
Chapter	4:	Loops

Chapter	Goals
• To	implement	while	and	for	loops

• To	hand-trace	the	execution	of	a	program

• To	become	familiar	with	common	loop	algorithms

• To	understand	nested	loops

• To	implement	programs	that	read	and	process	data	sets

• To	use	a	computer	for	simulations

In	this	chapter,	you	will	learn	about	loop	statements	in	Python,	as	well	
as	techniques	for	writing	programs	that	simulate	activities	in	the	real	

world.

24/6/16

Contents
• The	while loop

• Problem	Solving:	Hand-Tracing

• Application:	Processing	Sentinels

• Problem	Solving:		Storyboards

• Common	Loop	Algorithms

• The	for loop

• Nested	loops

• Processing	Strings

• Application:		Random	Numbers	and	Simulation

• Graphics:		Digital	Image	Processing

• Problem	Solving:		Solve	a	Simpler	Problem	First

34/6/16

The	while Loop

4/6/16 4

The	while Loop
• Examples	of	loop	applications

• Calculating	compound	interest
• Simulations,	event	driven	programs
• Drawing	tiles…

• Compound	interest	algorithm	(Chapter	1)

Steps

54/6/16

Planning	the	while Loop
balance	=	10.0
target	=	100.0
year	=	0
rate	=	0.025
while	balance	<	TARGET	:
year	=	year	+	1
interest	=	balance	*	RATE/100
balance	=	balance	+	interest

A	loop	executes	instructions	repeatedly	
while	a	condition	is	True.

64/6/16

Syntax:	while Statement

74/6/16

Count-Controlled	Loops
• A	while loop	that	is	controlled	by	a	counter

counter = 1 # Initialize
the counter

while counter <= 10 : # Check the counter
print(counter)
counter = counter + 1 # Update the loop
variable

84/6/16

Event-Controlled	Loops
• A	while loop	that	is	controlled	by	a	counter

balance = INITIAL_BALANCE # Initialize the loop
variable

while balance <= TARGET: # Check the loop
variable
year – year + 1
balance = balance * 2 # Update
the loop variable

94/6/16

Execution	of	the	Loop

104/6/16

Execution	of	the	Loop	(2)

114/6/16

Doubleinv.py

Declare	 and	initialize	 a	variable	outside	
of	the	 loop	to	count	year

Increment	 the	year variable	each	 time	
through

124/6/16

Investment	 Example
• Open	the	file:

• Doubleinv.py

• Run	the	program	with	several	test	cases
• The	program	will	prompt	you	for	a	rate
• Enter	a	mix	of	valid	and	invalid	rates

134/6/16

while Loop	Examples

144/6/16

while Loop	Examples	 (2)

154/6/16

Common	Error:	 Incorrect	Test	Condition
• The	loop	body	will	only	execute	if	the	test	condition	is	True.

• If	bal	is	initialized	as	less	than	the	TARGET	and	should	grow	until	it	
reaches	TARGET
• Which	version	will	execute	 the	 loop	body?

while bal < TARGET :
year = year + 1
interest = bal * RATE
bal = bal + interest

while bal >= TARGET :
year = year + 1
interest = bal * RATE
bal = bal + interest

164/6/16

Common	Error:	Infinite	Loops
• The	loop	body	will	execute	until	the	test	condition	becomes	False.

• What	if	you	forget	to	update	the	test	variable?
• bal	 is	the	test	variable	 (TARGET	 doesn’t	 change)
• You	will	 loop	forever!		(or	until	you	stop	the	program)

while bal < TARGET :
year = year + 1
interest = bal * RATE
bal = bal + interest

174/6/16

Common	Error:	Off-by-One	Errors
• A	‘counter’	variable	is	often	used	in	the	test	condition

• Your	counter	can	start	at	0	or	1,	but	programmers	often	start	a	counter	
at	0

• If	I	want	to	paint	all	5	fingers	on	one	hand,	when	I	am	done?
• If	you	start	at	0,	use	“<“ If	you	start	at	1,	use	“<=“
• 0,	1,	2,	3,	4 1,	2,	3,	4,	5

finger = 0
FINGERS = 5
while finger < FINGERS :

paint finger
finger = finger + 1

finger = 1
FINGERS = 5
while finger <= FINGERS :

paint finger
finger = finger + 1

184/6/16

Hand	Tracing	Loops

4/6/16 19

Hand-Tracing	 Loops
• Example:		Calculate	the	sum	of	digits	(1+7+2+9)

• Make	columns	for	key	variables	(n,	total,	digit)
• Examine	the	code	and	number	the	steps
• Set	variables	to	state	before	loop	begins

204/6/16

Tracing	Sum	of	Digits

• Start	executing	loop	body	statements	changing	variable	values	on	a	new	
line
• Cross	out	values	in	previous	line

214/6/16

Tracing	Sum	of	Digits

• Continue	executing	loop	statements	changing	variables
• 1729	/	10	leaves	172	(no	remainder)

224/6/16

Tracing	Sum	of	Digits
• Test	condition.		If	True,	execute	loop	again

• Variable	n	is	172,	Is	172	>	0?,	True!	

• Make	a	new	line	for	the	second	time	through	and	update	variables

234/6/16

Tracing	Sum	of	Digits
• Third	time	through

• Variable	n	is	17	which	is	still	greater	than	0

• Execute	loop	statements	and	update	variables	

244/6/16

Tracing	Sum	of	Digits
• Fourth	loop	iteration:

• Variable	n	is	1	at	start	of	loop.		1	>	0?		True		
• Executes	loop	and	changes	variable	n	to	0	(1/10	=	0)

254/6/16

Tracing	Sum	of	Digits
• Because	n	is	0,	the	expression(n	>	0)	is	False

• Loop	body	is	not	executed
• Jumps	to	next	statement	after	the	loop	body

• Finally	prints	the	sum!

264/6/16

Summary	of	the	while Loop
• while loops	are	very	common	

• Initialize	variables	before	you	test
• The	condition	is	tested	BEFORE	the	loop	body

• This	is	called	pre-test
• The	condition	often	uses	a	counter	variable

• Something	inside	the	loop	should	change	one	of	the	variables	used	
in	the	test

• Watch	out	for	infinite	loops!	

274/6/16

Sentinel	Values

4/6/16 28

Processing	Sentinel	Values
• Sentinel	values	are	often	used:

• When	you	don’t	know	how	many	items	 are	 in	a	list,	use	a	‘special’
character	or	value	to	signal	the	 “last”	 item

• For	numeric	 input	of	positive	 numbers,	 it	 is	common	 to	use	the	value	-1

A	sentinel	value	denotes	the	end	of	a	data	set,	but	it	is	not	part	of	the	
data.

salary = 0.0
while salary >= 0 :

salary = float(input())
if salary >= 0.0 :

total = total + salary
count = count + 1

294/6/16

Averaging	a	Set	of	Values
• Declare	and	initialize	a	‘total’	variable	to	0

• Declare	and	initialize	a	‘count’	variable	to	0

• Declare	and	initialize	a	‘salary’	variable	to	0

• Prompt	user	with	instructions

• Loop	until	sentinel	value	is	entered
• Save	entered	value	to	input	variable	(‘salary’)
• If	salary	is	not	-1	or	less	(sentinel	value)

• Add	salary	variable	to	total	variable
• Add	1	to	count	variable

• Make	sure	you	have	at	least	one	entry	before	you	divide!
• Divide	total	by	count	and	output.				
• Done!

304/6/16

Sentinel.py	 (1)

Outside the while loop: declare and
initialize variables to use

Input new salary and compare to sentinel

Update running total and
count (to calculate the
average later)

Since salary is initialized to 0, the while loop
statements will execute at least once

314/6/16

Sentinel.py	 (2)

Prevent divide by 0

Calculate and
output the average
salary using the
total and count
variables

324/6/16

Sentinel	Example
• Open	the	file:

• Sentinal.py

• Notice	the	use	of	the	IF() test	inside	the	while loop
• The	IF()	checks	to	make	sure	we	are	not	processing	the	sentinel	
value

334/6/16

Priming	Read
• Some	programmers	don’t	like	the	“trick”	of	initializing	the	input	
variable	with	a	value	other	than	a	sentinel.

Set salary to a value to ensure that the loop
executes at least once.
salary = 0.0
while salary >= 0 :

salary = float(input("Enter a salary or -1 to finish: "))
while salary >= 0 :

344/6/16

• An	alternative	is	to	change	the	variable	with	a	read	before	the	loop.

Modification	Read
• The	input	operation	at	the	bottom	of	the	loop	is	used	to	obtain	the	
next	input.

Priming read
salary = float(input("Enter a salary or -1 to finish: "))
while salary >= 0.0 :

total = total + salary
count = count + 1
Modification read
salary = float(input("Enter a salary or -1 to finish:
"))

354/6/16

Boolean	Variables	and	Sentinels	
• A	boolean	variable	can	be	used	to	control	a	loop

• Sometimes	called	a	‘flag’	variable

done = False
while not done :

value = float(input("Enter a salary or -1 to
finish: "))
if value < 0.0:

done = True
else :

Process value

Initialize done so that the loop will execute

Set done ‘flag’ to True if sentinel value is found

364/6/16

Storyboards

4/6/16 37

Storyboards
• One	useful	problem	solving	technique	is	the	use	of	storyboards	to	
model	user	interaction.		It	can	help	answer:
• What	information	does	the	user	provide,	and	in	which	order?	
• What	information	will	your	program	display,	and	in	which	format?	
• What	should	happen	when	there	is	an	error?
• When	does	the	program	quit?

• A	storyboard	consists	of	annotated	sketches	for	each	step	in	an	action	
sequence.

384/6/16

Storyboard	Example
• Goal:	Converting	a	sequence	of	values

• Will	require	a	loop	and	some	variables
• Handle	one	conversion	each	time	through	the	loop

394/6/16

What	Can	Go	Wrong?
Unknown	unit	types

• What	is	the	user	misspells	centimeters	and	inches?
• What	other	conversions	are	available?
• Solution:

• Show	a	list	of	the	acceptable	unit	types

404/6/16

What	Else	Can	Go	Wrong?
• How	does	the	user	quit	the	program?

• Storyboards	help	you	plan	a	program
• Knowing	the	flow	helps	 you	structure	 your	code

414/6/16

Common	Loop	Algorithms

4/6/16 42

Common	Loop	Algorithms
1. Sum	and	Average	Value

2. Counting	Matches

3. Prompting	until	a	Match	Is	Found

4. Maximum	and	Minimum

5. Comparing	Adjacent	Values

434/6/16

Average	Example
total = 0.0
count = 0
inputStr = input("Enter value: ")
while inputStr != "" :

value = float(inputStr)
total = total + value
count = count + 1
inputStr = input("Enter value: ")

if count > 0 :
average = total / count

else :
average = 0.0

Average	of	Values
• First	total	the	values
• Initialize	count to	0

• Increment	per	input
• Check	for	count 0

• Before	divide!

444/6/16

Sum	Example
• Sum	of	Values

• Initialize	total	to	0
• Use	while	loop	with	sentinel

total = 0.0
inputStr = input("Enter value: ")
while inputStr != "" :

value = float(inputStr)
total = total + value
inputStr = input("Enter value: ")

454/6/16

Counting	Matches	(e.g.,	Negative	Numbers)

negatives = 0
inputStr = input("Enter value: ")
while inputStr != "“ :

value = int(inputStr)
if value < 0 :

negatives = negatives + 1
inputStr = input("Enter value: ")

print("There were", negatives,
"negative values.")

• Counting	Matches
• Initialize	negatives to	0
• Use	a	while loop
• Add	to	negatives per	
match

464/6/16

Prompt	Until	a	Match	is	Found
• Initialize	boolean	flag	to	False

• Test	sentinel	in	while	loop
• Get	input,	and	compare	to	range

• If	input	is	in	range,	change	flag	to	True
• Loop	will	stop	executing

valid = False
while not valid :

value = int(input("Please enter a positive value < 100: "))
if value > 0 and value < 100 :

valid = True
else :

print("Invalid input.")

47

This	is	an	excellent	way	to	validate	use	provided	inputs

4/6/16

Maximum
• Get	first	input	value

• By	definition,	this	is	the	largest	that	you	have	seen	so	far	

• Loop	while	you	have	a	valid	number	(non-sentinel)
• Get	another	input	value
• Compare	new	input	to	largest	(or	smallest)
• Update	largest	if	necessary

largest = int(input("Enter a value: "))
inputStr = input("Enter a value: ")
while inputStr != "“ :

value = int(inputStr)
if value > largest :

largest = value
inputStr = input("Enter a value: ")

484/6/16

Minimum
• Get	first	input	value

• This	is	the	smallest	that	you	have	seen	so	far!	

• Loop	while	you	have	a	valid	number	(non-sentinel)
• Get	another	input	value
• Compare	new	input	to	largest	(or	smallest)
• Update	smallest	if	necessary

smallest = int(input("Enter a value: "))
inputStr = input("Enter a value: ")
while inputStr != "“ :

value = int(inputStr)
if value < smallest :

smallest = value
inputStr = input("Enter a value: ")

494/6/16

Comparing	Adjacent	Values
• Get	first	input	value	

• Use	while to	determine	if	there	are	more	to	check
• Copy	input	to	previous	variable
• Get	next	value	into	input	variable
• Compare	input	to	previous,	and	output	if	same

value = int(input("Enter a value: "))
inputStr = input("Enter a value: ")
while inputStr != "“ :

previous = value
value = int(inputStr)
if value == previous :

print("Duplicate input")
inputStr = input("Enter a value: ")

504/6/16

Grades	Example
• Open	the	file:

• Grades.py

• Look	carefully	at	the	source	code.

• The	maximum	possible	score	is	read	as	user	input
• There	is	a	loop	to	validate	the	input

• The	passing	grade	is	computed	as	60%	of	the	available	points

514/6/16

The	for Loop

4/6/16 52

The	for Loop
• Uses	of	a	for loop:

• The	for loop	can	be	used	to	iterate	over	the	contents	of	any	
container.

• A	container is	is	an	object	(Like	a	string)	that	contains	or	stores	a	
collection	of	elements	

• A	string is	a	container	that	stores	the	collection	of	characters	in	the	
string

534/6/16

An	Example	of	a	for Loop

stateName = "Virginia"
i = 0
while i < len(stateName) :

letter = stateName[i]
print(letter)
i = i + 1

while	version

stateName = "Virginia"
for letter in stateName :

print(letter) for	version

• Note	an	important	difference	between	the	while	loop	and	the	for	loop.	
• In	the	while	loop,	the	index	variable	i is	assigned	0,	1,	and	so	on.	
• In	the	for	loop,	the	element	variable	is	assigned	stateName[0],	
stateName[1],	and	so	on.	

544/6/16

The	for	Loop	(2)
• Uses	of	a	for	loop:

• A	for	loop	can	also	be	used	as	a	count-controlled	loop	that	iterates	
over	a	range	of	integer	values.

i = 1
while i < 10 :

print(i)
i = i + 1

for i in range(1, 10) :
print(i)

while version

for version

554/6/16

Syntax	of	a	for Statement	 (Container)
• Using	a	for	loop	to	iterate	over	the	contents	of	a	container,	an	element	
at	a	time.	

564/6/16

Syntax	of	a	for Statement	 (Range)
• You	can	use	a	for	loop	as	a	count-controlled	loop	to	iterate	over	a	
range	of	integer	values

• We	use	the	range	function	for	generating	a	sequence	of	integers	that	
less	than	the	argument	that	can	be	used	with	the	for	loop	

574/6/16

Planning	a	for Loop
• Print	the	balance	at	the	end	of	each	year	for	a	
number	of	years

584/6/16

Good	Examples	of	for Loops
• Keep	the	loops	simple!

594/6/16

Investment	 Example

604/6/16

Programming	Tip
• Finding	the	correct	lower	and	upper	bounds	for	a	loop	can	be	
confusing.	
• Should	you	start	at	0	or	at	1?	
• Should	you	use	<=	b	or	<	b	as	a	termination	condition?

• Counting	is	easier	for	loops	with	asymmetric	bounds.
• The	following	loops	are	executed	b	- a	times.

int i = a
while i < b :

. . .
i = i + 1

for i in range(a, b) :
. . .

614/6/16

Programming	Tip
• The	loop	with	symmetric	bounds	(“<=”,	is	executed	b	- a	+	1	times.	

• That	“+1”	is	the	source	of	many	programming	errors.

i = a
while i <= b :

. . .
i = i + 1

For this version of the loop the
‘+1’ is very noticeable!
for year in range(1, numYears + 1) :

624/6/16

Summary	of	the	for Loop
• for loops	are	very	powerful

• The	for loop	can	be	used	to	iterate	over	the	contents	of	any	container,	
which	is	an	object	that	contains	or	stores	a	collection	of	elements	
• a	string	 is	a	container	 that	stores	the	collection	 of	characters	 in	the	string.

• A	for loop	can	also	be	used	as	a	count-controlled	loop	that	iterates	
over	a	range	of	integer	values.

634/6/16

Steps	to	Writing	 a	Loop
• Planning:

• Decide	what	work	to	do	inside	the	loop
• Specify	the	loop	condition
• Determine	loop	type
• Setup	variables	before	the	first	loop
• Process	results	when	the	loop	is	finished
• Trace	the	loop	with	typical	examples

• Coding:
• Implement	the	loop	in	Python

644/6/16

A	Special	Form	of	the	print Function
• Python	provides	a	special	form	of	the	print	function	that	does	not	start	
a	new	line	after	the	arguments	are	displayed

• This	is	used	when	we	want	to	print	items	on	the	same	line	using	
multiple	print	statements

• For	example	the	two	statements:

print(“00”, end=””)
print(3 + 4)

• Produce	the	output:

007

• Including	end=“” as	the	last	argument	to	the	print	function	prints	an	
empty	string	after	the	arguments,	instead	on	a	new	line

• The	output	of	the	next	print function	starts	on	the	same	line

4/6/16 65

Nested	Loops

4/6/16 66

Loops	Inside	of	Loops
• In	Chapter	Three	we	learned	how	to	nest	if statements	to	allow	us	to	
make	complex	decisions
• Remember	that	to	nest	the	if statements	we	need	to	indent	the	
code	block	

• Complex	problems	sometimes	require	a	nested	loop,	one	loop	nested	
inside	another	loop
• The	nested	loop	will	be	indented	inside	the	code	block	of	the	first	
loop

• A	good	example	of	using	nested	loops	is	when	you	are	processing	cells	
in	a	table
• The	outer	loop	iterates	over	all	of	the	rows	in	the	table
• The	inner	loop	processes	the	columns	in	the	current	row

4/6/16 67

Our	Example	Problem	Statement
• Print	a	Table	Header	that	contains	x1,	x2,	x3,	and	x4

• Print	a	Table	with	four	columns	and	ten	rows	that	contain	the	powers	
of	x1,	x2,	x3,	and	x4 for	x	=	1	to	10	

4/6/16 68

Applying	Nested	Loops
• How	would	you	print	a	table	with	rows	and	columns?

• Print	top	line	(header)
• Use	a	for	loop

• Print	table	body…
• How	many	rows	are	in	the	table?
• How	many	columns	in	the	table?

• Loop	per	row
• Loop	per	column

• In	our	example	there	are:
• Four	columns	in	the	table
• Ten	rows	in	the	table

4/6/16 69

Pseudocode	to	Print	the	Table
Print	the	table	header

for x from 1 to 10
print a new table row
print a new line

• How	do	we	print	a	table	row?

For n from 1 to 4
print xn

• We	have	to	place	this	loop	inside	the	preceding	loop
• The	inner	loop	is	“nested”	inside	the	outer	loop

4/6/16 70

Pseudocode	to	Print	the	Table
Print	the	table	header:

for x from 1 to 10
for n from 1 to 4
print Xn

print a new line

4/6/16 71

n è

x
ê

Inner	Loop

Flowchart	of	a	Nested	Loop
x	=	1

x	<=	
10?

n=	1

n	<=	
4?

Print	xn

n	=	n	+	1

Print	new	line

x	=	x	+	1

True

False True

Done

False

4/6/16 72

Powertable.py

4/6/16 73

Body	of	outer	loop,	x	=	1	è 10

Body	of	inner	loop,	n	=	1	è 4

The end=“” suppresses the new
line, so the numbers are all
printed on the same line

The	Results

4/6/16 74

First	Exercise
• Open	the	program:

• powertable.py

• Run	the	program	and	review	the	results

• Make	the	following	changes:
• Change	the	value	of	NMAX	to	6	and	run	the	program
• What	changes	in	the	table?
• Change	the	value	of	NMAX	back	to	4
• Change	the	value	of	XMAX	to	4
• What	changes	in	the	table?

4/6/16 75

Nested	Loop	Examples

4/6/16 76

Hand	Tracing	the	Loop

• i will	have	the	values:
• 0,	1,	2,	3	– So	we	will	have	four	lines	of	
stars

• j will	have	the	values
• 0	- So	we	will	have	one	star
• 0,	1	- So	we	will	have	two	stars
• 0,	1,	2	- So	we	will	have	three	stars
• 0,	1,	2,	3	- So	we	will	have	four	stars

4/6/16 77

Nested	Loop	Examples	 (2)

4/6/16 78

Second	Problem	Statement
• Print	the	following	pattern	of	brackets:
[][][][]
[][][][]
[][][][]

• The	pattern	consists	of:
• Three	rows
• Each	row	has	four	pairs	of	brackets

• What	do	we	know?
• We	need	two	nested	loops

• The	first	loop	(the	outer	loop)	will	print	each	of	the	three	rows
• The	second	loop	(the	inner	loop)	will	print	the	four	pairs	of	
brackets

4/6/16 79

Pseudocode	Code,	Results
For i = 1 to 3
For j = 1 to 4
Print “[]”

Print a new line

4/6/16 80

Exam	Averages	Problem	Statement
• It	is	common	to	repeatedly	read	and	process	multiple	groups	of	values:

• Write	a	program	that	can	compute	the	average	exam	grade	for	
multiple	students.

• Each	student	has	the	same	number	of	exam	grades
• Prompt	the	user	for	the	number	of	exams
• When	you	finish	a	student	prompt	the	user	to	see	if	there	are	more	
students	to	process

• What	do	we	know?

• What	do	we	need	to	compute?

• What	is	our	algorithm	/	approach?

4/6/16 81

Step	One:	Understand	the	Problem
• To	compute	the	average	grade	for	a	student,	we	must	read	and	tally	all	
of	the	grades	for	that	student
• We	can	use	a	loop	to	do	this.	(we	have	working	code	to	do	this	
portion)

• We	need	to	compute	grades	for	multiple	students
• That	implies	a	set	of	nested	Loops

• The	outer	loop	processes	each	student
• The	inner	loop	process	the	student’s	grades

4/6/16 82

Step	Two
• Compute	the	grade	for	one	student

• Set	up	the	variables	and	loop	

• We	know	how	many	grades	to	process,	so	we	can	use	a	count-
controlled	loop

total score = 0
For i in range (1, number of exams + 1) :
Read the next exam score
Add the exam score to the total score

Compute the exam average
Print the exam average

4/6/16 83

Step	Three
• Repeat	the	process	for	each	student

• Since	we	don’t	know	how	many	students		there	are,	we	will	use	a	
while	loop	with	a	sentinel	value
• For	simplicity	we	will	use	“Y”	as	the	sentinel	value

4/6/16 84

Step	Four:	Translate	 to	Python

4/6/16 85

Exam	Averages	 Example
• Open	the	file:

• examaverages.py

• Notice	that	the	second	loop		(the	for loop)	is	nested	inside	the	while loop

• You	should	see	a	line	(the	indent	guide)	connecting	the	for loop	on	line	17	
down	to	the	statement	on	line	21
• The	line	is	showing	you	the	statements	that	are	included	in	the	for loop

• If	you	don’t	see	the	indent	guide:
• Click	on	the	edit	tab
• Select	“Preferences…”
• Under	Editor,	select	Indention
• Click	the	“Show	Indent	Guides”	box
• Click	the	Apply	button
• Click	the	Okay	Button

4/6/16 86

Turning	the	Indent	Guides	On

4/6/16 87

Processing	Strings
• A	common	use	of	loops	is	to	process	or	evaluate	strings.	

• For	example,	you	may	need	to	count	the	number	of	occurrences	of	
one	or	more	characters	in	a	string	or	verify	that	the	contents	of	a	
string	meet	certain	criteria.

4/6/16 88

Processing	Strings

4/6/16 89

String	Processing	Examples
• Counting	Matches

• Finding	All	Matches

• Finding	the	First	or	Last	Match

• Validating	a	String

• Building	a	New	String

4/6/16 90

Counting	Matches
• Suppose	you	need	to	count	the	number	of	uppercase	letters	contained	
in	a	string.

• We	can	use	a	for	loop	to	check	each	character	in	the	string	to	see	if	it	
is	upper	case

• The	loop	below	sets	the	variable	charequal	to	each	successive	
character	in	the	string

• Each	pass	through	the	loop	tests	the	next	character	in	the	string	to	see	
if	it	is	uppercase

uppercase = 0
for char in string :

if char.isupper() :
uppercase = uppercase + 1

4/6/16 91

Counting	Vowels
• Suppose	you	need	to	count	the	vowels	within	a	string

• We	can	use	a	for	loop	to	check	each	character	in	the	string	to	see	if	it	
is	in	the	string	of	vowels	“aeiuo”

• The	loop	below	sets	the	variable	charequal	to	each	successive	
character	in	the	string

• Each	pass	through	the	loop	tests	the	lower	case	of	the	next	character	
in	the	string	to	see	if	it	is	in	the	string	“aeiou”

vowels = 0
for char in word :

if char.lower() in "aeiou" :
vowels = vowels + 1

4/6/16 92

Finding	All	Matches	Example
• When	you	need	to	examine	every	character	in	a	string,	independent	of	
its	position	we	can	use	a	for	statement	to	examine	each	character

• If	we	need	to	print	the	position	of	each	uppercase	letter	in	a	sentence	
we	can	test	each	character	in	the	string	and	print	the	position	of	all	
uppercase	characters

• We	set	the	range	to	be	the	length	of	the	string
• We	test	each	character
• If	it	 is	uppercase	 we	print	I,	its	 position	 in	the	string

sentence = input("Enter a sentence: ")
for i in range(len(sentence)) :

if sentence[i].isupper() :
print(i)

4/6/16 93

Finding	the	First	Match
• This	example	finds	the	position	of	the	first	digit	in	a	string.

found = False
position = 0
while not found and position < len(string) :

if string[position].isdigit() :
found = True

else :
position = position + 1

if found :
print("First digit occurs at position", position)

else :
print("The string does not contain a digit.")

4/6/16 94

Finding	the	Last	Match
• Here	is	a	loop	that	finds	the	position	of	the	last	digit	in	the	string.

• This	approach	uses	a	while	loop	to	start	at	the	last	character	in	a	string	
and	test	each	value	moving	from	the	end	of	the	string	to	the	start	of	
the	string
• Position	 is	set	to	the	 length	 of	the	string	 	- 1
• If	the	character	 is	not	a	digit,	we	decrease	 position	 by	1	
• Until	we	find	a	digit,	or	process	all	 the	characters

found = False
position = len(string) - 1
while not found and position >= 0 :

if string[position].isdigit() :
found = True

else :
position = position - 1

4/6/16 95

Validating	a	String
• In	the	United	States,	telephone	numbers	consist	of	three	parts––area	
code	exchange,	and	line	number––which	are	commonly	specified	in	
the	form	(###)###-####.	

4/6/16 96

Validating	a	String	 (code)
• We	can	examine	a	string	to	ensure	that	it	contains	a	correctly	
formatted	phone	number.	(e.g.,	(703)321-6753)

• The	loop	test	each	character	to	see	it	it	is	correct	for	its	position,	or	a	
number

valid = len(string) == 13
position = 0
while valid and position < len(string) :

valid = ((position == 0 and string[position] != "(")
or (position == 4 and string[position] != ")")
or (position == 8 and string[position] != "-")
or (position != 0 and position != 4 and position != 8

and string[position].isdigit())) :
position = position + 1

4/6/16 97

Building	 a	New	String
• One	of	the	minor	annoyances	of	online	shopping	is	that	many	web	
sites	require	you	to	enter	a	credit	card	without	spaces	or	dashes,	
which	makes	double-checking	the	number	rather	tedious.	

• How	hard	can	it	be	to	remove	dashes	or	spaces	from	a	string?

4/6/16 98

Building	 a	New	String	 (code)
• The	contents	of	a	string	cannot	be	changed.

• But	nothing	prevents	us	from	building	a	new	string.

• Here	is	a	loop	that	builds	a	new	string	containing	a	credit	card	number	
with	spaces	and	dashes	removed:
• We	read	the	credit	card	number
• We	initialize	a	new	string	to	the	empty	string
• We	test	each	character	in	the	user	input

• If	the	character	is	not	a	space	or	dash	we	append	it	to	the	new	
string

userInput = input("Enter a credit card number: ")
creditCardNumber = ""
for char in userInput :

if char != " " and char != "-" :
creditCardNumber = creditCardNumber + char

4/6/16 99

Application:	 	Random	
Numbers	and	Simulations

4/6/16 100

Random	Numbers/Simulations
• Games	often	use	random	numbers	to	make	things	interesting

• Rolling	Dice
• Spinning	a	wheel
• Pick	a	card

• A	simulation	usually	involves	looping	through	a	sequence	of	events
• Days
• Events

4/6/16 101

Generating	Random	Numbers
• The	Python	library	has	a	random	number	generator	that	produces	
numbers	that	appear to	be	random
• The	numbers	are	not	completely	random.		The	numbers	are	drawn	
from	a	sequence	of	numbers	that	does	not	repeat	for	a	long	time

• random()	returns	a	number	that	is	>=	0	and	<	1

4/6/16 102

Simulating	Die	Tosses
• Goal:

• To	generate	a	random	integer	in	a	given	range	we	use	the	randint()	
function

• Randint	has	two	parameters,	the	range	(inclusive)	of	numbers	
generated

4/6/16 103

The	Monte	Carlo	Method
• Used	to	find	approximate	solutions	to	problems	that	cannot	be	
precisely	solved

• Example:		Approximate	PI	using	the	relative	areas	of	a	circle	inside	a	
square
• Uses	simple	arithmetic
• Hits		are	inside	circle
• Tries	are	total	number	of	tries
• Ratio	is	4	x	Hits	/	Tries

4/6/16 104

Monte	Carlo	Example

4/6/16 105

Image	Processing

4/6/16 106

Manipulating	 Images
• Digital	image	processing		is	the	use	of	algorithms	to	manipulate	digital	
images

• It	is	used	in:
• Digital	 photography
• Data	compression
• Computer	 graphics
• Computer	 vision
• Robotics

• We’ll	learn	how	to	manipulate	images	with	the	ezgraphics package

4/6/16 107

Representing	 Images
• A	digital	image	is	composed	of	pixels	arranged	in	a	grid	of	rows	and	
columns
• Computer	 images	 appear	 “smooth”	 because	 very	small	points	 on	the	screen	
(very	close	 together)	 are	used	 to	reproduce	the	 individual	 pixels

• Pixels	store	data	representing	a	color	from	the	visual	spectrum
• The	discrete	 RGB	color	model	 is	the	most	used	model
• The	three	 individual	 colors	are	specified	 by	the	amount	 of	red,	green,	and	
blue	 light	 needed	 to	produce	a	given	color

• The	values	are	given	as	 integers	 between	 0	(no	light	present)	 and	255	
(maximum	 light	 present)

4/6/16 108

Filtering	an	Image
• Filtering	an	image	modifies	the	color	component	values	of	each	pixel	
in	some	way

4/6/16 109

Processing	an	Image
• We	start	by	loading	the	image	into	our	program

• In	ezgraphics	an	image	 is	stored	 in	an	instance	 of	the	GraphicsImage class
filename = "queen-mary.gif"
image = GraphicsImage(filename)

• We	draw	the	image	on	the	canvas	of	a	GraphicsWindow
win = GraphicsWindow()
canvas = win.canvas()
canvas.drawImage(image)
win.wait()

4/6/16 110

Filtering	an	Image
• To	filter	an	image,	you	must	get	the	red,	green,	and	blue	component	
values	for	each	pixel.	
• The	pixels	 are	organized	 into	a	two-dimensional	 grid	of	size	width	× height:
• The	rows	and	columns	 are	numbered	 sequentially	 starting	at	0,	with	pixel	
(0,	0)	in	the	upper-left	 corner.	

• The	row	numbers	 range	from	0	to	height	– 1;	the	column	numbers	 from	0	to	
width	– 1.

4/6/16 111

Accessing	the	Component	Values	of	a	Pixel
• We	use	the	getRed,	getGreen and	getBluemethods
red = image.getRed(0, 4)
green = image.getGreen(0, 4)
blue = image.getBlue(0, 4)

• To	create	the	negative	of	an	image:

newRed = 255 - red
newGreen = 255 - green
newBlue = 255 – blue

• And	then	update	the	pixel

image.setPixel(0,	4,	newRed,	newGreen,	newBlue)

4/6/16 112

The	Pseudocode	
width = image.width()
height = image.height()
for row in range(height) :

for col in range(width) :
Get the current pixel color.
Filter the pixel.
Set the pixel to the new color.

image.save("negative" + filename)

4/6/16 113

GraphicsImage Methods

4/6/16 114

Problem	Solving:	Solve	a	
Simpler	Problem	First

4/6/16 115

Simplify	a	Complex	Problem
• As	we	learn	more	about	programming,	the	complexity	of	the	tasks	we	
are	solving	increases

• When	we	are	faced	with	a	complex	task	we	should	apply	a	critical	skill:
• Simplifying	 the	problem	 and	solving	 the	simpler	 problem	 first

• Our	simplification	(AKA	problem	decomposition)	skills	improve	with	
practice

4/6/16 116

A	Sample	Problem
• Our	assignment	is	to	arrange	pictures,	lining	them	up	along	the	top	
edges,	separating	them	with	small	gaps,	and	starting	a	new	row	
whenever	you	run	out	of	room	in	the	current	row.
• This	sounds	 simple,	 right?

4/6/16 117

A	Simple	Plan
• Let’s	develop	a	plan	that	solves	a	set	of	simpler	(increasing	in	
complexity)	problems

4/6/16 118

Increase	 the	Complexity

4/6/16 119

Implementing	Our	Plan
1. Specify	the	canvas	coordinates	where	the	upper	left	corner	of	the	first	

image	should	be	placed

2. Then	place	the	next	picture	after	the	first	after	the	first
• It	needs	to	be	drawn	so	that	its	left-most	edge	is	positioned	at	the	
right-most	x-coordinate	of	the	preceding	picture

• This	can	be	determined	by	obtaining	the	width	of	the	first	picture	
and	using	that	value	as	the	x-coordinate	for	the	second	picture

3. Separate	the	two	pictures	with	a	gap

4. To	draw	the	third	picture,	it’s	not	sufficient	to	know	the	width	of	the	
preceding	picture.	
• We	also	need	to	know	the	x-coordinate	where	it	was	drawn	so	we	
can	add	that	value	to	the	width	of	the	preceding	image,	plus	the	gap	
between	the	images

4/6/16 120

Implementing	our	Plan
5. Now	let’s	put	all	of	the	pictures	in	a	row	

• Load	the	pictures	in	a	loop,	and	then	put	each	picture	to	the	right	of	
the	one	that	preceded	it.	

• In	each	iteration,	you	need	to	track	two	pictures:	the	one	that	is	
being	loaded,	and	the	one	that	preceded	it

6. We	don’t	want	to	have	all	pictures	in	a	single	row	
• The	right	margin	of	a	picture	should	not	extend	past	MAX_WIDTH
• If	the	image	doesn’t	fit	we	need	to	put	it	on	the	next	row,	below	all	
the	pictures	in	the	current	row	

• We’ll	set	a	variable	maxY to	the	maximum	y-coordinate	of	all	placed	
pictures,	updating	it	whenever	a	new	picture	is	placed

4/6/16 121

Summary

4/6/16 122

Summary:	 Two	Types	of	Loops
• while Loops

• for Loops

• while loops	are	very	commonly	used	(general	purpose)

• Uses	of	the	for loop:
• The	for loop	can	be	used	to	iterate	over	the	contents	of	any	
container.

• A	for loop	can	also	be	used	as	a	count-controlled	loop	that	iterates	
over	a	range	of	integer	values.

1234/6/16

Summary
• Each	loop	requires	the	following	steps:

• Initialization	(setup	variables	to	start	looping)
• Condition	(test	if	we	should	execute	loop	body)
• Update	(change	something	each	time	through)

• A	loop	executes	instructions	repeatedly	while	a	condition	is	True.	

• An	off-by-one	error	is	a	common	error	when	programming	loops.	
• Think	through	simple	test	cases	to	avoid	this	type	of	error.

1244/6/16

Summary
• A	sentinel	value	denotes	the	end	of	a	data	set,	but	it	is	not	part	of	the	
data.

• You	can	use	a	boolean	variable	to	control	a	loop.	
• Set	the	variable	to	True before	entering	the	loop	
• Set	it	to	False to	leave	the	loop.	

• Loops	can	be	used	in	conjunction	with	many	string	processing	tasks

1254/6/16

Summary
• In	a	simulation,	you	use	the	computer	to	simulate	an	activity.	

• You	can	introduce	 randomness	 by	calling	the	random	number	generator.

4/6/16 126

