Imperative Programming

= Python Programs
" |nteractive Input/Output
= One-Way and Two-Way if Statements
for Loops
= User-Defined Functions
= Assignments Revisited and Parameter Passing

Introduction to Computing Using Python

Python program

Introduction to Computing Using Python

\'4
[linel = 'Hello Python developer...']
I
. |
A Python program is a sequence of I
\%
Python statements [lineZ = 'Welcome to the world of Python!' }

» Stored in a text file called a
Python module

Executed using an IDE or “from
the command line”

\4

[print(linel)]
I
|

\ 4
[print(lineZ)]

linel = 'Hello Python developer...'
line2 = 'Welcome to the world of Python!'
print(linel)

print(line2)

$ python hello.py
Hello Python developer..

hello.py

Built-in function print ()

Introduction to Computing Using Python

Function print () prints its input argument to the IDLE window

* The argument can be any object: an integer, a float, a string, a list, ...
- Strings are printed without quotes and “to be read by people”, rather

than “to be interpreted by Python”,

* The “string representation” of the object is printed

>>> print(0)

0

>>> print(0.0)
0.0

>>> print('zero')
Zero

>>> print([0, 1,
[0, 1, '"two']

"two'])

Introduction to Computing Using Python

Built-in function input ()

Function input () requests and reads input from the user interactively
 |t's (optional) input argument is the request message

* Typically used on the right side of an assignment statement

When executed: >>> name = input('Enter your name: ')
Enter your name: Michael
1. The input request message is printed >>>

2. The user enters the input

3. The string typed by the user is
assigned to the variable on the left
side of the assignment statement

first = input('Enter your first name: ')
last = input('Enter your last name: ')
linel = 'Hello’ + first + '' + last + '..'

print(linel)
print('Welcome to the world of Python!')

input.py

Introduction to Computing Using Python

Built-in function eval ()

Function input () evaluates anything , , ,
. >>> age = 1nput(Enter your age: ')
the user enters as a string Enter your age: 18

>>> age
What if we want the user to interactively +

enter non-string input such as a number?
e Solution 1: Use type conversion
* Solution 2: Use function eval ()

- Takes a string as input and
evaluates it as a Python expression

Exercise

Write a program that:

1. Requests the user’s name
2. Requests the user’s age

3. Computes the user’s age one year from
now and prints the message shown

Introduction to Computing Using Python

>>>

Enter your name: Marie

Enter your age: 17

Marie, you will be 18 next year!

name = input('Enter your name: ')
age = int(input('Enter your age: '))
line = name + '
print(line)

, you will be ' + str(aget+l) + ' next year!'

Introduction to Computing Using Python

Exercise

Werite a program that:

1. Requests the user’s name
2. Requests the user’s age

3. Prints a message saying whether the
user is eligible to vote or not

Need a way to execute a Python statement
if a condition is true

Introduction to Computing Using Python

One-way if statement

if <condition>:
<indented code block>
<non-indented statement>

if temp > 86:

print('It is hot!')

print('Be sure to drink liquids.')
print ('Goodbye. ')

The value of temp is 90.

True
temp > 86:)~ =—=—=—==—===== I
v
[print('It is hot!')]
I
False I
: 4
I [print('Be sure to drink liquids.')]
| |
=== = = = = == - - J
\ 4

[Print('Goddbye.')]

Exercises

Write corresponding if statements:

Introduction to Computing Using Python

a) If age is greater than 62 then print 'You can get Social Security benefits’

b) If string 'large bonuses' dPpPE€aArs in string report then print 'Vacation time!’

c) If nits is greater than 10 and shieid is O then print "you're dead..."

>>>

>>> hits = 12
>>> ghield = 0
>>> if hits > 10 and shield == 0:

print("You're dead...")

You're dead...
>>> hits, shield = 12, 2
>>> jif hits > 10 and shield == O0:

print("You're dead...")

ity benefits')

ity benefits')

Introduction to Computing Using Python

Indentation is critical

if temp > 86:
print('It is hot!')
print('Drink liquids.')
print('Goodbye. ')

temp > 86:)~ wmmmm——=

[print('It is hot!')]
I
L

v

False

if temp > 86:
print('It is hot!')
print('Drink liquids.')
print('Goodbye. ')

[print('Drink liquids.')]

) 2

True
B ™ = = = == - - I
v
[print('It is hot!')]
I
False I L
' 4
|
I [print('Drink liquids.')]
I |
== = - - - J
v

[print('Goddbye.')

[print('Goddbye.')]

Introduction to Computing Using Python

Two-way if statement

if <condition>:
<indented code block 1>

else:
<indented code block 2>

<non-indented statement>

The value of temp is 90.

[print('It is not hot!')]
|
|

\ 4
[print('Bring a jacket.')]

if temp > 86:
print('It is hot!')
print('Be sure to drink liquids.')

else:
print('It is not hot.')

print('Bring a jacket.')
print ('Goodbye. ")

[print('It is hot!')]
I
|

\4

[print('Be sure to drink liquids.')]

[print('Bring a jacket.')]

Exercise

Write a program that:

1) Requests the user’s name
2) Requests the user’s age

3) Prints a message saying whether the
user is eligible to vote or not

name = input('Enter your name: ')
age = eval(input('Enter your age:
if age < 18:
print (name +
else:
print (name +

"))

, you can't vote.")

, you can vote.")

Introduction to Computing Using Python

>>>
Enter your
Enter your
Marie, you
>>>

>>>
Enter your
Enter your

Marie, you
>>>

name: Marie
age: 17
can't vote.

name: Marie
age: 18
can vote.

Introduction to Computing Using Python

Execution control structures

* The one-way and two-way if statements are examples of execution
control structures

e Execution control structures are programming language statements
that control which statements are executed, i.e., the execution flow
of the program

* The one-way and two-way if statements are, more specifically,
conditional structures

* |teration structures are execution control structures that enable the
repetitive execution of a statement or a block of statements

* The for loop statement is an iteration structure that executes a
block of code for every item of a sequence

Introduction to Computing Using Python

for loop

Executes a block of code for every item of a sequence
* If sequence is a string, items are its characters (single-character strings)

>>> name = 'Apple’
>>> for char in name:
print(char)

name = "A P P 1 e'
char = ‘A’

char = 'p'

char = 'p'

char = ‘1

char = e

Introduction to Computing Using Python

for loop

Executes a code block for every item of a sequence

e Sequence can be a string, a list, ...
* Block of code must be indented

word

word

word

word

for <variable> in <sequence>:
<indented code block >
<non-indented code block>

for word in ['stop', 'desktop', 'post', 'top']:
if 'top' in word:
print (word)

' | print('Done. ')
stop
'desktop’ —
stop
1 1 desktop
post fop
Done.

top

Introduction to Computing Using Python

Built-in function range ()

Function range() is used to iterate over a sequence of numbers in a specified range

* Toiterate over the n numbersO0, 1, 2, ..., n-1
for i in range(n):

* Toiterate over the n numbersi, i+1, i+2, ..., n-1
for i in range(i, n):

* Toiterate over the n numbers i, i+c, i+2c, i+3c, ..., n-1
for i in range(i, n):

>>> for i in range(2, 16, 10):
print (i)

Exercise

Write for loops that will print the following sequences:

2)0,1,2,3,4,5,6,7,8,9,10
b)1,2,3,45,6,7,8,9
c)0,2,4,6,8

d1,3,5,7,9

e) 20, 30, 40, 50, 60

Introduction to Computing Using Python

Defining new functions

A few built-in functions we have seen:

* abs(),max(), len(),
sum(), print ()

New functions can be defined using def

def: function definition keyword

f: name of function

/ X: variable name for input argument

def f(x):
res = x**2 + 10
return res

™~

return: specifies function output

Introduction to Computing Using Python

abs(-9)
max(2, 4)

1st = [2,3,4,5]
len(1lst)

sum(1lst)

print ()

def f(x):
res = 2*x + 10
return x**2 + 10

Introduction to Computing Using Python

print () versus return

def f(x):
res = x**2 + 10
return res

def f(x):
res = x**2 + 10
print(res)

>>> f£(2)
14

>>> 2*%f(2)
28

Function returns value of res which
can then be used in an expression

>>> f(2)
14
>>> 2%£(2)
14
Traceback (most recent call last):

File "<pyshell#56>", line 1, in
<module>

2*£(2)

TypeError: unsupported operand
type(s) for *: 'int' and
'NoneType'

Function prints value of res
but does not return anything

Introduction to Computing Using Python

Defining new functions

The general format of a function definition is

def <function name> (<0 or more variables>): b
<indented function body>

Let’s develop function hyp () that:
* Takes two numbers as input (side lengths a and b of above right triangle)
e Returns the length of the hypotenuse c

>>> hyp(3,4)
5.0
>>>

import math

def hyp(a, b):
res = math.sqrt(a**2 + b**2)
return res

Introduction to Computing Using Python

Exercise

Write function hello () that:

* takes a name (i.e., a string) as input

* prints a personalized welcome message
Note that the function does not return anything

>>> hello('Julie')
Welcome, Julie, to the world of Python.
>>>

def hello(name):
line = 'Welcome,
print(line)

+ name + ', to the world of Python.'

Exercise

Write function rng () that:

* takes a list of numbers as input
* returns the range of the numbers in the list
The range is the difference between the largest and smallest number in the list

Introduction to Computing Using Python

>>> rng([4,
6
>>>

OI 1! _2])

def rng(lst):

return res

res = max(lst) - min(lst)

Introduction to Computing Using Python

Comments and docstrings

Python programs should be documented

* So the developer who writes/maintains the

code understands it

>>> help(f)
* So the user knows what the program does Help on function f in module
__main_ :
Comments £(x)
def f(x): >>> def f(x):

'returns x**2 + 10'
res = x**2 + 10

res = x**2 + 10 # compute result

return res # and return it
return res
_ >>> help(f)
Docstring Help on function f in module
__main__ :
def f£(x):
'returns x**2 + 10' £(x)

returns x**2 + 10

res = x**2 + 10 # compute result
return res # and return it

Introduction to Computing Using Python

Assignment statement: a second look

a b c d A variable does not exist before it is assigned
/ N ™S
£ (1, 2, 31| [a
3.3 'three’ Traceback (most recent call

<variable> = <expression>

1. <expression> is evaluated and its
value put into an object of appropriate type

2. The object is assigned name <variable>

last):
File "<pyshell#66>", line
1, in <module>
a
NameError: name 'a'’ is not
defined
>>> a = 3

>>> b =2 + 1.3
>>> ¢ = 'three'
>>>d = [1, 2] + [3]

Introduction to Computing Using Python

Mutable and immutable types

a b c d
//‘ N ™Y
3 [1, 7, 31
'three'
v 3.3
6

The object (3) referred to by variable a does not

change; instead, a refers to a new object (6)
* Integers are immutable

The object ([1, 2, 3]) referred to by d changes
e Lists are mutable

Introduction to Computing Using Python

Assignment and mutability

d
g AL =

'three'

3.3

a and B refer to the same listeglejeobject

ahmolvstrfat st oeferswoothacigs); d stfl referth sdra®ld bbiget{pjo it changes too
* BeBausesethgmrara enimatléablehardatgel tafedoees not affect the value of b

Introduction to Computing Using Python

Swapping values

a b tmp Want: a b

Introduction to Computing Using Python

Immutable parameter passing

d X
\ /7
shell \ /Function call g(a)
3 5
>>> a = 3
. >>> g(a)
det z(i)é >>>

Vaniahde xihyidalqe), refdrsarontdite mlojeidty aheferisiboof a in the interactive
shell.

As if we executed x = a

This is because a refers to an immutable object.

Introduction to Computing Using Python

Mutable parameter passing

1st 1
\ //
shell \ Function call h(Ist)
[5,2,3]

>>> 1st = [1,2,3]
>>> h(lst)

def h(l): >>>

1[0] = 5

Vaniahde hhihyidedhrigdibfeéheteathe objestlis theefetertactive shell.

Awiif iwbecancseddst andlistefer to an mutable object.

Introduction to Computing Using Python

Exercise

Write function swapFS () that:
* takes a list as input
e swaps the first and second element of the list, but only if the list has at
least two elements
The function does not return anything

>>> mylst = ['one', 'two', 'three']
>>> swapFS(mylst)

>>> mylst

['two', 'one', 'three']

>>> mylst = ['one']

>>> swapFS(mylst)

>>> mylst

['one']

>>>

def swapFS(1lst):
if len(lst) > 1:
1st[0], lst[l] = 1lst[1l], 1lst[0]

