Homework Assignment 3:

1. Describe the steps of the algorithm and give the value of term at each iteration for the following sum:

\[
\frac{5\pi^5}{1536} = \frac{1}{1^5} - \frac{1}{3^5} + \frac{1}{5^5} - \frac{1}{7^5} + \cdots
\]

2. It is known that the inverse of Euler’s constant is approximated as by computing the following sum for a large integer \(n \):

\[
\frac{1}{e} \approx 1 - \frac{1}{1!} + \frac{1}{2!} - \frac{1}{3!} + \frac{1}{4!} - \frac{1}{5!} + \cdots + \frac{1}{n!}
\]

We are interested in computing the sum for a given \(n \) using an iterative Python function. Starting from \(\text{sum} = 0 \), at each iteration, we add each term value to \(\text{sum} \). Give the expression for term.

3. Given the value of term at the \(i \)th iteration in the above, give an efficient method term for the next iteration.

4. Describe the steps of the algorithm for computing \(\frac{2}{\pi} \) using Vieta’s formula, and give the value of each term in iteration \(i \), by using the previous term:

\[
\frac{2}{\pi} = \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{2 + \sqrt{2}}}{2} \cdot \frac{\sqrt{2 + \sqrt{2 + \sqrt{2}}}}{2} \cdot \frac{\sqrt{2 + \sqrt{2 + \sqrt{2 + \sqrt{2}}}}}{2} \cdots
\]

5. The Wallis formula was a product expression for computing \(\frac{\pi}{4} \). Another product formula was given by Euler:

\[
\frac{\pi}{4} = \frac{3}{4} \cdot \frac{5}{4} \cdot \frac{7}{8} \cdot \frac{11}{12} \cdot \frac{13}{12} \cdot \frac{17}{16} \cdot \frac{19}{20} \cdot \frac{23}{24} \cdot \frac{29}{28} \cdot \frac{31}{32} \cdots
\]

where the numerators are prime numbers (starting from 3) and each denominator is the multiple of 4 nearest to the numerator.

Can you give an iterative algorithm for computing this product? Explain, what the difficulties are.

Homework Assignment 3 is due 5pm on Friday Aug 24