
Chapter	Five:	Functions

Chapter	Goals
• To	be	able	to	implement	 functions
• To	become	familiar	with	the	concept	of	parameter	passing
• To	develop	strategies	 for	decomposing	complex	tasks	into	simpler	ones
• To	be	able	to	determine	 the	scope	of	a	variable
• To	learn	how	to	think	recursively

In	this	chapter,	you	will	learn	how	to	design	and	implement	 your	own	
functions	

Using	the	process	of	stepwise	 refinement,	 you	will	be	able	to	break	up	
complex	tasks	into	sets	of	cooperating	 functions

Page 2

Contents
• Functions	as	Black	Boxes
• Implementing	and	Testing	Functions
• Parameter	Passing
• Return	Values
• Functions	without	Return	Values
• Reusable	 Functions
• Stepwise	Refinement
• Variable	Scope
• Graphics:		Building	an	Image	Processing	Toolkit
• Recursive	 Functions

4/20/16 Page 3

Functions	as	Black	Boxes
SECTION	5.1

4/20/16 Page 4

Functions	as	Black	Boxes
• A	function is	a	sequence	 of	instructions	with	a	name

• For	example,	 the	round	function,	which	was	introduced	in	Chapter	2,	
contains	instructions	 to	round	a	floating-point	value	 to	a	specified	
number	of	decimal	places

4/20/16 Page 5

Calling	Functions
• You	call	a	function	in	order	 to	execute	 its	instructions

price = round(6.8275, 2) # Sets result to 6.83

• By	using	the	expression	 round(6.8275,	2),	your	program	calls	the	
round	function,	asking	it	to	round	6.8275	to	two	decimal	digits

4/20/16 Page 6

Calling	Functions	 (2)
• The	round	function	returns	its	result	back	to	where	 the	function	was	
called	and	your	program	resumes	 execution

4/20/16 Page 7

Function	Arguments
• When	another	 function	calls	the	round	function,	 it	provides	“inputs”,	
such	as	the	values	6.8275 and	2 in	the	call	round(6.8275, 2)

• These	values	are	called	the	arguments	of	the	function	call
• Note	that	they	are	not	necessarily	 inputs	provided	by	a	human	user	
• They	are	the	values	for	which	we	want	the	function	 to	compute	a	
result

4/20/16 Page 8

Function	Arguments
• Functions	can	receive	multiple	arguments	or	it	is	also	possible	 to	have	
functions	with	no	arguments

4/20/16 Page 9

Function	Return	Values
• The	“output”	that	the	round	function	computes	 is	called	the	return	
value

• Functions	return	only	one	value

• The	return	value	of	a	function	is	returned	 to	the	point	in	your	program	
where	 the	function	was	called

price = round(6.8275, 2)

• When	the	round	function	returns	 its	result,	 the	return	value	is	stored	
in	the	variable	 ‘price’	statement)

4/20/16 Page 10

Function	Return	Values	(2)
• Do	not	confuse	 returning	a	value	with	producing	program	output	
which	is	produced	when	using	a	print() statement

4/20/16 Page 11

Black	Box	Analogy
• A	thermostat	 is	a	‘black	box’

• Set	a	desired	 temperature
• Turns	on	heater/AC	 as	required
• You	don’t	have	to	know	how	it	really	works!

• How	does	it	know	the	current	 temp?
• What	signals/commands	 does	it	send	 to	the	heater	or	A/C?

• Use	 functions	 like	‘black	boxes’
• Pass	the	function	what	it	needs	 to	do	its	job
• Receive	 the	answer

4/20/16 Page 12

The	round Function	as	a	Black	Box
• You	pass	the	round	function	 its	necessary	 arguments	 (6.8275	&	2)	and	
it	produces	 its	result	 (6.83)

4/20/16 Page 13

The	round Function	as	a	Black	Box
• You	may	wonder	how	the	round	function	performs	 its	job	

• As	a	user	of	the	function,	you	don’t	need	to	know	how	the	function	is	
implemented

• You	just	need	to	know	the	specification	of	the	function:	
• If	you	provide	arguments	x	and	n,	the	function	 returns	x	rounded	 to	
n	decimal	digits

4/20/16 Page 14

Designing	Your	Own	Functions
• When	you	design	your	own	functions,	you	will	want	to	make	them	
appear	as	black	boxes	to	other	programmers
• Even	if	you	are	the	only	person	working	on	a	program,	making	each	
function	 into	a	black	box	pays	off:	there	are	fewer	 details	that	you	
need	 to	keep	in	mind

4/20/16 Page 15

Implementing	and	Testing	Functions
SECTION	5.2

4/20/16 Page 16

Implementing	 and	Testing	Functions

• A	function	 to	calculate	the	volume	of	a	cube
• What	does	 it	need	to	do	its	job?
• What	does	 it	answer	with?

• When	writing	(‘defining’)	 this	function
• Pick	a	name	for	the	function	(cubeVolume)
• Declare	a	variable	 for	each	incoming	argument

(sideLength)	 (called	parameter	 variables)
• Put	all	this	information	 together	along	with	the	def keyword	to	form	
the	first	line	of	the	function’s	definition:

4/20/16 Page 17

def cubeVolume(sideLength): This line is called the header of
the function

Testing	a	Function
• If	you	run	a	program	containing	just	the	function	definition,	 then	
nothing	happens
• After	all,	nobody	is	calling	 the	function

• In	order	 to	test	the	function,	your	program	should	contain
• The	definition	 of	the	function
• Statements	 that	call	the	function	and	print	the	result

4/20/16 Page 18

Calling/Testing	 the	Cube	Function

def cubeVolume(sideLength) :
volume = sideLength ** 3
return volume

result1 = cubeVolume(2)
result2 = cubeVolume(10)
print("A cube with side length 2 has volume", result1)
print("A cube with side length 10 has volume", result2)

Implementing the function (function definition)

Calling/testing the function

4/20/16 Page 19

Syntax:	Function	Definition

4/20/16 Page 20

Programming	Tip:	Function	Comments
• Whenever	 you	write	a	function,	you	should	comment	its	behavior	

• Remember,	 comments	are	for	human	readers,	 not	compilers

Computes the volume of a cube.
@param sideLength the length of a side of the cube
@return the volume of the cube
#
def cubeVolume(sideLength) :

volume = sideLength ** 3
return volume

Function comments explain the purpose of the function, the
meaning of the parameter variables and the return value, as

well as any special requirements

4/20/16 Page 21

Cubes.py	with	Documentation

4/20/16 Page 22

Cubes.py
• Open	the	file	Cubes.py	 in	Wing

• The	files	contains	to	functions:
• main
• cubeVolume

• Line	20	contains	the	call	to	the	function	“main”

4/20/16 Page 23

The	main Function
• When	defining	and	using	functions	 in	Python,	it	is	good	programming	
practice	to	place	all	statements	 into	functions,	and	to	specify	one	
function	as	the	starting	point

• Any	legal	name	can	be	used	 for	the	starting	point,	but	we	chose	 ‘main’	
since	it	is	the	required	 function	name	used	by	other	common	
languages

• Of	course,	we	must	have	one	statement	in	the	program	that	calls	the	
main	function

4/20/16 Page 24

Syntax:	The	main Function	

4/20/16 Page 25

Using	Functions:	Order	(1)
• It	is	important	that	you	define	any	function	before	you	call	it	

• For	example,	 the	following	will	produce	a	compile-time	error:

print(cubeVolume(10))
def cubeVolume(sideLength) :

volume = sideLength ** 3
return volume

• The	compiler	does	not	know	that	the	cubeVolume function	will	be	
defined	 later	in	the	program

4/20/16 Page 26

Using	Functions:	Order	(2)
• However,	 a	function	can	be	called	from	within	another	 function	before	
the	former	has	been	defined	

• The	following	is	perfectly	 legal:

def main() :
result = cubeVolume(2)
print("A cube with side length 2 has volume",
result)

def cubeVolume(sideLength) :
volume = sideLength ** 3
return volume

main()

4/20/16 Page 27

Parameter	Passing
SECTION	5.3

4/20/16 Page 28

Parameter	Passing
• Parameter	variables	 receive	 the	argument	values	supplied	 in	the	
function	call

• The	argument	value	may	be:
• The	contents	of	a	variable
• A	‘literal’	 value	(2)

• Aka,	‘actual	parameter’	 or	argument
• The	parameter	 variable	 is:

• Declared	 in	the	called	function	
• Initialized	with	the	value	of	the	argument	value	
• Used	as	a	variable	 inside	the	called	function

• Aka,	‘formal	parameter’	

4/20/16 Page 29

Argument value

Parameter variable

o
u
t

Called	 function

Calling	function

in

Parameter	Passing	Steps	

result1 = cubeVolume(2)

def cubeVolume(sideLength):
volume = sideLength * 3
return volume

4/20/16 Page 30

Common	Error	5.1
• Trying	to	modify	parameter	 variables

• A	copy	of	the	argument	values	 is	passed	 (the	Value is	passed)
• Called	function	 (addTax)	 can	modify	local	copy	(price)

4/20/16 Page 31

def addTax(price, rate):
tax = price * rate / 100
No effect outside the function
price = price + tax
return tax;

total = 10
addTax(total, 7.5);

10.0

10.75

total

price

copy

Programming	Tip	5.2
• Do	not	modify	parameter	 variables

def totalCents(dollars, cents) :
cents = dollars * 100 + cents # Modifies parameter variable.
return cents

Many	programmers	 find	this	
practice	confusing

def totalCents(dollars, cents) :
result = dollars * 100 + cents
return result

To	avoid	the	confusion,	 simply	
introduce	a	separate	variable:

4/20/16 Page 32

Return	Values
SECTION	5.4

4/20/16 Page 33

Return	Values
• Functions	can	(optionally)	return	one	value

• Add	a	return	statement	that	returns	a	value
• A	return	statement	does	two	things:

1) Immediately	 terminates	 the	function
2) Passes	 the	return	value	back	to	the	calling	function

4/20/16 Page 34

def cubeVolume (sideLength):
volume = sideLength * 3
return volume

return	statement

The	return	value	may	be	a	value,	a	variable	or	a	calculation

Multiple	return Statements
• A	function	can	use	multiple	return statements

• But	every	branch	must	have	a	return statement

4/20/16 Page 35

def cubeVolume(sideLength):
if (sideLength < 0):

return 0
return sideLength * 3

Multiple	return Statements	 (2)
• Alternative	 to	multiple	returns	 (e.g.,	 one	for	each	branch):

• You	can	avoid	multiple	 returns	by	storing	the	function	result	 in	a	variable	
that	you	return	in	the	 last	statement	 of	the	function	

• For	example:

4/20/16 Page 36

def cubeVolume(sideLength) :
if sideLength >= 0:

volume = sideLength ** 3
else :

volume = 0
return volume

Make	Sure	A	Return	Catches	All	Cases
• Missing	return statement

• Make	sure	all	conditions	are	handled
• In	this	case,	sideLength could	be	equal	to	0

• No	return statement	for	this	condition
• The	compiler	will	not complain	if	any	branch	has	no	return
statement

• It	may	result	in	a	run-time	 error	because	Python	returns	 the	
special	value	None when	you	forget	to	return	a	value

4/20/16 Page 37

def cubeVolume(sideLength) :
if sideLength >= 0 :

return sideLength ** 3
Error—no return value if sideLength < 0

Make	Sure	A	Return	Catches	All	Cases	(2)

• A	correct	 implementation:

4/20/16 Page 38

def cubeVolume(sideLength) :
if sideLength >= 0

return sideLength ** 3
else :

return 0

Implementing	a	Function:	Steps
1. Describe	what	the	function	should	do
i. Provide	a	simple	“liberal	arts	terms”	description	of	what	the	

functions	does
ii. “Compute	 the	volume	of	a	pyramid	with	a	square	base”

2. Determine	 a	list	of	all	of	the	functions	 inputs
i. Make	a	list	of	all of	the	parameters	 that	can	vary
ii. Do	not	be	overly	 specific

3. Determine	 the	types	of	the	parameter	 variables	and	the	return	
value

4/20/16 Page 39

Implementing	a	Function:	Steps
4) Write	pseudocode	 for	obtaining	the	desired	result
i. Express	an	mathematical	formulas,	branches	 and	loops	in	

pseudocode
5) Implement	 the	function	body

4/20/16 Page 40

def pyramidVolume(height, baseLength) :
baseArea = baseLength * baseLength
return height * baseArea / 3

Implementing	a	Function:	Steps

6) Test	your	function
i. Design	test	cases	and	code

4/20/16 Page 41

Pyramids.py
• Open	the	file	pyramids.py

• Look	at	how	the	main	function	is	set	up	to	make	the	calls	to	
pyramidVolume and	print	the	expected	 results

4/20/16 Page 42

Functions	Without	Return	Values
SECTION	5.5

4/20/16 Page 43

Functions	Without	Return	Values
• functions	are	not	required	 to	return	a	value

• No	return statement	is	required
• The	function	can	generate	output	even	when	it	doesn’t	have	a	
return	value

4/20/16 Page 44

def boxString(contents) :
n = len(contents) :
print("-" * (n + 2))
print("!" + contents + "!")
print("-" * (n + 2))

...
boxString("Hello")
...

Using	return Without	a	Value
• You	can	use	 the	return	statement	without	a	value

• The	function	will	terminate	 immediately!

4/20/16 Page 45

def boxString(contents) :
n = len(contents)
if n == 0 :

return # Return immediately
print("-" * (n + 2))
print("!" + contents + "!")
print("-" * (n + 2))

Reusable	Functions
SECTION	5.6

4/20/16 Page 46

Problem	Solving:	 	Reusable	Functions
• Find	repetitive	code

• May	have	different	 values	but	same	 logic	

4/20/16 Page 47

hours = int(input("Enter a value between 0 and 23: "))
while hours < 0 or hours > 23 :

print("Error: value out of range.")
hours = int(input("Enter a value between 0 and 23: "))

minutes = int(input("Enter a value between 0 and 59: "))
while minutes < 0 or minutes > 59 :

print("Error: value out of range.")
minutes = int(input("Enter a value between 0 and 59: "))

0	- 23

0	- 59

Write	a	‘Parameterized’	Function
Prompts a user to enter a value up to a given maximum until the user
provides
a valid input.
@param high an integer indicating the largest allowable input
@return the integer value provided by the user (between 0 and high,
inclusive)
#
def readIntUpTo(high) :

value = int(input("Enter a value between 0 and " + str(high) + ": "))
while value < 0 or value > high :

print("Error: value out of range.")
value = int(input("Enter a value between 0 and " + str(high) + ": "))

return value

4/20/16 Page 48

Readtime.py
• Open	the	file	readtime.py

• Test	the	program	with	several	 inputs
• How	would	you	modify	your	project	 to	use	the	readInBetween
function?

4/20/16 Page 49

An	Alternate	If	Structure
• Open	the	file	earthquake.py

• The	file	contains	two	functions	 that	solve	the	Richter	 scale	problem	
from	earlier	 this	semester
• The	first	uses	an	“if – elif”	construct
• The	second	uses		single-line	 compound	statements	 (Special	Topic	
5.1,	p.	256)

• This	form	of	an	if statement	 is	very	useful	 in	functions	 that	select	
and	return	a	single	value	from	a	set	of	values

4/20/16 Page 50

Stepwise	Refinement
SECTION	5.7

4/20/16 Page 51

Stepwise	Refinement
• To	solve	a	difficult	 task,	break	it	down	into	simpler	 tasks	
• Then	keep	breaking	down	the	simpler	 tasks	into	even	simpler	 ones,	until	

you	are	left	with	tasks	that	you	know	how	to	solve

4/20/16 Page 52

Get	Coffee

• If	you	must	make	coffee,	 there	are	two	ways:
• Make	Instant	Coffee
• Brew	Coffee

4/20/16 Page 53

Instant	Coffee
• Two	ways	to	boil	water
1)	Use	Microwave
2)	Use	Kettle	on	Stove

4/20/16 Page 54

Brew	Coffee
• Assumes	 coffee	maker

• Add	water
• Add	filter
• Grind	Coffee

• Add	beans	to	grinder
• Grind	60	seconds

• Fill	filter	with	ground	coffee
• Turn	coffee	maker	on

• Steps	are	easily	done

4/20/16 Page 55

Stepwise	Refinement	Example
• When	printing	a	check,	it	is	customary	to	write	 the	check	amount	both	
as	a	number	(“$274.15”)	and	as	a	text	string	(“two	hundred	seventy	
four	dollars	and	15	cents”)	

• Write	a	program	to	turn	a	number	 into	a	text	string

• Wow,	sounds	difficult!

• Break	it	down
• Let’s	take	the	dollar	part	(274)	and	come	up	with	a	plan
• Take	an	Integer	 from	0	– 999
• Return	a	String
• Still	pretty	hard…

4/20/16 Page 56

Stepwise	Refinement	Example
• Take	 it	digit	by	digit	(2,	7,	4)	– left	to	right
• Handle	 the	first	digit	(hundreds)

• If	empty,	we are	done	with	hundreds
• Get	first	digit	(Integer	 from	1	– 9)
• Get	digit	name	(“one”,	 “two”,	“three”…)	
• Add	the	word	“hundred”
• Sounds	easy!

• Second	digit	(tens)
• Get	second	digit	(Integer	 from	0	– 9)
• If	0,	we	are	done	with	tens…	handle	third	digit
• If	1,	…	may	be	eleven,	 twelve...	 	Teens…	Not	easy!

• Let’s	look	at	each	possibility	left	(1x-9x)…	

4/20/16 Page 57

Stepwise	Refinement	Example
• If	second	digit	is	a	0

• Get	third	digit	(Integer	 from	0	– 9)
• Get	digit	name	(“”,	“one”,	“two”…)	…	Same	as	before?
• Sounds	easy!

• If	second	digit	is	a	1
• Get	third	digit	(Integer	 from	0	– 9)
• Return	a	String	(“ten”,	“eleven”,	 “twelve”…)

• If	second	digit	is	a	2-9
• Start	with	string	“twenty”,	“thirty”,	“forty”…
• Get	third	digit	(Integer	 from	0	– 9)
• Get	digit	name	(“”,	“one”,	“two”…)	 		…	Same	as	before
• Sounds	easy!

4/20/16 Page 58

Name	the	Sub-Tasks
• digitName

• Takes	an	Integer	 from	0	– 9
• Return	a	String	(“”,	“one”,	 “two”…)

• tensName (second	digit	>=	20)
• Takes	an	Integer	 from	0	– 9
• Return	a	String	(“twenty”,	“thirty”…)	plus

• digitName(third	digit)	
• teenName

• Takes	an	Integer	 from	0	– 9
• Return	a	String	(“ten”,	“eleven”…)

4/20/16 Page 59

Write	Pseudocode
part	=	number	(The	part	that	still	needs	 to	be	converted)
name	=	“”	(The	name	of	the	number)
If	part	>=	100
name	=	name	of	hundreds	 in	part	+	"	hundred"
Remove	hundreds	 from	part
If	part	>=	20
Append	tensName(part) to	name
Remove	 tens	from	part
Else	if	part	>=	10
Append	teenName(part) to	name
part	=	0
If	(part	>	0)
Append	digitName(part) to	name

4/20/16 Page 60

Identify	functions	that	we	can	use	
(or	re-use!)	 to	do	the	work

Plan	The	Functions
• Decide	on	name,	parameter(s)	 and	types	and	return	type

• def	intName (number):
• Turns	a	number	 into	its	English	name
• Returns	a	String	that	is	the	English	description	of	a	number	 (e.g.,	
“seven	hundred	 twenty	nine”)

• def	digitName (digit):
• Return	a	String	(“”,	“one”,	 “two”…)

• def	tensName (number):
• Return	a	String	(“twenty”,	“thirty”…)	plus

• Return	 from	digitName(thirdDigit)

• def	teenName (number):
• Return	a	String	(“ten”,	“eleven”…)

4/20/16 Page 61

Convert	 to	Python:	 	intName Function
• Open	the	file	intname.py	in	Wing

• main	calls	intName
• Does	all	the	work
• Returns	a	String

• Uses	 functions:
• tensName
• teenName
• digitName

Page 624/20/16

intName

Page 634/20/16

digitName

4/20/16 Page 64

teenName

4/20/16 Page 65

tensName

4/20/16 Page 66

Programming	Tips
• Keep	functions	short

• If	more	than	one	screen,	break	into	‘sub’	functions
• Trace	your	functions

• One	line	for	each	step
• Columns	for	key	variables

• Use	Stubs	as	you	write	larger	programs
• Unfinished	 functions	 that	return	a	‘dummy’	value

4/20/16 Page 67

Variable	Scope
SECTION	5.8

4/20/16 Page 68

Variable	Scope
• Variables	can	be	declared:

• Inside	a	function
• Known	as	‘local	variables’
• Only	available	inside	 this	function
• Parameter	variables	are	like	local	variables	

• Outside	of	a	function
• Sometimes	called	‘global	scope’
• Can	be	used	 (and	changed)	by	code	in	any	function

• How	do	you	choose?

4/20/16 Page 69

The	scope	of	a	variable	 is	the	part	of	the	program	in	which it	
is	visible

Examples	of	Scope
• sum, square& i are	local	variables	 in	main

4/20/16 Page 70

def main() :
sum = 0

for i in range(11) :
square = i * i
sum = sum + square

print(square, sum)

sum

i

square

Local	Variables	of	functions
• Variables	declared	 inside	one	function	are	not	visible	to	other	
functions	
• sideLength is	local	to	main
• Using	it	outside	main will	cause	a	compiler	error

4/20/16 Page 71

def main():
sideLength = 10
result = cubeVolume()
print(result)

def cubeVolume():
return sideLength * sideLength * sideLength # ERROR

Re-using	Names	for	Local	Variables
• Variables	declared	 inside	one	function	are	not	visible	to	other	
functions	
• result is	local	to	square	and	result is	local	to	main
• They	are	two	different	 variables	 and	do	not	overlap
• This	can	be	very	confusing

4/20/16 Page 72

def square(n):
result = n * n
return result

def main():
result = square(3) + square(4)
print(result)

result

result

Global	Variables
• They	are	variables	 that	are	defined	outside	 functions

• A	global	variable	 is	visible	 to	all	functions	 that	are	defined	after	 it

• However,	 any	function	that	wishes	 to	use	a	global	variable	must	
include	a	global	declaration

4/20/16 Page 73

Example	Use	of	a	Global	Variable
• If	you	omit	the	global	declaration,	 then	 the	balance	variable	 inside	the	
withdraw	function	 is	considered	a	local	variable

balance = 10000 # A global variable
def withdraw(amount) :

This function intends to access the
global ‘balance’ variable
global balance
if balance >= amount :

balance = balance - amount

4/20/16 Page 74

Programming	Tip

4/20/16 Page 75

• There	are	a	few	cases	where	global	variables	 are	required	 (such	as	pi
defined	 in	the	math	module),	but	they	are	quite	rare

• Programs	with	global	variables	 are	difficult	to	maintain	and	extend	
because	you	can	no	longer	view	each	function	as	a	“black	box”	that	
simply	receives	 arguments	and	returns	a	result

• Instead	of	using	global	variables,	use	function	parameter	 variables	and	
return	values	to	transfer	 information	from	one	part	of	a	program	to	
another

Graphics:	 	Building	an	Image	
Processing	Toolkit
SECTION	5.9

4/20/16 Page 76

Building	Your	Own	Tools
• As	we	learned	 earlier,	 Python’s	standard	libraries	contain	a	large	
collection	of	function	and	classes
• You	import	a	module	(containing	functions	 and	/	or	classes)	 into	your	

program	if	you	need	 it

• What	do	you	do	when	the	standard	libraries	don’t	have	what	you	
need?
• You	create	your	own	collection	 of	tools	and	organize	them	into	modules	or	a	

software	toolkit

4/20/16 77

Creating	Your	Toolkit
• The	tools	of	functions	 in	the	toolkit	should	all	be	related

• The	function	names	should	be	easy	to	remember
• The	parameters	 should	be	as	consistent	as	possible

• Place	the	functions	 in	a	separate	 file

• Import	them	 into	your	programs	as	needed

4/20/16 Page 78

Recursive	Functions
SECTION	5.10

4/20/16 Page 79

Recursive	Functions
• A	recursive	 function	is	a	function	that	calls	itself

• A	recursive	 computation	solves	a	problem	by	using	the	solution	of	the	
same	problem	with	simpler	 inputs

• For	a	recursion	 to	terminate,	 there	must	be	special	cases	 for	the	
simplest	 inputs

4/20/16 Page 80

Recursive	Triangle	Example

• The	function	will	call	itself	(and	not	output	
anything)	until	sideLength becomes	<	1

• It	will	then	use	 the	return	statement	and	
each	of	the	previous	 iterations	will	print	
their	results
• 1,	2,	3	then	4

def printTriangle(sideLength) :
if sideLength < 1 : return

printTriangle(sideLength - 1)

print("[]" * sideLength)

Special	Case

Recursive	Call

4/20/16 Page 81

Recursive	Calls	and	Returns

4/20/16 Page 82

A	Second	Example
• Open	the	file	digits.py

• This	program	computes	the	sum	of	the	digits	in	a	number	 (n)	
• We	solved	this	last	chapter	in	Section	4.2		
• We	will	use	n	=	1729	as	our	example

• Our	algorithm	was:
• Remove	 the	last	digit	by	computing		n	//	10	and	add	the	remainder	
to	our	total

• To	use	recursion	we	can	use	the	recursive	 function:
• digitsum(n	//	10)	+	n	%	10
• Our	special	case	is	n	==	0	to	terminate	 the	recursion

4/20/16 Page 83

Summary

4/20/16 Page 84

Summary:		Functions
• A	function	 is	a	named	sequence	 of	instructions
• Arguments	are	supplied	when	a	function	 is	called
• The	return	value	is	the	result	 that	the	function	computes
• When	declaring	a	function,	you	provide	a	name	for	the	function	and	a	
variable	 for	each	argument

• Function	comments	explain	the	purpose	 of	the	function,	 the	meaning	
of	the	parameters	and	return	value,	as	well	as	any	special	
requirements

• Parameter	variables	hold	the	arguments	 supplied	 in	the	function	call

4/20/16 Page 85

Summary:	Function	Returns
• The	return statement	 terminates	a	function	call	and	yields	the	function	
result
• Complete	computations	 that	can	be	reused	 into	functions

• Use	 the	process	of	stepwise	 refinement	 to	decompose	complex	tasks	
into	simpler	ones
• When	you	discover	 that	you	need	a	function,	write	a	description	of	
the	parameter	 variables	and	return	values

• A	function	may	require	simpler	 functions	 to	carry	out	its	work

4/20/16 Page 86

Summary:		Scope
• The	scope	of	a	variable	 is	the	part	of	the	program	in	which	the	variable	
is	visible
• Two	local	or	parameter	 variables	can	have	the	same	name,	provided	
that	their	scopes	do	not	overlap

• You	can	use	 the	same	variable	name	within	different	 functions	since	
their	scope	does	not	overlap

• Local	variables	 declared	 inside	one	function	are	not	visible	 to	code	
inside	other	 functions

4/20/16 Page 87

Summary:		Recursion
• A	recursive	 computation	solves	a	problem	by	using	the	solution	of	the	
same	problem	with	simpler	 inputs
• For	recursion	 to	terminate,	 there	must	be	special	cases	 for	the	
simplest	 inputs

• The	key	to	finding	a	recursive	 solution	is	reducing	 the	input	to	a	
simpler	 input	for	the	same	problem

• When	designing	a	recursive	solution,	do	not	worry	about	multiple	
nested	calls		
• Simply	focus	on	reducing	a	problem	to	a	slightly	simpler	one

4/20/16 Page 88

