Digital Signature Algorithm

DSA: Digital Signature Algorithm

- The Digital Signature Algorithm is a US standard, proposed in 1991 by the NIST
- Along with the DSA, the hash function SHA-1 was also specified and made a standard
- The original DSA was based on the SHA-1 size of 160 bits
- The DSA was covered by a patent, attributed to David Kravitz, a former NSA employee
- Claus Schnorr also claimed one of his patents covers the DSA
- The DSA is a variant of the EIGamal signature algorithm

DSA Parameters

- Two size parameters: L and N
- L is the size of the first prime number p
- The original DSA defined L to be a multiple of 64 and in the range $512 \leq L \leq 1024$
- The security of the DSA is based on the difficulty of the DLP in the group \mathcal{Z}_{p}^{*}, therefore, $L \geq 1024$, perhaps 2048 or 3072 bits
- The second prime number is q, whose size is N
- The size of q should also match the hash function used
- In the original DSA, the hash function was SHA-1, and $N=160$
- Considering the new hash functions, we may take $N=256$ or higher

DSA Parameters

- The prime q divides $p-1$
- The primes p and q are generated together, by first generating the prime q (which is of size N bits), and checking to see if $p=I \cdot q+1$ is prime for different I values (which are of size $L-N$ bits), until a prime p is found
- Compute $g \neq 1$ whose multiplicative order is equal to q modulo p, that is, we want $g^{q}=1(\bmod p)$, which is computed as

$$
g=h^{\frac{p-1}{q}} \quad(\bmod p)
$$

such that h is an arbitrary integer in the range $1<h<p-1$

- The domain parameters are (p, q, g), the same for all users

DSA Key Generation

- Given the domain parameters are (p, q, g), User A selects a random integer $x<q$ as the private key
- The public key of the User A is y such that

$$
y=g^{x} \quad(\bmod p)
$$

- User A publishes y in the director and keeps x secret

DSA Signing

- Domain parameters are (p, q, g) and the private key is x
- The hash function $h(\cdot)$ comes with the DSA and generates the hash values of size N bits, which is the size of the prime q
- Given the message m, User A generates a random number $r m$ and computes the signature (s_{1}, s_{2}) using

$$
\begin{aligned}
& s_{1}=\left(g^{r} \bmod p\right) \bmod q \\
& s_{2}=\left(h(m)+x \cdot s_{1}\right) \cdot r^{-1} \bmod q
\end{aligned}
$$

- The size of s_{1} and s_{2} are N bits each
- Therefore, the signature size is $2 N$ bits
- The size of the message is unlimited, due to hashing

DSA Verifying

- Domain parameters are (p, q, g) and the public key is y
- The verifier also has access to the hash function $h(\cdot)$
- The verifier receives the message and signature $\left[m, s_{1}, s_{2}\right]$ and performs the following operations:

$$
\begin{aligned}
w & =s_{2}^{-1} \bmod q \\
u_{1} & =h(m) \cdot w \bmod q \\
u_{2} & =s_{1} \cdot w \bmod q \\
v & =\left(\left(g^{u_{1}} \cdot y^{u_{2}}\right) \bmod p\right) \bmod q
\end{aligned}
$$

If $v=s_{1}$, the signature is valid

DSA Correctness

The signer computes $s_{2}=\left(h(m)+x \cdot s_{1}\right) \cdot r^{-1} \bmod q$, which gives

$$
\begin{aligned}
r & =s_{2}^{-1} \cdot\left(h(m)+x \cdot s_{1}\right) \bmod q \\
& =h(m) \cdot s_{2}^{-1}+x \cdot s_{1} \cdot s_{2}^{-1} \bmod q \\
& =h(m) \cdot w+x \cdot s_{1} \cdot w \bmod q
\end{aligned}
$$

We now calculate g^{r} using

$$
\begin{aligned}
g^{r} & =g^{h(m) w} \cdot g^{\chi s_{1} w} \quad(\bmod p) \\
& =g^{h(m) w} \cdot y^{s_{1} w} \quad(\bmod p) \\
& =g^{u_{1}} \cdot y^{u_{2}} \quad(\bmod p)
\end{aligned}
$$

By taking modulo q both sides above, we find

$$
\begin{aligned}
s_{1} & =g^{r} \quad(\bmod q) \\
& =\left(g^{u_{1}} \cdot y^{u_{2}} \quad(\bmod p)\right) \quad(\bmod q) \\
& =v
\end{aligned}
$$

DSA Domain Parameters Example

- Select $q=101$ and $p-1=6 \cdot 101=606$, we find $p=607$
- Select $h=2$, and compute $g=h^{(p-1) / q}=2^{6}=64$
- The multiplicative order of 64 mod 607 is equal to 101 , indeed

$$
\begin{aligned}
64^{101} & =1(\bmod 607) \\
64^{i} & \neq 1 \quad(\bmod 607) \quad \text { for } 1 \leq i \leq 100
\end{aligned}
$$

- The domain parameters: $(p, q, g)=(607,101,64)$
- The private key $x=50<q$, the public key

$$
\begin{aligned}
y & =g^{x} \quad(\bmod q) \\
& =64^{50} \quad(\bmod 607) \\
& =76
\end{aligned}
$$

DSA Signing Example

- For $h(m)=10$ and $r=75$, we generate the signature $\left(s_{1}, s_{2}\right)$ using

$$
\begin{aligned}
s_{1} & =\left(g^{r} \bmod p\right) \bmod q \\
& =\left(64^{75} \bmod 607\right) \bmod 101 \\
& =44 \bmod 101 \\
& =44 \\
s_{2} & =\left(h(m)+x \cdot s_{1}\right) \cdot r^{-1} \bmod q \\
& =(10+50 \cdot 44) \cdot 75^{-1} \bmod 101 \\
& =89 \cdot 66 \bmod 101 \\
& =16
\end{aligned}
$$

The signature is $\left(s_{1}, s_{1}\right)=(44,16)$

DSA Signing Example

- Given the parameters $(p, q, g, y)=(607,101,64,76)$ and the message/signature $\left(h(m), s_{1}, s_{2}\right)=(10,44,16)$, the verifier performs:

$$
\begin{aligned}
w & =s_{2}^{-1} \bmod q \\
& =16^{-1}=19 \bmod 101 \\
u_{1} & =h(m) \cdot w \bmod q \\
& =10 \cdot 19=89 \bmod 101 \\
u_{2} & =s_{1} \cdot w \bmod q \\
& =44 \cdot 19=28 \bmod 101 \\
v & =\left(\left(g^{u_{1}} \cdot y^{u_{2}}\right) \bmod p\right) \bmod q \\
& =\left(\left(64^{89} \cdot 76^{28} \bmod 607\right) \bmod 101\right. \\
& =(376 \cdot 549 \bmod 607) \bmod 101 \\
& =44
\end{aligned}
$$

Since $v=s_{1}$, the signature is valid

