
cs4 Computer Science Bootcamp http://koclab.cs.ucsb.edu/teaching/cs4

Computing Iterative Functions

cs4: Computer Science Bootcamp

Çetin Kaya Koç
http://koclab.cs.ucsb.edu/teaching/cs4

cetinkoc@ucsb.edu

Çetin Kaya Koç http://koclab.org Summer B 2019 1 / 18

http://koclab.cs.ucsb.edu/teaching/cs4
http://koclab.cs.ucsb.edu/teaching/cs4
cetinkoc@ucsb.edu
http://koclab.org

cs4 Computer Science Bootcamp http://koclab.cs.ucsb.edu/teaching/cs4

Computing Iterative Sums

Consider the sum:

100∑
i=1

i2 = 12 + 22 + 32 + · · ·+ 1002

It is known that this sum is equal to 338,350

We can also parameterize the sum with n

n∑
i=1

i2 = 12 + 22 + 32 + · · ·+ n2

for any n ≥ 1

Çetin Kaya Koç http://koclab.org Summer B 2019 2 / 18

http://koclab.cs.ucsb.edu/teaching/cs4
http://koclab.org

cs4 Computer Science Bootcamp http://koclab.cs.ucsb.edu/teaching/cs4

Computing Iterative Sums

If write the sum as a function of the parameter n:

f (n) =
n∑

i=1

i2

we can compute f (n) for a given n

For example, we know f (100) = 338, 350

What about f (200)?

How can we compute f (n) for a given n?

Çetin Kaya Koç http://koclab.org Summer B 2019 3 / 18

http://koclab.cs.ucsb.edu/teaching/cs4
http://koclab.org

cs4 Computer Science Bootcamp http://koclab.cs.ucsb.edu/teaching/cs4

Compact Formulas for Sums

There is a compact formula for this sum:

n∑
i=1

i2 =
n(n + 1)(2n + 1)

6

This identity can be proven using mathematical induction

We verify:

f (100) =
100∑
i=1

i2 =
100 · 101 · 201

6
= 338, 350

Now we can easily compute f (200):

f (200) =
200 · 201 · 401

6
= 2, 686, 700

Çetin Kaya Koç http://koclab.org Summer B 2019 4 / 18

http://koclab.cs.ucsb.edu/teaching/cs4
http://koclab.org

cs4 Computer Science Bootcamp http://koclab.cs.ucsb.edu/teaching/cs4

Computing General Iterative Sums

What if we don’t have a compact formula for a sum expression g(n)?

For example, consider:

g(n) =
n∑

i=1

i(i + 1)2 = 1 · 22 + 2 · 32 + 3 · 42 + · · ·+ n · (n + 1)2

How do we compute g(100) or g(200)?

Answer: We write an iterative program for g(n)

Çetin Kaya Koç http://koclab.org Summer B 2019 5 / 18

http://koclab.cs.ucsb.edu/teaching/cs4
http://koclab.org

cs4 Computer Science Bootcamp http://koclab.cs.ucsb.edu/teaching/cs4

Computing g(n) Iteratively

Computing g(n) =
∑n

i=1 i(i + 1)2 for a given n

sum = 0

n = 100

for i in range(1,n+1):

term = i*(i+1)*(i+1)

sum = sum + term

print(sum)

The above program computes g(100), and it gives 26,184,250

For a general n, we write a function

Çetin Kaya Koç http://koclab.org Summer B 2019 6 / 18

http://koclab.cs.ucsb.edu/teaching/cs4
http://koclab.org

cs4 Computer Science Bootcamp http://koclab.cs.ucsb.edu/teaching/cs4

An Iterative Python Function for g(n)

def gsum(n):

sum = 0

for i in range(1,n+1):

term = i*(i+1)*(i+1)

sum = sum + term

return(sum)

We can now compute g(n) for any n we provide as input to the
function gsum

g(100) = 26, 184, 250

g(200) = 409, 403, 500

g(1000000) = 250, 001, 166, 668, 416, 667, 500, 000

Çetin Kaya Koç http://koclab.org Summer B 2019 7 / 18

http://koclab.cs.ucsb.edu/teaching/cs4
http://koclab.org

cs4 Computer Science Bootcamp http://koclab.cs.ucsb.edu/teaching/cs4

Iterative Function for General Sums

A general sum is in the form

h(n) =
n∑

i=n0

ai

such that n0 is the starting point, n is the ending point, and ai is the
general term

For example, for f (n) =
∑n

i=1 i
2, we have n0 = 1 and ai = i2

For g(n) =
∑n

i=1 i(i + 1)2, we have n0 = 1 and ai = i(i + 1)2

Çetin Kaya Koç http://koclab.org Summer B 2019 8 / 18

http://koclab.cs.ucsb.edu/teaching/cs4
http://koclab.org

cs4 Computer Science Bootcamp http://koclab.cs.ucsb.edu/teaching/cs4

Iterative Function for General Sums

Once the starting and ending points and the general term is available,
we can easily write a Python function

The first rule is that, we start with: sum = 0

The for loop boundary conditions give: range(n0,n+1)

The general term is computed using: term = ai

The iteration rule is: sum = sum + term

Thus, the function becomes:

def fsum(n):

sum = 0

for i in range(n0,n+1):

term = ai

sum = sum + term

return(sum)

Çetin Kaya Koç http://koclab.org Summer B 2019 9 / 18

http://koclab.cs.ucsb.edu/teaching/cs4
http://koclab.org

cs4 Computer Science Bootcamp http://koclab.cs.ucsb.edu/teaching/cs4

Euler Formula for π

Another interesting formula involving π was given by Euler:

π2

6
=
∑
i=1

1

i2
=

1

12
+

1

22
+

1

32
+

1

42
+ · · ·

Applying our rules from the previous slide, we see that:
The sum starts with sum = 0

The for loop boundary conditions are: range(1,n+1)

The general term is computed using: term = 1/(i**2)

The iteration rule is: sum = sum + term

Finally we compute π from sum, we use

π =
√

6 · sum

To compute π with higher accuracy, we increase the value of n

Çetin Kaya Koç http://koclab.org Summer B 2019 10 / 18

http://koclab.cs.ucsb.edu/teaching/cs4
http://koclab.org

cs4 Computer Science Bootcamp http://koclab.cs.ucsb.edu/teaching/cs4

Python Code for Euler Formula

def eulerPi(n):

sum = 0

for i in range(1,n+1):

term = 1/(i**2)

sum = sum + term

return(math.sqrt(6*sum))

Computing π for n from 1,000 to 8,000:

n Pi

1000 3.1406380562059946

2000 3.1411152718364823

4000 3.141353941945064

8000 3.1414732925750646

Çetin Kaya Koç http://koclab.org Summer B 2019 11 / 18

http://koclab.cs.ucsb.edu/teaching/cs4
http://koclab.org

cs4 Computer Science Bootcamp http://koclab.cs.ucsb.edu/teaching/cs4

Computing Terms Iteratively

One issue that often comes up is the details of the computation of
the ith term, term

There could be some savings in the number of arithmetic operations
in the computation of term

Generally this is achieved by using the (i − 1)st term in the
computation of ith term, for i = 1, 2, 3, . . .

In other words, we compute term not directly but iteratively

The computation of sum is also iterative, since the sum in the
previous iteration is utilized

Çetin Kaya Koç http://koclab.org Summer B 2019 12 / 18

http://koclab.cs.ucsb.edu/teaching/cs4
http://koclab.org

cs4 Computer Science Bootcamp http://koclab.cs.ucsb.edu/teaching/cs4

Computing Terms Iteratively

To illustrate iterative computation of term, we use a formula
involving the Euler’s constant e

e = 1 +
∑
i=1

1

i !
= 1 +

1

1!
+

1

2!
+

1

3!
+ · · ·

The numerator of these fractions pi
q1

is always pi = 1, while the
denominator is qi = i ! at the ith iteration

The ith denominator can be derived from (i − 1)st denominator:

qi = qi−1 · i = (i − 1)! · i = i !

Therefore, if term from the (i − 1)st iteration is available, we
compute term for the ith iteration as term = term/i since

term =
pi
qi

=
1

qi
=

1

qi−1
· 1

i
=

pi−1

qi−1
· 1

i
= term/i

Çetin Kaya Koç http://koclab.org Summer B 2019 13 / 18

http://koclab.cs.ucsb.edu/teaching/cs4
http://koclab.org

cs4 Computer Science Bootcamp http://koclab.cs.ucsb.edu/teaching/cs4

Python Code for Computing e

To compute term iteratively, we to start with term = 1

Meanwhile the initial value of sum = 0

In the final step, we add 1 to sum to obtain e

def e(n):

sum = 0

term = 1

for i in range(1,n+1):

term = term/i

sum = sum + term

return(1+sum)

Çetin Kaya Koç http://koclab.org Summer B 2019 14 / 18

http://koclab.cs.ucsb.edu/teaching/cs4
http://koclab.org

cs4 Computer Science Bootcamp http://koclab.cs.ucsb.edu/teaching/cs4

Iterative Functions for Products

Wallis formula for computing π/2 was a product formula:

π

2
=

n∏
i=1

(
2i

2i − 1
· 2i

2i + 1

)
=

2 · 2
1 · 3

· 4 · 4
3 · 5

· 6 · 6
5 · 7

· 8 · 8
7 · 9
· · ·

An iterative method for this formula would be computing a product,
instead of a sum

Therefore, it would start with: prod = 1

The for loop boundary conditions give: range(1,n+1)

The general term is: term = (2*i)**2/((2*i-1)*(2*i+1))

The iteration rule is: prod = prod * term

Çetin Kaya Koç http://koclab.org Summer B 2019 15 / 18

http://koclab.cs.ucsb.edu/teaching/cs4
http://koclab.org

cs4 Computer Science Bootcamp http://koclab.cs.ucsb.edu/teaching/cs4

Iterative Computation of Wallis Formula

def wallisPi(n):

prod = 1

for i in range(1,n+1):

term = (2*i)**2/((2*i-1)*(2*i+1))

prod = prod * term

return(2*prod)

Computing π for n from 1000 to 8000:

n Pi

1000 3.1408085296644828

2000 3.1412002733216604

4000 3.141396383784121

8000 3.1414944987571713

Çetin Kaya Koç http://koclab.org Summer B 2019 16 / 18

http://koclab.cs.ucsb.edu/teaching/cs4
http://koclab.org

cs4 Computer Science Bootcamp http://koclab.cs.ucsb.edu/teaching/cs4

Iterative Functions for Sums and Products

An iterative function may have both sum and product terms

In this case, we keep a sum and a prod variables and run them
through the iteration

For example, Vieta’s formula allows us to compute 2
π :

2

π
=

√
2

2
·
√

2 +
√

2

2
·

√
2 +

√
2 +
√

2

2
·

√
2 +

√
2 +

√
2 +
√

2

2
· · ·

The general term ai is a ratio: pi
qi

The numerator pi in ith step is used to computed the numerator in
the (i + 1)st step: ai+1 =

√
2 + ai by starting with a0 = 0

The denominator is always 2

Çetin Kaya Koç http://koclab.org Summer B 2019 17 / 18

http://koclab.cs.ucsb.edu/teaching/cs4
http://koclab.org

cs4 Computer Science Bootcamp http://koclab.cs.ucsb.edu/teaching/cs4

Computing π using Vieta’s Formula

def vieta(n):

prod = 1

num = 0

for i in range(1,n+1):

num = math.sqrt(2+num)

prod = prod*num/2

return(2/prod)

Vieta’s formula produces more accurate results for smaller n

Computing π for n from 5 to 40:

n Pi

5 3.1403311569547525

10 3.1415914215111997

20 3.1415926535886185

40 3.141592653589794

Çetin Kaya Koç http://koclab.org Summer B 2019 18 / 18

http://koclab.cs.ucsb.edu/teaching/cs4
http://koclab.org

