
SETS	AND	DICTIONARIES

Chapter	8

Chapter	Goals
• To	build	and	use	a	set	container

• To	learn	common	set	operations	 for	processing	data

• To	build	and	use	a	dictionary	container

• To	work	with	a	dictionary	 for	table	lookups

• To	work	with	complex	data	structures

5/16/16

In this chapter, we will learn how to work with two more types of
containers (sets and dictionaries) as well as how to combine
containers to model complex structures.

Page 2

Contents
• Sets
• Dictionaries
• Complex	Structures

5/16/16 Page 3

Sets
SECTION	8.1

5/16/16 4

Sets
• A	set	is	a	container	that	stores	a	collection	of	unique	values

• Unlike	a	list,	the	elements	 or	members	of	the	set	are	not	stored	 in	any	
particular	order	and	cannot	be	accessed	 by	position

• Operations	are	the	same	as	the	operations	performed	 on	sets	 in	
mathematics

• Because	 sets	do	not	need	 to	maintain	a	particular	order,	 set	operations	
are	much	faster	 than	the	equivalent	 list	operations

5/16/16 Page 5

Example	Set
• This	set	contains	three	sets	of	colors––the	 colors	of	the	British,	
Canadian,	and	Italian	flags

• In	each	set,	the	order	does	not	matter,	and	the	colors	are	not	
duplicated	in	any	one	of	the	sets

5/16/16 Page 6

Creating	and	Using	Sets

• Alternatively,	 you	can	use	the	set() function	to	convert	any	sequence	
into	a	set:

cast = { "Luigi", "Gumbys", "Spiny" }

names = ["Luigi", "Gumbys", "Spiny"]
cast = set(names)

5/16/16 Page 7

• To	create	a	set	with	initial	elements,	 you	can	specify	the	elements	
enclosed	 in	braces,	 just	like	in	mathematics:

Creating	an	Empty	Set
• For	historical	reasons,	 you	cannot	use	{} to	make	an	empty	set	in	
Python

• Instead,	use	the	set() function	with	no	arguments:

cast = set()

numberOfCharacters = len(cast) # In this case it’s zero

5/16/16 Page 8

• As	with	any	container,	you	can	use	the	len() function	 to	obtain	the	
number	of	elements	 in	a	set:

Set	Membership:	in
• To	determine	whether	 an	element	 is	contained	in	the	set,	use	the	in
operator	or	its	inverse,	 the	not in operator:

if "Luigi" in cast :
print("Luigi is a character in Monty Python’s Flying Circus.")

else :
print("Luigi is not a character in the show.")

5/16/16 Page 9

Accessing	Set	Elements

• Note	that	the	order	 in	which	the	elements	 of	the	set	are	visited	
depends	 on	how	they	are	stored	internally

print("The cast of characters includes:")
for character in cast :

print(character)

5/16/16 Page 10

• Because	 sets	are	unordered,	 you	cannot	access	 the	elements	of	a	set	
by	position	as	you	can	with	a	list

• We	use	a	for loop	to	iterate	over	 the	individual	elements:

Accessing	Elements	(2)
• For	example,	 the	previous	 loop	above	displays	the	following:
The cast of characters includes:
Gumbys
Spiny
Luigi

• Note	that	the	order	of	the	elements	 in	the	output	is	different	 from	the	
order	 in	which	the	set	was	created

5/16/16 Page 11

Displaying	Sets	In	Sorted	Order
• Use	 the	sorted() function,	which	returns	 a	list	(not	a	set) of	the	
elements	 in	sorted	order

• The	following	loop	prints	the	cast	in	sorted	order:

for actor in sorted(cast) :
print(actor)

5/16/16 Page 12

Adding	Elements
• Sets	are	mutable collections,	 so	you	can	add	elements	by	using	the	
add() method:

cast = set(["Luigi", "Gumbys", "Spiny"]) #1
cast.add("Arthur") #2
cast.add("Spiny") #3

5/16/16

Spiny	is	already	in	the	set,	so	there	 is	
no	effect	 on	the	set	

Arthur	 is	not	in	the	set,	so	it	is	added	
to	the	set	and	the	size	of	the	set	is	
increased	 by	one

Page 13

Removing	Elements:	discard()
• The	discard() method	removes	 an	element	 if	the	element	exists:

cast.discard("Arthur") #4

cast.discard("The Colonel") # Has no effect

5/16/16 Page 14

• It	has	no	effect	 if	the	given	element	 is	not	a	member	of	the	set:

Removing	Elements:	remove()

• For	this	class	we	will	use	the	discard()	method

cast.remove("The Colonel") # Raises an exception

5/16/16 Page 15

• The	remove() method,	on	the	other	hand,	removes	 an	element	 if	it	
exists,	but	raises	an	exception	if	the	given	element	 is	not	a	member	of	
the	set:

Removing	Elements:	clear()
• Finally,	the	clear() method	removes	all	elements	of	a	set,	 leaving	the	
empty	set:

cast.clear() # cast now has size 0

5/16/16 Page 16

Subsets
• A	set	is	a	subset	of	another	 set	if	and	only	if	every	element	of	the	first	
set	is	also	an	element	of	the	second	set

• In	the	image	below,	 the	Canadian	flag	colors	are	a	subset	of	the	British	
colors

• The	Italian	flag	colors	are	not.

5/16/16 Page 17

The	issubset() Method
• The	issubset() method	returns	True or	False to	report	whether	
one	set	is	a	subset	of	another:

canadian = { "Red", "White" }
british = { "Red", "Blue", "White" }
italian = { "Red", "White", "Green" }

True
if canadian.issubset(british) :

print("All Canadian flag colors occur in the British flag.")

True
if not italian.issubset(british) :

print("At least one of the colors in the Italian flag does
not.")

5/16/16 Page 18

Set	Equality	 /	Inequality
• We	test	set	equality	with	the	“==“	and	“!=“	operators

• Two	sets	are	equal	if	and	only	if	they	have	exactly	the	same	elements

french = { "Red", "White", "Blue" }
if british == french :

print("The British and French flags use the same colors.")

5/16/16 Page 19

Set	Union:	union()

• Both	the	British and	Italian sets	contain	the	colors	Red	and	White,	but	
the	union	is	a	set	and	therefore	contains	only	one	instance	of	each	
color

inEither: The set {"Blue", "Green", "White", "Red"}
inEither = british.union(italian)

Note	that	the	union()	 	method	returns	
a	new	set.	It	does	not	modify	either	
of	the	sets
in	the	call

5/16/16 Page 20

• The	union of	two	sets	contains	all	of	the	elements	 from	both	sets,	
with	duplicates	 removed

Set	Intersection:	intersection()
• The	intersection of	two	sets	contains	all	of	the	elements	 that	are	in	
both	sets

inBoth: The set {"White", "Red"}
inBoth = british.intersection(italian)

5/16/16 Page 21

Difference	of	Two	Sets:	difference()
• The	difference of	two	sets	 results	 in	a	new	set	that	contains	those	
elements	 in	the	first	set	that	are	not	in	the	second	set

print("Colors that are in the Italian flag but not the
British:")

print(italian.difference(british)) # Prints {'Green'}

5/16/16 Page 22

Common	Set	Operations

5/16/16 Page 23

Common	Set	Operations	 (2)

5/16/16

Remember:	 union,	 intersection and	difference return	new	sets		
They	do	not	modify	the	set	they	are	applied	 to	

Page 24

Simple	Examples
• Open	the	file:	set	examples.py

5/16/16 Page 25

Set	Example:	Spell	Checking
• The	program	spellcheck.py	 reads	a	file	that	contains	correctly	spelled	
words	and	places	the	words	in	a	set

• It	then	 reads	all	words	from	a	document––here,	 the	book	Alice	in	
Wonderland––into	a	second	set

• Finally,	it	prints	all	words	from	the	document	 that	are	not	in	the	set	of	
correctly	spelled	words

• Open	the	file	spellcheck.py

5/16/16 Page 26

Example:	Spellcheck.py

5/16/16 Page 27

Example:	Spellcheck.py

5/16/16 Page 28

Execution:	Spellcheck.py

5/16/16 Page 29

Programming	Tip
• When	you	write	a	program	that	manages	a	collection	of	unique	items,	
sets	are	far	more	efficient	 than	lists	

• Some	programmers	prefer	 to	use	the	familiar	lists,	replacing

itemSet.add(item)

if (item not in itemList)
itemList.append(item)

5/16/16 Page 30

with:

• However,	 the	resulting	program	is	much	slower.
• The	speed	 factor	difference	 is	over	10	times

Counting	Unique	Words	

5/16/16 31

Problem	Statement
• We	want	to	be	able	to	count	the	number	of	unique	words	in	a	text	
document
• “Mary	had	a	little	lamb”	has	57	unique	words

• Our	task	is	to	write	a	program	that	reads	 in	a	text	document	and	
determines	 the	number	of	unique	words	in	the	document

5/16/16 Page 32

Step	One:	Understand	the	Task
• To	count	the	number	of	unique	words	in	a	text	document	we	need	to	
be	able	to	determine	 if	a	word	has	been	encountered	 earlier	 in	the	
document
• Only	the	first	occurrence	of	a	word	should	be	counted

• The	easiest	way	to	do	this	is	to	read	each	word	from	the	file	and	add	it	
to	the	set
• Because	 a	set	cannot	contain	duplicates	we	can	use	the	add	method
• The	add	method	will	prevent	a	word	that	was	encountered	 earlier	
from	being	added	to	the	set

• After	we	process	every	word	in	the	document	the	size	of	the	set	will	
be	the	number	of	unique	words	contained	 in	the	document

5/16/16 Page 33

Step	Two:		Decompose	the	Problem
The	problem	can	be	split	into	several	 simple	steps:

Create	an	empty	set

for	each	word	in	the	text	document
Add	the	word	to	the	set

Number	of	unique	words	=	the	size	of	the	set

• Creating	 the	empty	set,	adding	an	element	 to	the	set,	and	determining	
the	size	of	the	set	are	standard	set	operations

• Reading	the	words	in	the	file	can	be	handled	as	a	separate	 task

5/16/16 Page 34

Step	Three:		Build	the	Set
• We	need	to	read	 individual	words	from	the	file.		For	simplicity	in	our	
example	we	will	use	a	literal	file	name

inputFile = open(“nurseryrhyme.txt”, “r”)
For line in inputFile :

theWords = line.split()
For words in theWords :

Process word

• To	count	unique	words	we	need	 to	remove	any	nonletters and		remove	
capitalization

• We	will	design	a	function	 to	“clean”	the	words	before	we	add	them	to	
the	set

5/16/16 Page 35

Step	Four:		Clean	the	Words
• To	strip	out	all	the	characters	 that	are	not	letters	we	will	iterate	
through	the	string,	one	character	at	a	time,	and	build	a	new	“clean”	
word

def clean(string) :
result = “”
for char in string :
if char.isalpha() :
result = result + char

return result.lower()

5/16/16 Page 36

Step	Five:		Some	Assembly	Required
• Implement	 the	main()	 function	and	combine	it	with	the	other	
functions

• Open	the	file:		countwords.py

5/16/16 Page 37

Dictionaries
SECTION	8.2

5/16/16 38

Dictionaries
• A	dictionary	is	a	container	that	keeps	associations	between	 keys	and	
values

• Every	key	in	the	dictionary	has	an	associated	 value

• Keys	are	unique,	but	a	value	may	be	associated	with	several	 keys

• Example	(the	mapping	between	 the	key	and	value	is	indicated	by	an	
arrow):

5/16/16 Page 39

Syntax:	Sets	and	Dictionaries

5/16/16 Page 40

Creating	Dictionaries
• Suppose	you	need	 to	write	a	program	that	looks	up	the	phone	number	
for	a	person	in	your	mobile	phone’s	contact	list

• You	can	use	a	dictionary	where	 the	names	are	keys	and	the	phone	
numbers	are	values

contacts = { "Fred": 7235591, "Mary": 3841212, "Bob":
3841212, "Sarah": 2213278 }

5/16/16 Page 41

Duplicating	Dictionaries:	Dict()
• You	can	create	a	duplicate	copy	of	a	dictionary	using	the	dict()
function:

oldContacts = dict(contacts)

5/16/16 Page 42

Accessing	Dictionary	Values	[]
• The	subscript	operator	[] is	used	 to	return	 the	value	associated	with	a	
key

• The	statement

The	key	supplied	to	the	subscript	operator	must	be	
a	valid	key	in	the	dictionary	or

a	KeyError exception	will	be	raised

prints 7235591.
print("Fred's number is",

contacts["Fred"])

5/16/16 Page 43

• Note	that	the	dictionary	is	not	a	sequence-type	 container	 like	a	list.	
• You	cannot	access	 the	items	by	index	or	position
• A	value	can	only	be	accessed	 using	its	associated	key

Dictionaries:	 Checking	Membership

• To	find	out	whether	a	key	is	present	 in	the	dictionary,	use	the	in (or	
not in)	operator:

if "John" in contacts :
print("John's number is", contacts["John"])

else :
print("John is not in my contact list.")

5/16/16 Page 44

Default	Keys
• Often,	you	want	to	use	a	default	value	if	a	key	is	not	present

• Instead	of	using	the	in operator,	 you	can	simply	call	the	get()
method	and	pass	the	key and	a	default value

• The	default	value	is	returned	 if	there	 is	no	matching	key

number = contacts.get("Fred", 411)
print("Dial " + number)

5/16/16 Page 45

Adding/Modifying Items
• A	dictionary	is	a	mutable	container

• You	can	add a	new	item	using	the	subscript	operator	 []	much	as	you	
would	with	a	list

contacts["John"] = 4578102 #1

contacts["John"] = 2228102 #2

5/16/16 Page 46

• To	change the	value	associated	with	a	given	key,	set	a	new	value	using	
the	[]	operator	on	an	existing	key:

Adding	New	Elements	Dynamically

• and	add	new	items	as	needed:

favoriteColors = {}

favoriteColors["Juliet"] = "Blue"
favoriteColors["Adam"] = "Red"
favoriteColors["Eve"] = "Blue"
favoriteColors["Romeo"] = "Green"

5/16/16 Page 47

• Sometimes	you	may	not	know	which	items	will	be	contained	in	the	
dictionary	when	it’s	created

• You	can	create	an	empty	dictionary	like	this:

Removing	Elements
• To	remove	an	item	from	a	dictionary,	 call	the	pop()method	with	the	
key	as	the	argument:

contacts = { "Fred":
7235591, "Mary": 3841212,
"Bob": 3841212, "Sarah":
2213278 }

contacts.pop("Fred")

5/16/16 Page 48

• This	removes	 the	entire	 item,	both	the	key	and	its	associated	value.

Removing	 and	Storing Elements
• The	pop() method	returns	 the	value	of	the	item	being	removed,	 so	
you	can	use	it	or	store it	in	a	variable:

fredsNumber = contacts.pop("Fred")

if "Fred" in contacts :
contacts.pop("Fred")

5/16/16 Page 49

• Note:	If	the	key	is	not	in	the	dictionary,	 the	pop	method	raises	a	
KeyError exception
• To	prevent	 the	exception	from	being	raised,	you	should	test	for	the	
key	in	the	dictionary:

Traversing	a	Dictionary
• You	can	iterate	over	the	individual	keys	in	a	dictionary	using	a	for
loop:

print("My Contacts:")
for key in contacts :

print(key)

Note	that	the	dictionary	stores	 its	
items	in	an	order	 that	is	optimized	

for	efficiency,
which	may	not	be	the	order	 in	which	

they	were	added

5/16/16 Page 50

• The	result	of	this	code	fragment	 is	shown	below:
My Contacts:
Sarah
Bob
John
Mary
Fred

Traversing	a	Dictionary:	 In	Order
• To	iterate	through	the	keys	in	sorted	order,	you	can	use	the	sorted()
function	as	part	of	the	for	loop	:

print("My Contacts:")
for key in sorted(contacts) :

print("%-10s %d" % (key, contacts[key]))

5/16/16 Page 51

• Now,	the	contact	list	will	be	printed	in	order	by	name:
My Contacts:
Bob 3841212
Fred 7235591
John 4578102
Mary 3841212
Sarah 2213278

Iterating	Dictionaries	More	Efficiently

• Python	allows	you	to	iterate	over	 the	items	in	a	dictionary	using	the	
items() method

• This	is	a	bit	more	efficient	 than	iterating	over	 the	keys	and	then	
looking	up	the	value	of	each	key

• The	items() method	returns	 a	sequence	 of	tuples	 that	contain	the	
keys	and	values	of	all	items
• Here	 the	loop	variable	item will	be	assigned	a	tuple	that	contains	
the	key	in	the	first	slot	and	the	value	in	the	second	slot

for item in contacts.items() :
print(item[0], item[1])

5/16/16 Page 52

Storing	Data	Records
• Data	records,	 in	which	each	record	consists	of	multiple	fields,	are	very	
common

• In	some	 instances,	 the	individual	fields	of	the	record	were	stored	 in	a	
list	to	simplify	the	storage

• But	this	requires	 remembering	 in	which	element	of	the	list	each	field	is	
stored	
• This	can	introduce	 run-time	errors	 into	your	program	if	you	use	the	
wrong	list	element	when	processing	 the	record

• In	Python,	it	is	common	to	use	a	dictionary	to	store	a	data	record

5/16/16 Page 53

Dictionaries:	Data	Records
• You	create	an	item	for	each	data	record	in	which	the	key	is	the	field	
name	and	the	value	is	the	data	value	 for	that	field

• For	example,	 this	dictionary	named	record stores	a	single	student	
record	with	fields	for	ID,	name,	class,	and	GPA:

record = { "id": 100, "name": "Sally Roberts", "class": 2,
"gpa": 3.78 }

5/16/16 Page 54

Dictionaries:	Data	Records
• To	extract	records	 from	a	file,	we	can	define	a	function	that	reads	a	
single	record	and	returns	 it	as	a	dictionary

• The	file	to	be	read	contains	records	made	up	of	country	names	and	
population	data	separated	by	a	colon:

def extractRecord(infile) :
record = {}
line = infile.readline()
if line != "" :

fields = line.split(":")
record["country"] = fields[0]
record["population"] = int(fields[1])

return record

5/16/16 Page 55

Dictionaries:	Data	Records
• The	dictionary	record that	is	returned	has	two	items,	one	with	the	
key	"country"	and	the	other	with	the	key	"population"

• This	function’s	 result	can	be	used	 to	print	all	of	the	records	 to	the	
terminal

infile = open("populations.txt", "r")
record = extractRecord(infile)
while len(record) > 0 :

print("%-20s %10d" % (record["country"],
record["population"]))

record = extractRecord(infile)

5/16/16 Page 56

Common	Dictionary	Operations	 (1)

5/16/16 Page 57

Common	Dictionary	Operations	 (2)

5/16/16 Page 58

Complex	Structures
SECTIONS	8.3

5/16/16 59

Complex	Structures
• Containers	are	very	useful	 for	storing	collections	of	values

• In	Python,	the	list	and	dictionary	containers	can	contain	any	type	of	
data,	including	other	containers

• Some	data	collections,	however,	may	require	more	complex	structures.
• In	this	section,	we	explore	problems	 that	require	 the	use	of	a	
complex	structure

5/16/16 Page 60

A	Dictionary	of	Sets
• The	index	of	a	book	specifies	 on	which	pages	each	term	occurs

• Build	a	book	index	from	page	numbers	and	terms	contained	in	a	text	
file	with	the	following	format:
6:type
7:example
7:index
7:program
8:type
10:example
11:program
20:set

5/16/16 Page 61

A	Dictionary	of	Sets
• The	file	includes	every	occurrence	 of	every	 term	to	be	included	in	the	
index	and	the	page	on	which	the	term	occurs	

• If	a	term	occurs	on	the	same	page	more	than	once,	 the	index	includes	
the	page	number	only	once

5/16/16 Page 62

A	Dictionary	of	Sets
• The	output	of	the	program	should	be	a	list	of	terms	 in	alphabetical	
order	 followed	by	the	page	numbers	on	which	the	term	occurs,	
separated	 by	commas,	like	this:
example: 7, 10
index: 7
program: 7, 11
type: 6, 8
set: 20

5/16/16 Page 63

A	Dictionary	of	Sets
• A	dictionary	of	sets	would	be	appropriate	 for	this	problem

• Each	key	can	be	a	term	and	its	corresponding	 value	a	set	of	the	page	
numbers	where	 it	occurs

5/16/16 Page 64

Why	Use	a	Dictionary?
• The	terms	 in	the	index	must	be	unique

• By	making	each	term	a	dictionary	key,	there	will	be	only	one	
instance	of	each	term.

• The	index	listing	must	be	provided	 in	alphabetical	order	by	term
• We	can	iterate	over	 the	keys	of	the	dictionary	in	sorted	order	to	
produce	 the	listing	

• Duplicate	page	numbers	 for	a	term	should	only	be	included	once	
• By	adding	each	page	number	to	a	set,	we	ensure	 that	no	duplicates	
will	be	added

5/16/16 Page 65

Dictionary	Sets:	Buildindex.py

5/16/16 Page 66

Dictionary	Sets:	Buildindex.py

5/16/16 Page 67

Dictionary	Sets:	Buildindex.py

5/16/16 Page 68

Dictionary	Sets:	Buildindex.py

5/16/16 Page 69

A	Dictionary	of	Lists
• A	common	use	of	dictionaries	 in	Python	is	to	store	a	collection	of	lists	
in	which	each	list	is	associated	with	a	unique	name	or	key

• For	example,	 consider	 the	problem	of	extracting	data	from	a	text	file	
that	represents	 the	yearly	sales	of	different	 ice	cream	flavors	in	
multiple	stores	of	a	retail	ice	cream	company
• vanilla:8580.0:7201.25:8900.0
• chocolate:10225.25:9025.0:9505.0
• rocky road:6700.1:5012.45:6011.0
• strawberry:9285.15:8276.1:8705.0
• cookie dough:7901.25:4267.0:7056.5

5/16/16 Page 70

A	Dictionary	of	Lists
• The	data	is	to	be	processed	 to	produce	a	report	 similar	to	the	
following:

5/16/16 Page 71

• A	simple	list	is	not	the	best	choice:
• The	entries	consist	of	strings	and	floating-point	values,	and	they	
have	to	be	sorted	by	the	flavor	name

A	Dictionary	of	Lists
• With	this	structure,	 each	row	of	the	table	is	an	item	in	the	dictionary	

• The	name	of	the	ice	cream	flavor	is	the	key	used	 to	identify	a	
particular	 row	in	the	table.

• The	value	for	each	key	is	a	list	that	contains	the	sales,	by	store,	for	that	
flavor	of	ice	cream

5/16/16 Page 72

Example:	Icecreamsales.py

5/16/16 Page 73

Example:	Icecreamsales.py

5/16/16 Page 74

Example:	Icecreamsales.py

5/16/16 Page 75

Example:	Icecreamsales.py

5/16/16 Page 76

Example:	Icecreamsales.py

5/16/16 Page 77

Modules
SPLITTING	OUR	PROGRAMS	INTO	PIECES

5/16/16 78

Modules
• When	you	write	small	programs,	you	can	place	all	of	your	code	into	a	
single	source	 file

• When your	programs	get	larger	or	you	work	in	a	team,	that	situation	
changes	

• You	will	want	to	structure	 your	code	by	splitting	it	into	separate	source	
files	(a	“module”)

5/16/16 Page 79

Reasons	for	Employing	Modules
• Large	programs	can	consist	of	hundreds	of	functions	 that	become	
difficult	to	manage	and	debug	if	they	are	all	in	one	source	 file
• By	distributing	 the	functions	over	 several	 source	 files	and	grouping	
related	 functions	 together,	 it	becomes	easier	 to	test	and	debug	 the	
various	 functions

• The	second	reason	becomes	apparent	when	you	work	with	other	
programmers	 in	a	team
• It	would	be	very	difficult	for	multiple	programmers	 to	edit	a	single	
source	 file	simultaneously

• The	program	code	is	broken	up	so	that	each	programmer	 is	solely	
responsible	 for	a	unique	set	of	files

5/16/16 Page 80

Typical	Division	 Into	Modules
• Large	Python	programs	 typically	consist	of	a	driver	module	and	one	or	
more	supplemental	modules	

• The	driver	module	contains	the	main() function	or	the	first	executable	
statement	 if	no	main	function	is	used

• The	supplemental	modules	contain	supporting	 functions	and	constant	
variables

5/16/16 Page 81

Modules	Example
• Splitting	the	dictionary	of	lists	into	modules

• The	tabulardata.py module	contains	functions	 for	reading	the	data	
from	a	file	and	printing	a	dictionary	of	lists	with	row	and	column	totals	

• The	salesreport.py module	is	the	driver	 (or	main)	module	 that	
contains	the	main	function

• By	splitting	the	program	into	two	modules,	 the	functions	 in	the	
tabulardata.py module	can	be	reused	 in	another	program	that	
needs	 to	process	named	 lists	of	numbers

5/16/16 Page 82

Using	Code	That	are	in	Modules
• To	call	a	function	or	use	a	constant	variable	 that	is	defined	 in	a	user	
module,	you	can	first	import	the	module	 in	the	same	way	that	you	
imported	a	standard	library	module:

from tabulardata import readData, printReport

import tabulardata

tabulardata.printReport(salesData)

5/16/16 Page 83

• However,	 if	a	module	defines	many	functions,	 it	is	easier	 to	use	the	
form:

• With	this	form,	you	must	prepend	 the	name	of	the	module	to	the	
function	name:

Review

5/16/16 84

Python	Sets

• A	set	stores	a	collection	of	unique	values

• A	set	is	created	using	a	set	literal	or	the	set	function

• The	in operator	 is	used	 to	test	whether	an	element	 is	a	member	of	a	
set

• New	elements	 can	be	added	using	the	add() method

• Use	 the	discard() method	 to	remove	elements	 from	a	set

• The	issubset() method	 tests	whether	one	set	is	a	subset	of	another	
set

5/16/16 Page 85

Python	Sets

• The	union() method	produces	a	new	set	that	contains	the	elements	
in	both	sets

• The	intersection() method	produces	a	new	set	with	the	elements	
that	are	contained	in	both	sets

• The	difference() method	produces	a	new	set	with	the	elements	 that	
belong	to	the	first	set	but	not	the	second

• The	implementation	of	sets	arrange	 the	elements	 in	the	set	so	that	
they	can	be	located	quickly

5/16/16 Page 86

Python	Dictionaries
• A	dictionary	keeps	associations	 between	keys	and	values

• Use	 the	[] operator	to	access	the	value	associated	with	a	key

• The	in operator	 is	used	 to	test	whether	a	key	is	in	a	dictionary

• New	entries	 can	be	added	or	modified	using	the	[] operator

• Use	 the	pop() method	to	remove	a	dictionary	entry

5/16/16 Page 87

Complex	Structures
• Complex	structures	 can	help	to	better	organize	data	for	processing

• The	code	of	complex	programs	 is	distributed	over	multiple	files

5/16/16 Page 88

