ then $a \oplus b \in S$
 - Associativity: For $a, b, c \in S$, $(a \oplus b) \oplus c = a \oplus (b \oplus c)$
 - A neutral element: $e \in S$ such that $a \oplus e = e \oplus a = a$
 - Every element $a \in S$ has an inverse inv $(a) \in S$:

$$a \oplus \mathsf{inv}(a) = \mathsf{inv}(a) \oplus a = e$$

- Commutativity: If $a \oplus b = b \oplus a$, then the group G is called an a commutative group or an Abelian group
- In cryptography we deal with Abelian groups

◆ロト ◆部 ト ◆ 恵 ト ◆ 恵 ・ り へ ○

http://koclab.org

Multiplicative Groups

- The operation ⊕ is a multiplication
- ullet The neutral element is generally called the **unit element** e=1
- The inverse of an element a is denoted as a^{-1}
- Multiplication of an element k times by itself is denoted as

$$a^k = \overbrace{a \cdot a \cdot \cdot \cdot a}^{k \text{ copies}}$$

- Example: $G = (\mathcal{Z}_p, * \mod p)$ where p is prime
- The set $\mathcal{Z}_p = \{1, 2, \dots, p-1\}$
- The operation * is multiplication mod p

◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q ○

http://koclab.org

Multiplicative Group Example

- $G = (\mathcal{Z}_5, * \bmod 5)$
- The set $\mathcal{Z}_5 = \{1, 2, 3, 4\}$
- ullet The operation multiplication mod 5 over \mathcal{Z}_5
- The unit element e=1
- The multiplication table, powers and inverses

$$1^{-1} = 1$$
 $2^{-1} = 3$
 $3^{-1} = 2$
 $4^{-1} = 4$

◆ロト ◆団ト ◆恵ト ◆恵ト ・恵 ・ かへ○

Multiplicative Groups

- Example: $(\mathcal{Z}_n^*, * \mod n)$
- The operation * is multiplication mod n
- If *n* is prime, $\mathcal{Z}_n^* = \{1, 2, ..., n-1\}$
- ullet If n is not a prime, \mathcal{Z}_n^* consists of elements a with $\gcd(a,n)=1$
- In other words, \mathcal{Z}_n^* is the set of invertible elements mod n

<ロ > → □ > → □ > → □ > → □ > → ○ ○ ○

ttp://koclab.org Çetin Kaya Koç Winter 2020

Multiplicative Group Examples

Consider the multiplication tables for mod 5 and mod 6

* mod 5	1	2	3	4
1	1	2	3	4
2	2	4	1	3
3	3	1	4	2
4	4	2 4 1 3	2	1

* mod 6	1	2	3	4	5
1	1	2	3	4	5
2	2	4	0	2	4
3	3	0	3	0	3
4	4	2	0	4	2
5	5	4	3 0 3 0 3	2	1

- \bullet mod 5 multiplication on the set $\mathcal{Z}_5 = \{1,2,3,4\}$ forms the group \mathcal{Z}_5^*
- mod 6 multiplication on the set $\mathcal{Z}_6=\{1,2,3,4,5\}$ does not form a group since 2, 3 and 4 are not invertible
- However, mod 6 multiplication on the set of invertible elements forms a group: $(\mathcal{Z}_6^*,* \mod 6) = (\{1,5\},* \mod 6)$

←□ ▶ ←□ ▶ ← □ ▶

Additive Groups

- ullet The operation \oplus is an addition
- The neutral element is generally called the zero element e=0
- Addition of an element a k times by itself, denoted as

$$[k] a = \underbrace{a + \cdots + a}^{k \text{ copies}}$$

- The inverse of an element a is denoted as -a
- Example: $(\mathcal{Z}_n, + \text{mod } n)$ is a group; the set is $\mathcal{Z}_n = \{0, 1, 2, \dots, n-1\}$ and the operation is addition mod n

◆ロト ◆問 ト ◆ 恵 ト ◆ 恵 ・ か Q ○

http://koclab.org

Additive Group Examples

Consider the addition tables mod 4 and mod 5

+ mod 4	0	1	2	3
0	0	1	2	3
1	1	2	3	0
1 2 3	2	3	0	1
3	3	1 2 3 0	1	2

+ mod 5 0 1 2 3 4	0	1	2	3	4
0	0	1	2	3	4
1	1	2	3	4	0
2	2	3	4	0	1
3	3	4	0	1	2
4	4	0	1	2	3

- ullet mod 4 addition on $\mathcal{Z}_4=\{0,1,2,3\}$ forms the group $(\mathcal{Z}_4,+$ mod 4)
- ullet mod 5 addition on $\mathcal{Z}_5=\{0,1,2,3,4\}$ forms the group $(\mathcal{Z}_5,+$ mod 5)

◆ロト ◆部 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q (*)

ttp://koclab.org Çetin Kaya Koç Winter 2020

Order of a Group

- The order of a group is the number of elements in the set
- The order of $(\mathcal{Z}_{11}^*,*$ mod 11) is 10, since the set \mathcal{Z}_{11}^* has 10 elements: $\{1,2,\ldots,10\}$
- The order of group $(\mathcal{Z}_p^*, * \text{mod } p)$ is equal to p-1
- Note that, since p is prime, the group order p-1 is not prime
- The order of $(\mathcal{Z}_{11}, + \text{ mod } 11)$ is 11, since the set \mathcal{Z}_{11} has 11 elements: $\{0, 1, 2, \dots, 10\}$
- The order of $(\mathcal{Z}_n, + \text{mod } n)$ is n, since the set \mathcal{Z}_n has n elements: $\{0, 1, 2, \ldots, n-1\}$; here n could be prime or composite

イロケイ部ケイミケイミナーミーのQの

http://koclab.org Çetin Kaya Koç Winter 2020

Order of an Element

- The order of an element a in a multiplicative group is the smallest integer k such that $a^k = 1$, where 1 is the unit element of the group
- order(3) = 5 in $(\mathcal{Z}_{11}^*, * \mod 11)$ since

$$\{ 3^i \mod 11 \mid 1 \le i \le 10 \} = \{3, 9, 5, 4, 1 \}$$

ullet order(2) = 10 in (\mathcal{Z}_{11}^* , * mod 11) since

$$\{ 2^i \mod 11 \mid 1 \le i \le 10 \} = \{2, 4, 8, 5, 10, 9, 7, 3, 6, 1 \}$$

• Note that order(1) = 1

◆ロト ◆個ト ◆園ト ◆園ト ■ りへぐ

ttp://koclab.org Çetin Kaya Koç Winter 2020 10/15

Order of an Element

- The order of an element a in an additive group is the smallest integer k such that [k] a = 0, where 0 is the zero element
- order(3) in $(\mathcal{Z}_{11}, + \mod 11)$ is computed by finding the smallest k such that [k] 3 = 0
- This is obtained by successively computing

$$3 = 3$$
, $3 + 3 = 6$, $3 + 3 + 3 = 9$, $3 + 3 + 3 + 3 = 1$, ...

until we obtain the zero element

ullet We find order(3) = 11 in $(\mathcal{Z}_{11}, + \text{ mod } 11)$

$$\{ [i] \text{ 3 mod } 11 \mid 1 \le i \le 11 \} = \{3, 6, 9, 1, 4, 7, 10, 2, 5, 8, 0 \}$$

Note that order(0) = 1

◆□▶◆御▶◆重▶◆重▶ ■ 釣९♡

ctp://koclab.org Çetin Kaya Koç Winter 2020 1

Lagrange's Theorem

Theorem

The order of an element divides the order of the group.

- The order of the group $(\mathcal{Z}_{11}^*, * \mod 11)$ is equal to 10, while order(3) = 5 in $(\mathcal{Z}_{11}^*, * \mod 11)$, and 5 divides 10
- \bullet order(2) = 10 in (\mathcal{Z}_{11}^* , * mod 11), and 10 divides 10
- Similarly, order(1) = 1 in $(\mathcal{Z}_{11}^*, * \mod 11)$, and 1 divides 10
- Since the divisors of 10 are 1, 2, 5, and 10, the element orders can only be 1, 2, 5, or 10

<□ > < □ > < □ > < ≡ > < ≡ >) Q (°

http://koclab.org Çetin Kaya Koç Winter 2020

Lagrange Theorem

- ullet On the other hand, order(3) =11 in ($\mathcal{Z}_{11},+$ mod 11), and 11|11
- ullet Similarly, order(2) = 11 in $(\mathcal{Z}_{11}, + \mod 11)$
- We also found order(0)=1
- The order of the group $(\mathcal{Z}_{11}, + \mod 11)$ is 11
- Since 11 is a prime number, the order of any element in this group can be either 1 or 11
- ullet 0 is the only element in $(\mathcal{Z}_{11}, + \ \mathsf{mod}\ 11)$ whose order is 1
- All other elements have the same order 11 which is the group order

http://koclab.org Çetin Kaya Koç Winter 2020

Primitive Elements

- An element whose order is equal to the group order is called primitive
- The order of the group $(\mathcal{Z}_{11}^*, * \mod 11)$ is 10 and order(2) = 10, therefore, 2 is a primitive element of the group
- order(2) = 11 and order(3) = 11 in (\mathcal{Z}_{11} , + mod 11), which is the order of the group, therefore 2 and 3 are both primitive elements in fact all elements of $(\mathcal{Z}_{11}, + \text{ mod } 11)$ are primitive except 0

Theorem

The number of primitive elements in $(\mathcal{Z}_p^*, * \text{mod } p)$ is $\phi(p-1)$.

- There are $\phi(10) = 4$ primitive elements in $(\mathcal{Z}_{11}^*, * \mod 11)$,
- The primitive elements are: 2, 6, 7, 8
- All of these elements are of order 10.

Cyclic Groups and Generators

- We call a group cyclic if all elements of the group can be generated by repeated application of the group operation on a single element
- This element is called a generator
- Any primitive element is a generator
- ullet For example, 2 is a generator of $(\mathcal{Z}_{11}^*,* \bmod 11)$ since

$$\{2^i \mid 1 \le i \le 10\} = \{2, 4, 8, 5, 10, 9, 7, 3, 6, 1\} = \mathcal{Z}_{11}^*$$

ullet Also, 2 is a generator of $(\mathcal{Z}_{11}, + \bmod 11)$ since

$$\{ [i] \ 2 \ \mathsf{mod} \ 11 \ | \ 1 \le i \le 11 \} = \{ 2, 4, 6, 8, 10, 1, 3, 5, 7, 9, 0 \} = \mathcal{Z}_{11}$$

p://koclab.org Cetin Kaya Koc Winter 2020 15/15