Groups in Cryptography http://koclab.org Çetin Kaya Koç ### Groups in Cryptography - ullet A set S and a binary operation \oplus - A group $G = (S, \oplus)$ if S and \oplus satisfy: - Closure: If $a, b \in S$ then $a \oplus b \in S$ - Associativity: For $a, b, c \in S$, $(a \oplus b) \oplus c = a \oplus (b \oplus c)$ - A neutral element: $e \in S$ such that $a \oplus e = e \oplus a = a$ - Every element $a \in S$ has an inverse inv $(a) \in S$: $$a \oplus \mathsf{inv}(a) = \mathsf{inv}(a) \oplus a = e$$ - Commutativity: If $a \oplus b = b \oplus a$, then the group G is called an a commutative group or an Abelian group - In cryptography we deal with Abelian groups ◆ロト ◆部 ト ◆ 恵 ト ◆ 恵 ・ り へ ○ http://koclab.org ### Multiplicative Groups - The operation ⊕ is a multiplication - ullet The neutral element is generally called the **unit element** e=1 - The inverse of an element a is denoted as a^{-1} - Multiplication of an element k times by itself is denoted as $$a^k = \overbrace{a \cdot a \cdot \cdot \cdot a}^{k \text{ copies}}$$ - Example: $G = (\mathcal{Z}_p, * \mod p)$ where p is prime - The set $\mathcal{Z}_p = \{1, 2, \dots, p-1\}$ - The operation * is multiplication mod p ◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q ○ http://koclab.org # Multiplicative Group Example - $G = (\mathcal{Z}_5, * \bmod 5)$ - The set $\mathcal{Z}_5 = \{1, 2, 3, 4\}$ - ullet The operation multiplication mod 5 over \mathcal{Z}_5 - The unit element e=1 - The multiplication table, powers and inverses $$1^{-1} = 1$$ $2^{-1} = 3$ $3^{-1} = 2$ $4^{-1} = 4$ ◆ロト ◆団ト ◆恵ト ◆恵ト ・恵 ・ かへ○ ### Multiplicative Groups - Example: $(\mathcal{Z}_n^*, * \mod n)$ - The operation * is multiplication mod n - If *n* is prime, $\mathcal{Z}_n^* = \{1, 2, ..., n-1\}$ - ullet If n is not a prime, \mathcal{Z}_n^* consists of elements a with $\gcd(a,n)=1$ - In other words, \mathcal{Z}_n^* is the set of invertible elements mod n <ロ > → □ > → □ > → □ > → □ > → ○ ○ ○ ttp://koclab.org Çetin Kaya Koç Winter 2020 ## Multiplicative Group Examples Consider the multiplication tables for mod 5 and mod 6 | * mod 5 | 1 | 2 | 3 | 4 | |---------|---|------------------|---|---| | 1 | 1 | 2 | 3 | 4 | | 2 | 2 | 4 | 1 | 3 | | 3 | 3 | 1 | 4 | 2 | | 4 | 4 | 2
4
1
3 | 2 | 1 | | * mod 6 | 1 | 2 | 3 | 4 | 5 | |---------|---|---|-----------------------|---|---| | 1 | 1 | 2 | 3 | 4 | 5 | | 2 | 2 | 4 | 0 | 2 | 4 | | 3 | 3 | 0 | 3 | 0 | 3 | | 4 | 4 | 2 | 0 | 4 | 2 | | 5 | 5 | 4 | 3
0
3
0
3 | 2 | 1 | | | | | | | | - \bullet mod 5 multiplication on the set $\mathcal{Z}_5 = \{1,2,3,4\}$ forms the group \mathcal{Z}_5^* - mod 6 multiplication on the set $\mathcal{Z}_6=\{1,2,3,4,5\}$ does not form a group since 2, 3 and 4 are not invertible - However, mod 6 multiplication on the set of invertible elements forms a group: $(\mathcal{Z}_6^*,* \mod 6) = (\{1,5\},* \mod 6)$ ←□ ▶ ←□ ▶ ← □ ▶ ### Additive Groups - ullet The operation \oplus is an addition - The neutral element is generally called the zero element e=0 - Addition of an element a k times by itself, denoted as $$[k] a = \underbrace{a + \cdots + a}^{k \text{ copies}}$$ - The inverse of an element a is denoted as -a - Example: $(\mathcal{Z}_n, + \text{mod } n)$ is a group; the set is $\mathcal{Z}_n = \{0, 1, 2, \dots, n-1\}$ and the operation is addition mod n ◆ロト ◆問 ト ◆ 恵 ト ◆ 恵 ・ か Q ○ http://koclab.org ## Additive Group Examples Consider the addition tables mod 4 and mod 5 | + mod 4 | 0 | 1 | 2 | 3 | |-------------|---|------------------|---|---| | 0 | 0 | 1 | 2 | 3 | | 1 | 1 | 2 | 3 | 0 | | 1
2
3 | 2 | 3 | 0 | 1 | | 3 | 3 | 1
2
3
0 | 1 | 2 | | + mod 5 0 1 2 3 4 | 0 | 1 | 2 | 3 | 4 | |-------------------|---|---|---|---|---| | 0 | 0 | 1 | 2 | 3 | 4 | | 1 | 1 | 2 | 3 | 4 | 0 | | 2 | 2 | 3 | 4 | 0 | 1 | | 3 | 3 | 4 | 0 | 1 | 2 | | 4 | 4 | 0 | 1 | 2 | 3 | - ullet mod 4 addition on $\mathcal{Z}_4=\{0,1,2,3\}$ forms the group $(\mathcal{Z}_4,+$ mod 4) - ullet mod 5 addition on $\mathcal{Z}_5=\{0,1,2,3,4\}$ forms the group $(\mathcal{Z}_5,+$ mod 5) ◆ロト ◆部 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q (*) ttp://koclab.org Çetin Kaya Koç Winter 2020 ### Order of a Group - The order of a group is the number of elements in the set - The order of $(\mathcal{Z}_{11}^*,*$ mod 11) is 10, since the set \mathcal{Z}_{11}^* has 10 elements: $\{1,2,\ldots,10\}$ - The order of group $(\mathcal{Z}_p^*, * \text{mod } p)$ is equal to p-1 - Note that, since p is prime, the group order p-1 is not prime - The order of $(\mathcal{Z}_{11}, + \text{ mod } 11)$ is 11, since the set \mathcal{Z}_{11} has 11 elements: $\{0, 1, 2, \dots, 10\}$ - The order of $(\mathcal{Z}_n, + \text{mod } n)$ is n, since the set \mathcal{Z}_n has n elements: $\{0, 1, 2, \ldots, n-1\}$; here n could be prime or composite イロケイ部ケイミケイミナーミーのQの http://koclab.org Çetin Kaya Koç Winter 2020 ### Order of an Element - The order of an element a in a multiplicative group is the smallest integer k such that $a^k = 1$, where 1 is the unit element of the group - order(3) = 5 in $(\mathcal{Z}_{11}^*, * \mod 11)$ since $$\{ 3^i \mod 11 \mid 1 \le i \le 10 \} = \{3, 9, 5, 4, 1 \}$$ ullet order(2) = 10 in (\mathcal{Z}_{11}^* , * mod 11) since $$\{ 2^i \mod 11 \mid 1 \le i \le 10 \} = \{2, 4, 8, 5, 10, 9, 7, 3, 6, 1 \}$$ • Note that order(1) = 1 ◆ロト ◆個ト ◆園ト ◆園ト ■ りへぐ ttp://koclab.org Çetin Kaya Koç Winter 2020 10/15 ### Order of an Element - The order of an element a in an additive group is the smallest integer k such that [k] a = 0, where 0 is the zero element - order(3) in $(\mathcal{Z}_{11}, + \mod 11)$ is computed by finding the smallest k such that [k] 3 = 0 - This is obtained by successively computing $$3 = 3$$, $3 + 3 = 6$, $3 + 3 + 3 = 9$, $3 + 3 + 3 + 3 = 1$, ... until we obtain the zero element ullet We find order(3) = 11 in $(\mathcal{Z}_{11}, + \text{ mod } 11)$ $$\{ [i] \text{ 3 mod } 11 \mid 1 \le i \le 11 \} = \{3, 6, 9, 1, 4, 7, 10, 2, 5, 8, 0 \}$$ Note that order(0) = 1 ◆□▶◆御▶◆重▶◆重▶ ■ 釣९♡ ctp://koclab.org Çetin Kaya Koç Winter 2020 1 ### Lagrange's Theorem #### Theorem The order of an element divides the order of the group. - The order of the group $(\mathcal{Z}_{11}^*, * \mod 11)$ is equal to 10, while order(3) = 5 in $(\mathcal{Z}_{11}^*, * \mod 11)$, and 5 divides 10 - \bullet order(2) = 10 in (\mathcal{Z}_{11}^* , * mod 11), and 10 divides 10 - Similarly, order(1) = 1 in $(\mathcal{Z}_{11}^*, * \mod 11)$, and 1 divides 10 - Since the divisors of 10 are 1, 2, 5, and 10, the element orders can only be 1, 2, 5, or 10 <□ > < □ > < □ > < ≡ > < ≡ >) Q (° http://koclab.org Çetin Kaya Koç Winter 2020 ### Lagrange Theorem - ullet On the other hand, order(3) =11 in ($\mathcal{Z}_{11},+$ mod 11), and 11|11 - ullet Similarly, order(2) = 11 in $(\mathcal{Z}_{11}, + \mod 11)$ - We also found order(0)=1 - The order of the group $(\mathcal{Z}_{11}, + \mod 11)$ is 11 - Since 11 is a prime number, the order of any element in this group can be either 1 or 11 - ullet 0 is the only element in $(\mathcal{Z}_{11}, + \ \mathsf{mod}\ 11)$ whose order is 1 - All other elements have the same order 11 which is the group order http://koclab.org Çetin Kaya Koç Winter 2020 ### Primitive Elements - An element whose order is equal to the group order is called primitive - The order of the group $(\mathcal{Z}_{11}^*, * \mod 11)$ is 10 and order(2) = 10, therefore, 2 is a primitive element of the group - order(2) = 11 and order(3) = 11 in (\mathcal{Z}_{11} , + mod 11), which is the order of the group, therefore 2 and 3 are both primitive elements in fact all elements of $(\mathcal{Z}_{11}, + \text{ mod } 11)$ are primitive except 0 #### Theorem The number of primitive elements in $(\mathcal{Z}_p^*, * \text{mod } p)$ is $\phi(p-1)$. - There are $\phi(10) = 4$ primitive elements in $(\mathcal{Z}_{11}^*, * \mod 11)$, - The primitive elements are: 2, 6, 7, 8 - All of these elements are of order 10. ### Cyclic Groups and Generators - We call a group cyclic if all elements of the group can be generated by repeated application of the group operation on a single element - This element is called a generator - Any primitive element is a generator - ullet For example, 2 is a generator of $(\mathcal{Z}_{11}^*,* \bmod 11)$ since $$\{2^i \mid 1 \le i \le 10\} = \{2, 4, 8, 5, 10, 9, 7, 3, 6, 1\} = \mathcal{Z}_{11}^*$$ ullet Also, 2 is a generator of $(\mathcal{Z}_{11}, + \bmod 11)$ since $$\{ [i] \ 2 \ \mathsf{mod} \ 11 \ | \ 1 \le i \le 11 \} = \{ 2, 4, 6, 8, 10, 1, 3, 5, 7, 9, 0 \} = \mathcal{Z}_{11}$$ p://koclab.org Cetin Kaya Koc Winter 2020 15/15