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Abstract Koblitz curves allow very efficient elliptic

curve cryptography. The reason is that one can trade

expensive point doublings to cheap Frobenius endo-

morphisms by representing the scalar as a τ -adic ex-

pansion. Typically elliptic curve cryptosystems, such as

ECDSA, also require the scalar as an integer. This re-

sults in a need for conversions between integers and

the τ -adic domain, which are costly and hinder the

use of Koblitz curves on very constrained devices, such

as RFID tags, wireless sensors, or certain applications

of the Internet-of-Things. We provide solutions to this

problem by showing how complete cryptographic pro-

cesses, such as ECDSA signing, can be completed in

the τ -adic domain with very few resources. This allows

outsourcing conversions to a more powerful party. We

provide several algorithms for performing arithmetic

operations in the τ -adic domain. In particular, we in-

troduce a new representation allowing more efficient

and secure computations compared to the algorithms

available in the preliminary version of this work from

CARDIS 2014. We also provide datapath extensions

with different speed and side-channel resistance proper-

ties that require areas from less than one hundred to a

few hundred gate equivalents on 0.13µm CMOS. These

extensions are applicable for all Koblitz curves.

Keywords Elliptic curve cryptography, Koblitz

curves, lightweight cryptography, ECDSA

1 Introduction

Elliptic curve cryptography (ECC) [29,22] offers high

security levels with short key lengths and relatively
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low amounts of computation. Hence, it is one of the

most feasible alternatives for implementing public-key

cryptography on constrained devices where resources

(e.g., circuit area, power, and energy) are extremely

limited. Such lightweight implementations of public-key

cryptography are required, e.g., in wireless sensor net-

work nodes, RFID tags, smart cards, and devices for

the Internet-of-Things. For an example of an academic

work on lightweight public-key cryptography tags see,

e.g, [35] or for a commercial product see, e.g., the pas-

sive SecureRF LIME Tag UX01 [36]. Several researchers

have proposed implementations which aim to minimize

area, power, and/or energy of computing elliptic curve

scalar multiplications [4,6,17,24,26] which are the fun-

damental operations of all elliptic curve cryptosystem.

Koblitz curves [23] are a special class of elliptic curves

which allow very efficient elliptic curve operations when

scalars used in scalar multiplications are given as τ -

adic expansions. Koblitz curves allow extremely fast

scalar multiplications on both software [42,14,40,3,16,

13] and hardware [33,27,2,18,5,12,11]. A recent pa-

per [4] showed that they can be implemented also with

very few resources (especially, in terms of energy) if the

scalars are already in the τ -adic domain. Many cryp-

tosystems require both the integer and τ -adic represen-

tations of the scalar which results in a need for con-

versions between the domains. Most hardware imple-

mentations of the conversions [19,9,10,1,37] require a

lot of resources making them infeasible for constrained

devices. This has prevented from using Koblitz curves

although they would otherwise result in very efficient

lightweight implementations. The only exception is the

converter very recently presented in [38]. A workaround

to the problem is to design a protocol that operates di-

rectly in the τ -adic domain [8]. However, this approach

prevents from using standardized algorithms and proto-

Manuscript Click here to download Manuscript submission.pdf 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

http://www.editorialmanager.com/jcen/download.aspx?id=10820&guid=282b76e0-3842-4233-bb3d-0b6868f6caa7&scheme=1
http://www.editorialmanager.com/jcen/download.aspx?id=10820&guid=282b76e0-3842-4233-bb3d-0b6868f6caa7&scheme=1


2 Kimmo Järvinen et al.

cols which, consequently, makes the design work more

laborious and may even lead to cryptographic weak-

nesses in the worst case.

In this paper, we show how the computationally

weaker party of a cryptosystem can delegate conver-

sions to the more powerful party by computing all op-

erations directly in the τ -adic domain with a small dat-

apath extension for τ -adic arithmetic. The approach is

applicable to Koblitz curve cryptosystems that require

scalar multiplications and modular arithmetic with the

scalar, e.g., Elliptic Curve Digital Signature Algorithm

(ECDSA). This can be done without affecting the cryp-

tographic strength of the cryptosystem. To summarize,

we show how Koblitz curves can be used more efficiently

in lightweight implementations.

A preliminary version [20] of this paper was pub-

lished in CARDIS 2014. The novel contributions of this

extended version are the following:

– We provide further details and more comprehensive

analysis of the approach presented in [20];

– We introduce a representation called partial τ -adic

expansion which allows τ -adic arithmetic without

expensive foldings and leads to faster and more se-

cure implementations;

– We explore how the circuitries for the algorithms

can be unrolled in order to obtain speedups with

only small increases in area requirements;

– We propose algorithms which are protected against

single-trace side-channel attacks such as timing at-

tacks and simple power analysis; and

– We present a lightweight implementation of an ex-

isting conversion algorithm from [10]. We compare

τ -adic arithmetic to this implementation and the

converter from [38] and show that τ -adic arithmetic

has several advantages and offers tradeoffs which are

not available with conversion based approaches.

This paper is structured as follows. Sect. 2 discusses

Koblitz curves and ECDSA. Sect. 3 explores existing

options to implement Koblitz curves in lightweight ap-

plications and introduces the idea of outsourcing con-

versions. An addition algorithm for the τ -adic domain

is presented and analyzed in Sect. 4. Sect. 5 presents

algorithms for other arithmetic operations. Sect. 6 in-

troduces the partial τ -adic expansion and algorithms

based on it. Sect. 7 presents datapath extensions for the

algorithms from Sects. 4–6. Lightweight implementa-

tions of existing conversion algorithms are described in

Sect. 8 for fair comparisons. Sect. 9 presents results on

0.13µm CMOS and compares them to the lightweight

converters. Sect. 10 closes the paper with conclusions.

2 Koblitz Curves and ECDSA

In the following, we discuss ECC and Koblitz curves

and, then, present ECDSA signature generation as an

example.

2.1 Elliptic Curve Cryptography and Koblitz Curves

In the mid-1980s, Miller [29] and Koblitz [22] showed

how public-key cryptography can be based on the diffi-

culty of solving discrete logarithms in an additive Abelian

group E formed by points on an elliptic curve. Let

k ∈ Z+ and P ∈ E . The main operation in ECC is

scalar multiplication given by:

kP = P + P + . . .+ P︸ ︷︷ ︸
k times

. (1)

The operation Q + R, where Q,R ∈ E , is called point

addition if Q 6= ±R and point doubling if Q = R.

Scalar multiplication can be computed with a series of

point doublings and point additions, e.g., by using the

well-known double-and-add algorithm. Elliptic curves

over GF (2m), finite fields of characteristic two, are of-

ten preferred in hardware implementations of ECC be-

cause of the efficient carry-less arithmetic. These curves

are called binary curves.

Koblitz curves [23] are the following binary curves:

y2 + xy = x3 + a2x
2 + a6 (2)

where a2 ∈ {0, 1}, a6 = 1, and x, y ∈ GF (2m). Let

K denote the Abelian group of points (x, y) that sat-

isfy (2) together with O, which is a special point that

acts as the zero element of the group. Koblitz curves

have the property that if a point P = (x, y) ∈ K, then

also its Frobenius endomorphism F (P) = (x2, y2) ∈
K. This allows devising efficient scalar multiplication

algorithms where Frobenius endomorphisms are com-

puted instead of point doublings. It can be shown that

F (F (P))−µF (P)+2P = 0, where µ = (−1)1−a2 , holds

for all P ∈ K [23]. Consequently, F (P) can be seen as a

multiplication by the complex number τ that satisfies

τ2 − µτ + 2 = 0, which gives τ = (µ+
√
−7)/2.

If the scalar k is given using the base τ as a τ -adic

expansion K =
∑
Kiτ

i, the scalar multiplication KP

can be computed with a Frobenius-and-add algorithm,

where Frobenius endomorphisms are computed for each

Ki and point additions (or subtractions) are computed

for Ki 6= 0. This is similar to the double-and-add al-

gorithm except that computationally expensive point

doublings are replaced with cheap Frobenius endomor-

phisms. Hence, if a τ -adic expansion can be efficiently
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found, then Koblitz curves offer significant efficiency

improvements compared to general binary curves.

We use the following notation. Lower-case letters

a, b, c, . . . denote integers and upper-case letters A,B,

C, . . . denote τ -adic expansions. If both versions of the

same letter (e.g., a and A) are used in the same context,

then the values are related; to state this explicitly, we

denote A $ a. Bold-faced upper-case letters P,Q, . . .

denote points on elliptic curves.

2.2 ECDSA Signature Generation

An ECDSA signature (r, s) for a message M is com-

puted as follows [32]:

k ∈R [1, q − 1] (3)

r = [kP]x (4)

e = H(M) (5)

s = k−1(e+ dr) mod q (6)

where q is the order of P, d is the signer’s private key,

[kP]x is the x-coordinate of kP, and H(M) is the hash

of M.

Equation (4) is efficiently computed using Koblitz

curves if k is given as a τ -adic expansion; i.e., we com-

pute r = [KP]x. In this paper, we assume that the

coefficients of K take values Ki ∈ {−1, 0, 1}, e.g., K

can be represented with the τ -adic nonadjacent form

(τNAF) [39] or the τ -adic zero-free representation (τZFR)

[34,41]. The τNAF gives improvements in computation

latency and the τZFR offers protection against side-

channel attacks. Both of them can be encoded with m

bits by using the encoding proposed by Joye and Ty-

men [21] or by storing only the signs of the coefficients,

respectively. In addition to the scalar multiplication,

the signing requires modular integer arithmetic in (6).

Hence, we need both the integer k and the τ -adic ex-

pansion K.

We can avoid the expensive inversion of (6) by trans-

mitting the numerator and denominator separately af-

ter blinding them with b ∈R [1, q − 1] [31]:

sn = b(e+ dr) mod q (7)

sd = bk mod q . (8)

We use this technique for efficiency reasons, but the

proposed idea and techniques apply also without it. Al-

though we focus on ECDSA, the proposed idea and

algorithms apply also to other Koblitz curve cryptosys-

tems, e.g., Schnorr signatures.

RNG Conv. ECSM Arith.

Consts.

Tag

Ops.

Server

(a)

RNG
ECSM

Conv.
Arith.

Consts.

Tag

Ops.

Server

(b)

RNG ECSM Arith.

Consts.

Tag

Conv. Ops.

Server

(c)

Fig. 1 Three options for using Koblitz curves on a wireless
tag. Thin black and thick gray arrows represent integer and
τ -adic values, respectively. (a) the random number genera-
tor (RNG) generates an integer k which is converted to a τ -
adic expansion K for the elliptic curve scalar multiplication
(ECSM) and k is used for the arithmetic part; (b) the RNG
generates a random K for the ECSM which is converted to k
for the arithmetic part; and (c) the RNG generates a random
K but the arithmetic part is also performed (at least partly)
in the τ -adic domain. The conversion is delegated to the more
powerful server. In addition to k (or K), the RNG is used also
for obtaining other random variables in the cryptosystem.

3 Koblitz Curves in Lightweight Applications

Lightweight applications are typically asymmetric in

the sense that one of the communicating parties is strictly

limited in resources whereas the other is not. As an ex-

ample, we consider an application where a wireless tag

communicates with a server over a radio channel. The

tag is limited in computational resources, power, and

energy but the server has plenty of resources for com-

putations. The tag implements a Koblitz curve cryp-

tosystem which requires both elliptic curve operations

and modular arithmetic with integers.

This sections explores solutions for implementing

lightweight Koblitz curve cryptosystems that require

both scalar multiplications and arithmetic with the scalar.

We survey two existing options for computing ECDSA

signatures on Koblitz curves in Sect. 3.1 as well as the

new idea for delegating conversions from the tag to the

server in Sect. 3.2.
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3.1 Solutions Based on Conversions

The first option, which is depicted in Fig. 1(a), is to gen-

erate k as a random integer and convert it into a τ -adic

expansion K for scalar multiplication (4). Equation (6)

or (8) can be computed using the original integer k. The

first method for conversion was given by Koblitz [23].

It has the drawback that τ -adic expansions are twice

as long as the original scalars. Later, Meier and Staffel-

bach [28] and Solinas [39] showed that expansions of ap-

proximately the same length as the original scalar can

be found. Solinas [39] also introduced τNAF and win-

dowed τNAF (w-τNAF) representations. These conver-

sions require, e.g., operations with large rational num-

bers which render them very inefficient for hardware

implementations. The first hardware oriented conver-

sion algorithm and implementation was presented by

Järvinen et al. [19]. Brumley and Järvinen [10] later

presented an algorithm requiring only integer additions

and it has been used as the basis of all state-of-the-art

converters. However, if their algorithm is implemented

in a straigthforward manner, it becomes too large for

very constrained devices mostly because it uses long

adders and a large number of registers. Their work

was extended by Adikari et al. [1] and Sinha Roy et

al. [37] who focused on improving speed at the expense

of resource requirements, which makes them even less

suitable for constrained devices. The first lightweight

conversion algorithm and implementation were recently

proposed by Sinha Roy et al. [38]. We compare our re-

sults to this work later in Sect. 9.

The second option, which is shown in Fig. 1(b), is

to generate the scalar as a random τ -adic expansion

K and to find its integer equivalent for computing (6)

or (8). Generating random τ -adic expansions was first

mentioned (and credited to Lenstra) by Koblitz [23]

but he did not provide a method for finding the integer

equivalent of the scalar. The first method for retrieving

the integer equivalent k was proposed by Lange in [25].

Her method requires several multiplications with long

operands. More efficient methods were later introduced

by Brumley and Järvinen in [9,10]. We design our own

lightweight implementation of the algorithm from [9,

10] in Sect. 8 and use it for comparisons in Sect. 9.

3.2 Solution for Outsourcing Conversions

A third option, which is shown in Fig. 1(c), was intro-

duced in the preliminary version of this paper that was

presented in CARDIS 2014 [20]. Similarly to the second

option, the tag generates a random τ -adic expansion K

and uses it for scalar multiplication (4). However, the

tag does not compute the integer equivalent k but, in-

stead, uses K directly and computes (6) or (8) in the

τ -adic domain. The results of these operations (τ -adic

expansions) are transmitted over the radio channel to

the server which first converts the results to integers

and then proceeds with normal server-side operations.

The values that do not depend on the scalar, i.e. (7),

should be computed with modular integer arithmetic

because it is cheaper. Scalar multiplication is still com-

puted entirely using binary field arithmetic and it does

not require any modifications because of the use of τ -

adic arithmetic for processing the scalar k. Clearly, this

option improves efficiency of the tag only if operations

in the τ -adic domain are cheap. In the following, we

show that they can, indeed, be implemented with very

few resources. From security perspective, the third op-

tion is equivalent with the second option (see, e.g., [25])

because transmitting τ -adic expansions instead of their

integer equivalents does not reveal any additional infor-

mation about the secret scalars.

The idea has similarities with [8] where a modi-

fied version of the Girault-Poupard-Stern identification

scheme was built on τ -adic expansions. Both [8] and the

new idea use arithmetic in the τ -adic domain. We adapt

and further develop the addition algorithm from [8].

The new idea allows delegating conversions to the more

powerful party for arbitrary Koblitz curve cryptosys-

tems requiring scalar multiplications and modular inte-

ger arithmetic with the scalar, whereas [8] presented a

single identification scheme built around τ -adic expan-

sions only. For instance, it is unclear how to build a dig-

ital signature scheme that uses only τ -adic expansions

because the ideas of [8] cannot be directly generalized

to other schemes. We also provide the first hardware re-

alizations of algorithms required for τ -adic arithmetic.

These implementations may have importance also for

implementing the scheme from [8].

The rest of the paper focuses primarily on efficient

computation of (8): b×K, where b is an integer and K is

a τ -adic expansion. This allows computing ECDSA sig-

natures in low-resource tags as shown above. Also algo-

rithms for implementing other arithmetic operations in

the τ -adic domain are provided for completeness. This

allows using the new idea for a variety of Koblitz curve

cryptosystems.

4 Addition in the τ -adic Domain

The cornerstone of the idea discussed in Sect. 3.2 is

to devise an efficient algorithm for adding two τ -adic

expansions. In this section, we show how to construct

such an algorithm. Our addition algorithm has similar-

ities with the algorithm from [8] which also computes
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additions of the τ -adic expansions. Our algorithm is

more efficient because it avoids unnecessary steps and

uses simpler methods for deriving Ci, t0, and t1. We

also provide a deeper analysis of the algorithm. Other

arithmetic operations can be built upon the addition

algorithm and they are discussed later in Sect. 5.

Let A andB be the τ -adic expansions of two positive

integers a and b such that

A =

n−1∑
i=0

Aiτ
i and B =

n−1∑
i=0

Biτ
i (9)

where Ai ∈ {0, 1} and Bi ∈ {−1, 0, 1} so that An−1 = 1

and/or Bn−1 = ±1. Signed bits are allowed for B for

two reasons: (a) Koblitz curve cryptosystems are typi-

cally implemented by using representations with signed

bits (e.g., τNAF or τZFR) and (b) this allows comput-

ing subtractions with the same algorithm.

Coefficient-wise addition of the two expansions gives:

C = A+B =

n−1∑
i=0

Ciτ
i (10)

where Ci = Ai + Bi ∈ {−1, 0, 1, 2}. This expansion

is correct in the sense that C $ a + b but the set of

digit values has grown. Hence, the expansion must be

processed in order to obtain a binary τ -adic expansion.

Instead of allowing C to have signed binary values as

in [8], we limit the set of digits to Ci ∈ {0, 1} in order

to simplify computations and decrease the storage re-

quirements for C. This does not imply restrictions for

the use of the addition algorithm in our case as long as

Bi are allowed to have signed binary values because we

do not use the results of additions for computing scalar

multiplications.

The binary τ -adic expansion C can be found analo-

gously to normal addition of binary numbers by using

a carry [8]. The main difference is that the carry is a τ -

adic number t. A coefficient Ci ∈ {0, 1} is obtained by

adding the coefficients Ai and Bi with the carry from

the previous iteration and by reducing this value mod-

ulo 2; i.e., by taking the least significant bit (lsb). Every

τ -adic number and, hence, also t can be represented as

t0 + t1τ where t0, t1 ∈ Z [39]. Updating the carry for

the next iteration requires a division by τ . As shown by

Solinas [39], t0 + t1τ is divisible by τ if and only if t0 is

even. Subtracting Ci (equivalent with the rounding to-

wards the nearest smaller integer after division by two)

ensures this and, hence, we get:

((t0 − Ci) + t1τ)/τ = t1 + µ

⌊
t0
2

⌋
−
⌊
t0
2

⌋
τ . (11)

We continue the above process for all n bits and until

(t0, t1) 6= (0, 0). The resulting algorithm is shown in

Alg. 1.

Input: τ -adic expansions A =
∑n−1

i=0 Aiτ
i $ a and

B =
∑n−1

i=0 Biτ
i $ b, parameter µ

Output: C =
∑n′−1

i=0 Ciτ
i, where Ci ∈ {0, 1}, such that

C $ a+ b
1 (t0, t1)← (0, 0); i← 0
2 while i < n or (t0, t1) 6= (0, 0) do
3 r ← Ai +Bi + t0
4 Ci ← r mod 2
5 (t0, t1)← (t1 + µ br/2c ,−br/2c)
6 i← i+ 1

7 return C

Algorithm 1: Addition in the τ -adic domain

Remark 1 Computing subtractions with Alg. 1 is straight-

forward: A−B = A+ (−B) = A+
∑n−1
i=0 (−Bi)τ i. I.e.,

we flip the signs of Bi and compute an addition with

Alg. 1.

4.1 Analysis of Alg. 1

There are certain aspects that must be analyzed before

Alg. 1 is ready for efficient hardware implementation.

The most crucial one is the size of the carry (t0, t1)

because efficient hardware implementation is impossi-

ble without knowing the number of flip-flops required

for it. The ending condition of Alg. 1 also implies that

the latency of an addition depends on the values of the

operands. This might open vulnerabilities against tim-

ing attacks. The following analysis sheds light on these

aspects and provides efficient solutions for them.

In order to analyze Alg. 1, we model it as a finite

state machine (FSM) so that the carry (t0, t1) repre-

sents the state. Alg. 1 can find unsigned binary τ -adic

expansions with any Ai, Bi ∈ Z but, in this analy-

sis and in the following propositions, we limit them

so that Ai ∈ {0, 1} and Bi ∈ {−1, 0, 1}, as described

above. The FSM is constructed starting from the state

(t0, t1) = (0, 0) by analyzing all transitions with all pos-

sible inputs Ai+Bi ∈ {−1, 0, 1, 2}. E.g., when µ = 1, we

find out that the possible next states from the initial

state (0, 0) are (0, 0) with inputs 0 and 1 (the corre-

sponding outputs are then 0 and 1), (−1, 1) with input

−1 (output 1), and (1,−1) with input 2 (output 0).

Next, we analyze (−1, 1) or (1,−1), and so on. The

process is continued as long as there are states that

have not been analyzed. The resulting FSM for µ = 1

is depicted in Fig. 2 and it contains 21 states. We draw

two major conclusions from this FSM (and the corre-

sponding one for µ = −1 which is omitted for brevity).

Proposition 1 For both µ = ±1, the carry (t0, t1) can

be represented with 6 bits so that both t0 and t1 require

3 bits.
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Fig. 2 The FSM for Alg. 1, when µ = 1, with inputs Ai ∈
{0, 1} and Bi ∈ {−1, 0, 1}. The FSM is plotted on the complex
plane so that each state is positioned based on its complex
value t = t0 + t1τ . The states are labeled with (t0, t1). State
transitions are marked with in / out where in are the inputs
for the transition and out are the corresponding outputs.

Proof The FSM of Fig. 2 shows that −3 ≤ t0 ≤ 3 and

−2 ≤ t1 ≤ 2. There are 7 distinct values for t0 and

5 for t1 and, hence, both require 3 bits. The FSM for

µ = −1 can be constructed similarly and it also contains

21 states so that −3 ≤ t0 ≤ 3 and −2 ≤ t1 ≤ 2. Hence,

t0 and t1 both require 3 bits for µ = ±1. Consequently,

the carry requires 6 bits. ut

Remark 2 The FSMs have 21 states, which can be rep-

resented with only 5 bits. Unfortunately, if we imple-

ment the algorithm as an FSM, the growth in the size

of the combinational part outweighs the lower number

of flip-flops.

Proposition 2 Let n be the larger of the lengths of A

and B; i.e., An−1 = 1 and/or Bn−1 = ±1. Then, Alg. 1

returns C with a length n′ that satisfies

n′ ≤ n+ λ (12)

where λ = 7 for both µ = ±1.

Proof After all n bits of A and B have been processed,

the FSM can be in any of the 21 states. Hence, the

constant λ is given by the longest path from any state

to the state (0, 0) when the input is fixed to zero; i.e.,

Ai = Bi = 0. The FSM of Fig. 2 shows that the longest

path starts from the state (0, 2) and goes through the

following states (2, 0), (1,−1), (−1, 0), (−1, 1), (0, 1),

and (1, 0) to (0, 0) and outputs (0, 0, 1, 1, 1, 0, 1). Thus,

λ = 7 for µ = 1. It can be shown similarly that λ = 7

also for µ = −1. ut

5 Other τ -adic Operations

In this section, we describe algorithms for other arith-

metic operations in the τ -adic domain. These algorithms

use the addition algorithm given in Alg. 1.

5.1 Folding

The length of an arbitrarily long τ -adic expansion can

be reduced to about m bits without changing its in-

teger equivalent modulo q. The integer equivalent of a

τ -adic expansion A =
∑n−1
i=0 Aiτ

i can be retrieved by

computing the sum a =
∑n−1
i=0 Ais

i (mod q) where s,

the integer equivalent of τ , is a per-curve constant in-

teger [25]. Because sm ≡ 1 (mod q),

a =

n−1∑
i=0

Ais
i ≡

bn/mc∑
j=0

m−1∑
i=0

Ajm+is
i (mod q), (13)

where Ai = 0 for i ≥ n. As a result of (13), an expansion

can be compressed to approximately m bits by “fold-

ing” the expansion; i.e., folding is analogous to modular

reduction. Let A(j) =
∑m−1
i=0 Ajm+iτ

i, the j-th m-bit

block of A. Then, an approximately m-bit τ -adic expan-

sion B having the same integer equivalent with A can be

obtained by computing B = A(0)+A(1)+ . . .+A(bn/mc)

with bn/mc applications of Alg. 1. Because of the carry

structure of Alg. 1, the length of the expansion may still

exceed m bits. Additional foldings can be computed in

the end in order to trim the length of B below a prede-

fined bound ` ≥ m. An algorithm for folding (including

the optional trimming in the end) is given in Alg. 2.

Typically, the optional trimming requires at most one

addition, B(0) +B(1), often it is not needed at all.

By Proposition 2, if a folding is computed after ev-

ery addition, then it becomes A(0) + A(1) with an m-

bit A(0) and an at most 7-bit A(1). While in theory

this addition can give a result which is longer than

m bits, the result is at most m bits long with an ex-

tremely high probability. In fact, the folding can be

ended as soon as all bits of A(1) have been processed

and t = (0, 0) because, after this, all bits of the result

will be the same as in A(0). We performed experiments

on the practical lengths of folding computations. We

computed C = A + B where A is a random binary

τ -adic expansion (Ai ∈ {0, 1}) and B is either
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Input: τ -adic expansion A =
∑n−1

i=0 Aiτ
i $ a, m, and

` ≥ m
Output: B =

∑n′−1
i=0 Biτ

i $ b = a and n′ ≤ `
1 B ← A(0)

2 for j = 1 to bn/mc do
3 B ← B +A(j) /* Alg. 1 */

4 while n′ > ` do

5 B ← B(0) + . . .+B(bn′/mc) /* Alg. 1 */

6 return B

Algorithm 2: Folding

Experiment #10 5
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ng
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f f
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ng
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40

50

60

Binary A, binary B
Binary A = B
Binary A, =NAF B
Binary A, =ZFR B

Fig. 3 Lengths of foldings after C = A + B with different
types of random A and B. The results of 1,000,000 experi-
ments are sorted by the number of required iterations.

(a) a random binary τ -adic expansion (Bi ∈ {0, 1}),
(b) B = A,

(c) a random τNAF (Bi ∈ {−1, 0, 1}), or

(d) a random τZRF (Bi ∈ {−1, 1}).

The results of 1,000,000 experiments are shown in Fig. 3

so that they are ordered by the number of iterations re-

quired to complete the folding. We see that roughly

50 % of experiments did not require any folding for (a)

and (c) because the addition gave an at most m-bit C.

For (b) and (d), this number was about 25 %. The aver-

age number of iterations was only 2.96, 4.21, 2.56, and

4.00 for (a), (b), (c), and (d), respectively. Less than

10 iterations were required for 92–95 % of the exper-

iments. The maximum number of iterations witnessed

in the experiments were 44, 47, 46, and 56, respectively.

The results show that the average cost of computing a

folding is low if it is computed after each addition. How-

ever, if (somewhat) constant-time foldings are needed, a

high number of iterations (e.g., 64 or more) needs to be

computed making folding a relatively costly operation.

In Sect. 6, we show that foldings can be avoided com-

pletely by using a special representation called partial

τ -adic representation.

Input: τ -adic expansions A = τn−1 +
∑n−2

i=0 Aiτ
i $ a,

where Ai ∈ {0, 1}, and B $ b, where
Bi ∈ {−1, 0, 1}

Output: C = A×B such that C $ a× b
1 C ← B /* Alg. 1 */

2 for i = n− 2 to 0 do
3 C ← τC /* Shift */

4 if Ai = 1 then
5 C ← C +B /* Alg. 1 */

6 return C

Algorithm 3: Multiplication in the τ -adic domain

Input: Integer a = 2blog2 ac +
∑blog2 ac−1

i=0 ai2i, where
ai ∈ {0, 1}, and a τ -adic expansion B $ b,
where Bi ∈ {−1, 0, 1}

Output: C such that C $ a× b
1 C ← B /* Alg. 1 */

2 for i = blog2 ac − 1 to 0 do

3 C ← C + C /* Alg. 1 */

4 if ai = 1 then
5 C ← C +B /* Alg. 1 */

6 return C

Algorithm 4: Multiplication by an integer in the τ -

adic domain

5.2 Multiplication

Two τ -adic expansions A and B are multiplied as fol-

lows:

C = A×B =

n−1∑
i=0

Aiτ
iB . (14)

An algorithm for computing (14) can be devised by

using a variation of the binary method. It was also

proposed in [8] that multiplications of two τ -adic ex-

pansions can be done by adopting the binary method

(possibly combined with the Karatsuba approach). In

Alg. 3, an addition is computed with Alg. 1 if Ai = 1

and a multiplication by τ is performed for all Ai by

shifting the bit vector. Hence, multiplication requires

n−1 shifts and ρ(A) additions, where ρ(A) is the Ham-

ming weight of A. A bit-serial most significant bit (msb)

first multiplication is presented in Alg. 3. In order to

convert B into an unsigned binary τ -adic expansion,

one first adds B to zero with Alg. 1 in Line 1 of Alg. 3.

The binary method can be used also for computing

multiplications where the other operand, say a, is an

integer. This is required, e.g., to compute sd = b × K
for ECDSA signature generation as discussed in Sect. 2.

Alg. 4 presents a bit-serial msb first algorithm for com-

puting C = a × B such that C $ a × b. It requires

n+ ρ(A)− 1 additions with Alg. 1.

To keep the result and intermediate values close to

m bits, foldings should be computed during the algo-

rithms. As shown in Sect. 5.1, the average cost varies,
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Input: τ -adic expansion A of integer a and q′ = q − 2
Output: B such that b ≡ a−1 (mod q)

1 B ← A /* Alg. 1 */

2 for i = blog2 q
′c − 1 to 0 do

3 B ← B ×B /* Alg. 3 */

4 if q′i = 1 then
5 B ← B ×A /* Alg. 3 */

6 return B

Algorithm 5: Inversion modulo q in the τ -adic do-

main

depending on the types of the operands, from 2.56 to

4.21 iterations per addition if each addition is followed

by a folding.

Remark 3 Alg. 4 also serves as an algorithm for con-

verting integers to the τ -adic domain. An integer a can

be converted by computing a × 1 with Alg. 4. The al-

gorithm returns C = A, the unsigned binary τ -adic

expansion of a.

Remark 4 Different versions of the binary method (e.g.,

NAF or window) can be straightforwardly used for mul-

tiplications of τ -adic expansions (also when the other

operand is an integer). Especially, using Montgomery’s

ladder [30] provides a constant sequence of operations

(shifts and additions), which improves resistance against

side-channel analysis. The scalar k is typically a nonce

and the adversary is limited to a single side-channel

trace. Thus, constant sequence of operations offers suf-

ficient protection against most attacks. These issues are

further explored in Sects. 6 and 7.3.

5.3 Multiplicative Inverse

The multiplicative inverse modulo q, a−1, for an inte-

ger a can be found via the well-known Fermat’s Little

Theorem:

a−1 = aq−2 (mod q) . (15)

This exponentiation gives a straightforward way to com-

pute inversions also with τ -adic expansions. Let q′ =

q − 2. Given a τ -adic expansion A, a τ -adic expansion

A−1 such that A×A−1 $ a× a−1 ≡ 1 (mod q) can be

found by computing:

A−1 = Aq
′

=

blog2 q
′c∏

i=0

Aq
′
i2

i

. (16)

Alg. 5 computes (16) by using Alg. 3.

Input: Partial τ -adic expansions (A,α) and (B, β) for
integers a and b, parameter µ

Output: (C, γ), where C =
∑m−1

i=0 Ciτ
i with

Ci ∈ {0, 1} and γ = (γ0, γ1), such that
C + γ0 + γ1τ $ a+ b

1 (t0, t1)← (α0 + β0, α1 + β1)
2 for i = 0 to m− 1 do
3 r ← Ai +Bi + t0
4 Ci ← r mod 2
5 (t0, t1)← (t1 + µbrc/2,−brc/2)

6 return (C, (t0, t1))

Algorithm 6: Addition of partial τ -adic expansions

6 Partial τ -adic Expansions

Definition 1 (Partial τ-adic expansion) A partial

τ -adic expansion of a positive integer a is the tuple

(A,α), where the expansion part isA =
∑m−1
i=0 Aiτ

i and

the remainder part is α = (α0, α1) such that α0, α1 ∈ Z
and A+ α0 + α1τ $ a.

Partial τ -adic expansions are powerful because they al-

low computations without foldings. To achieve this, we

devise a version of Alg. 1 that takes and returns par-

tial τ -adic expansions instead of τ -adic expansions. The

difference between regular τ -adic additions with Alg. 1

and the additions of partial τ -adic expansions is high-

lighted by denoting the latter by �.

Alg. 6 gives an algorithm for computing a binary

valued partial τ -adic expansion (C, γ) when given two

partial τ -adic expansions (A,α) and (B, β). Instead of

initializing the algorithm with (0, 0) as in Alg. 1, we

now initialize it with α+β in order to take the remain-

der parts into account. After this, the expansion part is

computed similarly as in Alg. 1. Indeed, if one runs the

algorithm until t = (0, 0), then one obtains C $ a + b.

However, we run the algorithm only for m iterations

and obtain (C, γ), where C is exactly m bits long and

γ represents “the tail” which could be up to seven bits

long (see Proposition 2). The carry (t0, t1) can be di-

rectly used as γ because (t0+t1τ)τm ≡ t0+t1τ (mod q)

after iteration i = m− 1.

Because C is always m bits long, an arbitrary num-

ber of additions can be computed without foldings. How-

ever, we do not yet know if the remainder part is rea-

sonably bounded. The following proposition sheds light

on this issue. Let S0 denote the 21 states that can be

reached in Alg. 1; i.e., the states depicted in Fig. 2 for

µ = 1.

Proposition 3 Let (A,α) and (B, β) be two partial τ -

adic expansions such that Ai ∈ {0, 1}, Bi ∈ {0,±1},
and α, β ∈ S0. Then, (C, γ) = (A,α) � (B, β) with

γ ∈ S0 if m > 6.
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After i = 0:

After i = 1:

After i = 2:

Fig. 4 The paths that Alg. 6 can take before reaching a state
in S0 when α+ β = (−3, 3) and µ = 1. The states that are in
S0 are bolded.

Proof In Line 1 of Alg. 6, t is initialized with (α0 +

β0, α1 + β1) which can yield t /∈ S0. There are in total

69 possible states for t after Line 1 for both µ = ±1.

We denote these states by S1. We analyze all states

S1 \ S0 separately. We compute all next states with

all possible inputs Ai + Bi ∈ {−1, 0, 1, 2} for as many

iterations as is required until t can contain only states

in S0. Fig. 4 shows an example of how this analysis

proceeds for t = (−3, 3) when µ = 1. Depending on Ai
and Bi, t can have two values after iteration i = 0: (1, 2)

or (2, 1), neither of which is in S0. After iteration i = 1,

the algorithm is in one of five possible states, of which

only (3,−2) /∈ S0. This state results in either (−1,−1)

or (0,−2), both states in S0, after the next iteration

(i = 2). Hence, Alg. 6 is guaranteed to be in S0 after

three iterations if it is initialized with α+ β = (−3, 3).

Performing similar analysis for all S1 \ S0 shows that,

with all possible initializations from S1, it takes at most

seven iterations (after i = 6) before Alg. 6 is in a state

from S0. Because Alg. 6 runs for exactly m iterations,

it is guaranteed to return γ ∈ S0 if m > 6. ut

To summarize, Alg. 6 was shown to return bounded

remainder parts for all practically relevant m. Hence,

Alg. 6 can compute an arbitrary number of additions

without expanding either the expansion or the remain-

der part. Consequently, Alg. 6 can be used for produc-

ing variants of the τ -adic arithmetic operations.

Alg. 6 specifies that A andB are exactlym bits long.

If the actual length n of an expansion, say A, is smaller

than m, then it can be extended to m by padding ze-

ros: Ai = 0 for n ≤ i < m. If α = (0, 0), then Alg. 6

can be used even for A with length up to m + 2. Be-

cause Amτ
m ≡ Am (mod q) and Am+1τ

m+1 ≡ Am+1τ

(mod q), the remainder part α can store the two highest

Input: Integer a = 2blog2 ac +
∑blog2 ac−1

i=0 ai2i, where
ai ∈ {0, 1}, and a τ -adic expansion
B =

∑n−1
i=0 Biτ

i with n ≤ m+ 2 such that B $ b
Output: C =

∑m−1
i=0 Ciτ

i such that C $ a× b
1 (B, β)← (

∑m−1
i=0 Biτ

i, (Bm, Bm+1)) /* Alg. 6 */

2 (C, γ)← (B, β)
3 for i = blog2 ac − 1 to 0 do
4 (C, γ)← (C, γ)� (C, γ) /* Alg. 6 */

5 if ai = 1 then

6 (C, γ)← (C, γ)� (B, β) /* Alg. 6 */

7 (C, γ)← (C, γ)� (0, (0, 0)) /* Alg. 6 */

8 return C

Algorithm 7: Multiplication by an integer by using

partial τ -adic expansions

coefficients of A without changing the integer equivalent

of A; i.e., one sets (A,α) = (
∑m−1
i=0 Aiτ

i, (Am, Am+1)).

Alg. 7 shows a variation of Alg. 4 for partial τ -adic

expansions. The algorithm allows B with Bi ∈ {0,±1}
which are m+ 2 bits long by using the trick explained

above and, hence, it can be used for τNAF expansions

with length m + a with a ∈ {0, 1} that are commonly

used in Koblitz curve cryptosystems. Line 2 of Alg. 7

stores B into the accumulator C after which the mul-

tiplication is carried out via the double-and-add ap-

proach of Alg. 4. In Line 7, a zero is added to C in

order to embed the potentially nonzero γ and to ob-

tain the m-bit binary τ -adic expansion. The probabil-

ity that this addition outputs γ 6= (0, 0) is negligible. If

this nonetheless happens, then Line 7 can be repeated.

Alg. 8 presents a variation of multiplication by inte-

ger that uses Montgomery’s ladder with a constant se-

quence of operations. The beginning and ending of the

algorithm are similar to Alg. 7. The main loop computes

an addition of the two accumulator values (C, γ) and

(D, δ) followed by an addition where one of the accumu-

lators is added to itself. Hence, regardless of the value

of ai two similar additions are computed on each iter-

ation and the algorithm offers good protection against

side-channel attacks.

The execution time of Alg. 8 depends on blog2 ac.
This can be avoided, e.g., by adding multiples of q to

a so that the sum a′ has a fixed length. Alg. 8 using a′

executes in constant time and returns a correct result

because a′ × B ≡ a × B (mod q). To compute (8) for

ECDSA, Alg. 8 runs in constant time simply by fixing

the msb of the random b in (8) to one.

Comparing Algs. 7 and 8 reveals that there is a

price to pay for constant time and operation sequence.

First, Alg. 7 requires blog2 ac + ρ(a) + 1 ≈ 3
2blog2 ac

applications of Alg. 6 whereas Alg. 8 requires exactly

2blog2 ac + 3, which is a roughly 33 % increase in the

number of additions. Second, Alg. 8 requires two accu-
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Input: Integer a = 2blog2 ac +
∑blog2 ac−1

i=0 ai2i, where
ai ∈ {0, 1}, and a τ -adic expansion
B =

∑n−1
i=0 Biτ

i with n ≤ m+ 2 such that B $ b
Output: C =

∑m−1
i=0 Ciτ

i such that C $ a× b
1 (C, γ)← (

∑m−1
i=0 Biτ

i, (Bm, Bm+1)) /* Alg. 6 */

2 (D, δ)← (C, γ)� (C, γ) /* Alg. 6 */

3 for i = blog2 ac − 1 to 0 do
4 if ai = 0 then
5 (D, δ)← (D, γ)� (C, δ) /* Alg. 6 */

6 (C, γ)← (C, γ)� (C, γ) /* Alg. 6 */

7 else
8 (C, γ)← (C, γ)� (D, δ) /* Alg. 6 */

9 (D, δ)← (D, δ)� (D, δ) /* Alg. 6 */

10 (C, γ)← (C, γ)� (0, (0, 0)) /* Alg. 6 */

11 return C

Algorithm 8: Montgomery’s ladder for multiplica-

tion by an integer in the τ -adic domain

mulators, (C, γ) and (D, δ), whereas Alg. 7 uses only

one accumulator (C, γ).

A multiplication by τ is a simple shift in Alg. 3.

Multiplying a partial τ -adic expansion (A,α) by τ is

more complicated because τα = α0τ + ατ2 which can-

not be used as the remainder part of the result. There

are several ways to perform this multiplication. For

instance, one first embeds α by computing (B, β) =

(A,α) � (0, (0, 0)) which results in β = (0, 0) with an

extremely high probability for all m of practical signifi-

cance. Then, τ(A,α) = (Bm−1 +
∑m−2
i=0 Biτ

i+1, (0, 0)),

which is a cyclic shift by one because Bm−1τ
m ≡ Bm−1.

Multiplications by τe are cyclic shifts by e because the

remainder part is guaranteed to remain zero.

Multiplication of two partial τ -adic expansions can

be computed by first embedding the remainder part of
(A,α) by computing (A,α) � (0, (0, 0)) and, then, us-

ing Alg. 3 where shifts are replaced by the above pro-

cedure and C+B with (C, γ)� (B, β). If a protocol re-

quires scalar multiplications with scalars that are given

as partial τ -adic expansions, then the remainder part α

should be embedded in order to avoid the problems of

dealing with remainder parts in scalar multiplications.

I.e., instead of computing (K,κ)P, we first compute

(K ′, κ′) ← (K,κ) � (0, (0, 0)) so that κ′ = (0, 0) and

then compute K ′P in a normal way.

7 Architecture

The objective of this work was to provide a small cir-

cuitry that could be used as a datapath extension in an

arithmetic logic unit (ALU) to compute τ -adic arith-

metic in lightweight implementations. Fig. 5 presents

datapath extensions for computing Algs. 1 and 6 for

µ = 1. Because Bi ∈ {−1, 0, 1}, they can be used for K

with signed-bit representations (e.g., τNAF or τZFR).

The datapath extensions are designed to be added into

the datapath of an ALU that supports other operations

required by the cryptosystem (arithmetic in GF (2m),

arithmetic modulo q, etc.).

The architectures of Fig. 5 consist of registers for

storing the carry (t0, t1) and adders for computing Lines

3-5 of Algs. 1 and 6. Proposition 1 tells that both t0
and t1 require three bits in Alg. 1 and, hence, Fig. 5(a)

contains six flip-flops. Because (t0, t1) = α + β gives

−6 ≤ t0 ≤ 6 and −4 ≤ t1 ≤ 4, they both require 4-

bit registers; hence, Fig. 5(b) contains eight flip-flops.

These registers must be such that they can be initialized

to a specific value in order to write the values γ0 = α0+

β0 and γ1 = α1+β1 in them. Adders for these additions

are not included in the datapath extension because it

is assumed that they are available in the ALU in order

to compute modular arithmetic (e.g., (7)). In Fig. 5(a),

r is a 4-bit value because −3 ≤ t0 ≤ 3 and −1 ≤
Ai+Bi ≤ 2. A 5-bit r is computed in Fig. 5(b) because

−6 ≤ t0 ≤ 6. For the same reason, additional adders

are required also for updating (t0, t1). The adders on

the bottom-left compute t1 + br/2c and the adders on

the bottom-right compute the negation: −br/2c.
Datapath extensions for µ = −1 can be devised sim-

ilarly but we omit the description for brevity. We merely

state that they are similar to the ones for µ = 1: the

only difference is that the adders updating t0 (bottom-

left in Fig. 5) use the outputs of the negation circuitry

that computes −br/2c (bottom-right in Fig. 5) instead

of taking br/2c directly. Hence, the area requirements

should, in theory, remain the same but the critical path

becomes longer.

7.1 Unrolled Architectures

When ω iterations of the for-loops of Algs. 1 and 6 are

unrolled, the logic for computing the values is replicated

ω times but only a single set of registers for storing the

carry (t0, t1) is needed in the end. Because these regis-

ters consume a significant portion of the area, unrolling

gives major improvements in latency-area ratio.

Unrolling Alg. 1 is straightforward. One simply repli-

cates the logic ω times which reduces the number of it-

erations to d(m+λ)/ωe (as per Proposition 2). Even if

m+λ is not a multiple of the unrolling factor ω, it suf-

fices to pad the inputs with zeros to make the number

of iterations a multiple of ω. I.e., one finds the smallest

λ′ such that λ′ ≥ λ = 7 and ω | m+ λ′.

Unrolling Alg. 6 is more complicated because it must

run for exactly m iterations. Because m is a prime,

ω - m (with the exception of ω = m) and the unrolled
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t0,2 t0,1 t0,0 t1,2 t1,1 t1,0

FA’ FA HA HA’ HA

HAHA’

HA

FA

FA

FA’

AiBi,0Bi,1

r0

r1

r2

r3

Ci

(a)

t0,3 t0,2 t0,1 t0,0 t1,3 t1,2 t1,1 t1,0

FA’ FA FA HA HA’ HA HA

HAHA’

HA

FA

FA

FA

FA’

AiBi,0Bi,1
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r1

r2

r3

r4

Ci

γ0,3 γ0,2 γ0,1 γ0,0 γ1,3 γ1,2 γ1,1 γ1,0

(b)

Fig. 5 Datapath extensions for (a) Alg. 1 and (b) Alg. 6 for
µ = 1. The circuits consist of half adders (HA), full adders
(FA), half adders and full adders without carry logic (HA’
and FA’), NOT and AND gates, and flip-flops. The flip-flops
for (b) can be set to a specific value. All wires are single bit
wires. The combinatorial parts that are replicated ω times in
unrolled architectures are inside the dashed rectangles.

architecture must include a multiplexer for selecting

values to be stored into the registers. The outputs of

the unrolled iteration m mod ω are selected for the last

iteration of the unrolled algorithm in order to store the

results of the iteration m. The outputs of the last un-

rolled iteration are used for all other iterations.

It is possible to simplify the unrolled iterations when

Fig. 5(b) is unrolled. Proposition 3 tells that if ω ≥ 6,

then the circuitry of Fig. 5(a) can be used instead of

Fig. 5(b) for the last replications of combinatorial parts.

Already earlier replications can be optimized because

the sets of possible values of t0 and t1 get smaller.

7.2 High-level Architecture and Latencies

In most practical cases, the datapath extension would

be added to a W -bit ALU connected to a RAM which

stores W -bit words. In addition to the datapath ex-

tension, Algs. 1 and 6 require also three W -bit shift

registers, two for the operands A and B and one for the

result C.

We consider both single-port and dual-port RAMs.

In the case of a single-port RAM, reading and storing

words of the operands to the shift registers requires two

clock cycles. For a dual-port RAM, this can be done in a

single clock cycle. An unrolled datapath extension com-

putes ω bits of the result in one clock cycle. A natural

upper bound for ω is W and to facilitate efficient imple-

mentation one should ensure ω | W . In that case, two

W -bit words are added in W/ω clock cycles. The result

word is written into the RAM in one clock cycle re-

gardless of the type of the RAM. Hence, computing one

word of an addition takes W/ω + h clock cycles, where

h = 2 or h = 3 for single-port and dual-port RAM,

respectively. We assume that computing and storing

(t0, t1) = (α0 + β0, α1 + β1) and writing (t0, t1) to the

RAM take h and one clock cycles, respectively.

Assuming n = m, the above procedure executes

Alg. 1 in d(m+λ′′)/W e(W/ω+h) clock cycles where λ′′

is the smallest integer such that λ′′ ≥ λ and W | m+λ′′.

For instance, for NIST K-163, W = 8, ω = 4, and dual-

port RAM, this gives 84 clock cycles. With practical W

sizes, a folding takes on average only W/ω + h clock

cycles, which gives 4 clock cycles with the above pa-

rameters. However, constant time folding (e.g., 64 it-

erations) needs (64/W )(W/ω + h) clock cycles, which

gives 32 clock cycles with the above parameters. Alg. 6

takes dm/W e(W/ω+h)+h+1 clock cycles. This gives 87

clock cycles with the above parameters. Hence, Alg. 6

is constant time and roughly as fast as Alg. 1 with the

non-constant time folding.

Table 1 shows the latencies of computing Algs. 7

and 8 with different unrolling factors and types of RAM

for three curves from [32]: NIST K-163, K-233, and K-

283.
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Table 1 Latencies (clock cycles) of b×K for NIST K-163 / K-233 / K-283

Double-and-add (Alg. 7) Montgomery (Alg. 8)

Single-port RAM Dual-port RAM Single-port RAM Dual-port RAM

W
=

8 ω = 1 62462 / 126332 / 184847 57072 / 115482 / 169122 83290 / 168452 / 246475 76096 / 153975 / 225496
ω = 2 42617 / 85732 / 124922 37227 / 74882 / 109197 56803 / 114280 / 166528 49609 / 99803 / 145549
ω = 4 32572 / 65432 / 94747 27182 / 54582 / 79022 43396 / 87194 / 126271 36202 / 72717 / 105292
ω = 8 27672 / 55282 / 79872 22282 / 44432 / 64147 36856 / 73651 / 106426 29662 / 59174 / 85447

W
=

1
6

ω = 1 52640 / 105286 / 154193 49700 / 99686 / 146118 70188 / 140386 / 205597 66264 / 132914 / 194824
ω = 2 32795 / 64686 / 94268 29855 / 59086 / 86193 43701 / 86214 / 125650 39777 / 78742 / 114877
ω = 4 22750 / 44386 / 64093 19810 / 38786 / 56018 30294 / 59128 / 85393 26370 / 51656 / 74620
ω = 8 17850 / 34236 / 49218 14910 / 28636 / 41143 23754 / 45585 / 65548 19830 / 38113 / 54775
ω = 16 15400 / 28986 / 41568 12460 / 23386 / 33493 20484 / 38580 / 55342 16560 / 31108 / 44569

7.3 Side-channel Attacks

Because the circuitry for τ -adic arithmetic processes se-

cret values (at least K), it must be protected against

side-channel attacks. We focus on side-channel proper-

ties of computing b ×K for ECDSA signature. Both b

and K are secret values and the cryptosystem is broken

if an adversary learns either of them. Both values are

also nonces meaning that they take new values for every

signature generation. Hence, protection is required only

against single-trace attacks (e.g., simple power anal-

ysis). In the following, we provide an algorithm level

study on the side-channel properties of the proposed

algorithms.

Alg. 4 scans the bits of b and utilizes the double-and-

add scheme, which has a sequence of operations that

depends on b (C+C is computed for all bi and C+B is

computed if bi = 1). If C +C and C +B are computed

as atomic operations which are indistinguishable to an

adversary, then the adversary learns only the Hamming

weight of b. However, if the adversary is able to distin-

guish these operations, then b is leaked. Alg. 1 can be

considered atomic because it always runs for m+λ simi-

lar iterations. However, foldings are required to trim the

length of C to m in the course of Alg. 4. As discussed in

Sect. 5.1, the simplest option is to compute a folding af-

ter each addition. This folding can be computed either

for a fixed number of iterations (e.g., m or 64) or for

only as many iterations that are required. The former

comes with a significant performance penalty and the

latter results in non-constant execution times. For the

latter, Fig. 3 reveals that the length of the folding after

C + B differs from the folding after C + C. This leak-

age can be enough to learn information on b. Even for

Montgomery’s ladder, the lengths of foldings may give

information about the values of the operands and leak

security critical information. Hence, the algorithms that

use τ -adic expansions and foldings are potentially inse-

cure against side-channel adversaries or, alternatively,

slow if one uses constant time foldings.

Partial τ -adic expansions offer constant time addi-

tions because foldings are not required. Even Alg. 7

offers some security because C � C and C � B are

atomic operations. Hence, only the Hamming weight

of b leaks through the timing side-channel. Difficulties

may still arise from control logic implementing Alg. 7

(see Sect. 7.2). When the W -bit words of b are scanned

by the control logic, the pattern of reading the words

from the memory may reveal their Hamming weights.

The adversary can learn the value of b from this infor-

mation. This leakage can be avoided by using dummy

reads from the memory after each bit of b.

Alg. 8 provides a constant sequence of atomic op-

erations and offers high protection against single-trace

side-channel and safe error fault attacks because it pre-

vents the attacker from learning b and K from the pat-

tern of operations and does not involve dummy opera-

tions. Certain recent single-trace attacks (such as hor-

izontal collision correlation attacks [7,15]) break scalar

multiplications with constant patterns of operations. In

principle, Alg. 8 can be vulnerable against such attacks.

However, mounting these single-trace attacks success-

fully against Alg. 8 can be expected to be significantly

more difficult than attacking scalar multiplications be-

cause the source of leakage is much smaller (d(m/ω)e
additions of ω-bit τ -adic expansions instead of dm/W e2
multiplications of W -bit integers). Nevertheless, these

attacks and countermeasures against them deserve fur-

ther research in the future.

Because Algs. 7 and 8 are both faster and more se-

cure than Alg. 4 (and its variant using Montgomery’s

ladder), we focus mainly on them in Sect. 9.

8 Discussion on Lightweight Conversions

Most of the existing hardware converters are targeted

for high-speed applications and implemented on FP-
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GAs. This makes fair comparisons with them very diffi-

cult. However, to show the areas of these converters and

to highlight their unsuitability for lightweight applica-

tions, we have collected certain FPGA-based converters

in Table 2. This table presents the smallest converters

available in these publications. To put these numbers

in perspective with the results later given in Table 3,

one should remember, e.g., that one register is about

5.5 GE and one slice includes four registers.

The only comparable converter is the very recently

proposed converter [38] from the authors of this paper.

It finds the τZFR for an integer k by using a datapath

extension for a 16-bit ALU. It was designed specifically

for NIST K-283 curve and it computes a conversion in

78,000 clock cycles. It is protected from side-channel

attacks similarly to our new algorithms.

High-speed converters [10] hint that the conversion

to the other direction, from a τ -adic expansion to an

integer, could result in a more compact converter. In

Sect. 8.1, we provide the first lightweight converter us-

ing this conversion. We use similar design decisions with

the converter of [38] and the datapath extensions pre-

sented in Sect. 7 to allow fair comparisons.

8.1 τ -adic Expansion to Integer

We propose a lightweight architecture for τ -adic expan-

sion to integer equivalent conversion based on the algo-

rithm from [10, Fig. 6]. The algorithm computes an inte-

ger equivalent a of a τ -adic expansion A in two phases:

first, repeated multiplications by τ are performed to

compute an element d0 + d1τ ∈ Z[τ ], then in the end, a

modular multiplication d0 + d1 · s mod q is performed

to compute an integer equivalent a. See [10] for details

about the algorithm.

The conversion algorithm is very simple as both

multiplications by τ and s can be implemented using

shifts and additions or subtractions. However, the ar-

chitecture in [10] performs full-precision arithmetic to

achieve high speed and hence requires a large area. To

achieve very small area, we modify the algorithm to pro-

cess the operands in a word-serial manner. Beside this,

we also optimize the computation steps to reduce the

number of additions and subtractions from three to two.

In the original algorithm ([10, Fig. 6]), computation of

(d0, d1)← (−2d1+Ai, d0−d1) requires one subtraction

from zero during the computation of −2d1. We skip this

subtraction by computing (d0, d1)← (2d1±Ai, d1−d0)

in the for-loop. The optimized algorithm is in Alg. 9.

In Fig. 6 we describe an architecture for computing

an integer equivalent of a τZFR [34,41]. To make the

design compatible with [38] and 16-bit microcontrollers,

Input: Length n, τ -adic expansion A, parameters q
and s

Output: Integer equivalent a of A modulo q
1 (d0, d1)← (0, 0)
2 for i = n− 1 to 0 do
3 d0 ← 2d1 + (−1)i ·Ai

4 d1 ← d1 − d0
5 a← (−1)n · (d0 + d1 · s) mod q

6 return a

Algorithm 9: Computation of integer equivalent

from a τ -adic expansion with µ = −1

R1

R2

R3

τ− bit

Carry Reg

carryin

RAM
din

dout

ALU

Control FSM

Mux &
Reg Control

address

add/sub

Fig. 6 Hardware Architecture for τ -adic to Integer Conver-
sion

the datapath of the architecture is designed to process

16-bit words. The operands d0, d1, A, s and q are kept

in the RAM. The ALU of the architecture consists of

mainly adder/subtractor circuit, three 16-bit registers

R1, R2 and R3, three registers for storing three carry

bits, and one register for storing a bit of the τ -adic

expansion. Hence, a typical ALU needs to be extended

with a few registers and a multiplexer.

During any iteration of the for-loop in Alg. 9, a word

of the τZFR is fetched from the RAM and then stored

in both R1 and R2. The msb of the word is the τ -bit to

be processed and it is stored in the register τ -bit. Next,

the word of the τZFR is left-shifted by adding the two

registers R1 and R2 and then the result is stored in the

RAM. The for-loop of Alg. 9 processes the words of d0
and d1 in a serial manner. In the end of the for-loop,

the modular multiplication (Line 5) is performed by

scanning the bits of s from left to right and performing

shifts and adds depending on the bits of s. The control

FSM generates address and write enable signals for the

RAM and control signals for the ALU.

Alg. 9 is not protected against side-channel attacks.

It involves conditional additions or subtractions depend-

ing on the loop index and the τ -adic bit. In Line 3, a
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Table 2 FPGA-based converters

Ref. Description FPGA Latency Area

[19] NIST K-163, integer to τNAF converter Altera Stratix II EP2S60F1020C4 491 1433 ALUTs + 988 Regs
[9] NIST K-163, τ -adic to integer converter Altera Stratix II EP2S60F1020C4 489 1057 ALUTs + 654 Regs
[10] NIST K-163, integer to τNAF converter Altera Stratix II EP2S60F1020C4 329 948 ALUTs + 683 Regs
[10] NIST K-163, τ -adic to integer converter Altera Stratix II EP2S60F1020C4 481 850 ALUTs + 491 Regs
[1] NIST K-163, integer to τNAF converter Xilinx Virtex-4 XC4VLX200 169 1219 slices
[37] NIST K-233, integer to τNAF converter Xilinx Virtex-4 XC4VLX200 241 1582 slices

subtraction of one from 2d1 results in a borrow prop-

agation; whereas an addition of one to 2d1 involves no

carry propagation. This difference may be detected us-

ing simple power analysis and could potentially leak

information about the τ -adic representation.

Computing Alg. 9 requires 121,000 clock cycles and

a modular multiplication a×b mod q takes 73,000 clock

cycles.

Remark 5 The options of Fig. 1(b) and 1(c) can be

combined. We select a random K and execute Lines

1–4 of Alg. 9. Instead of computing Line 5, we use the

idea from [31] and compute sd = bK = bd0 + bd1τ .

Then, we send bd0 and bd1 to the server who computes

the integer equivalent. This reduces the latency of the

option of Fig. 1(b) but requires more communication.

9 Results and Discussion

We described the circuitries of Fig. 5 and the corre-

sponding ones for µ = −1 in VHDL. We synthesized the

code with Synopsys Design Compiler D-2010.03-SP4

and Faraday FSC0L standard cell libraries for UMC

0.13µm CMOS by using the ‘compile ultra’ process

without additional constraints. We performed simula-

tions with ModelSim SE 6.6d.

Table 3 shows the areas of the datapath extensions

for Algs. 1 and 6 for both µ = ±1. Because partial

τ -adic expansions offer both faster and more secure

implementations, we provided the unrolled datapath

extension only for Alg. 6. The areas for Alg. 1 were

75.25 and 76.25 gate equivalents (GE) for µ = 1 and

µ = −1, respectively. The corresponding areas of Alg. 6

are 128.00 and 114.75 GE so there is a price to pay for

the lower latency and resistance against side-channel

attacks. However, even these areas are small enough to

be embedded into the datapath of a lightweight ALU.

For instance, the ALU used in [38] had an area of about

4,323 GE in the same ASIC process and it includes the

logic needed for the conversion. A datapath extension

with ω = 4 would, hence, represent only about 6 % of

this area and the overhead would be even smaller be-

cause the converter logic used in [38] could be removed.

Table 3 Areas of the datapath extensions for Alg. 1 shown
in Fig. 5(a) and Alg. 6 shown in Fig. 5(b) on 130 nm CMOS

µ = 1 µ = −1

Alg. 1 ω = 1 75.25 GE 76.25 GE

ω = 1 128.00 GE 114.75 GE
ω = 2 191.25 GE 166.75 GE

Alg. 6 ω = 4 278.25 GE 261.75 GE
ω = 8 461.25 GE 444.75 GE
ω = 16 827.75 GE 792.75 GE

Tables 1 and 3 show that unrolling provides significant

improvements in latency at a relatively low increase in

area requirements.

9.1 Latencies of ECDSA Signature Generation

To compare with the converters from Sect. 8, we con-

sider computation of b × K that is required by the

ECDSA signature generation. For NIST K-283 and a

16-bit single-port RAM, Algs. 7 and 8 compute it with

latencies ranging from 41,568 to 205,597 clock cycles.

The converters from [38] and Sect. 8.1 compute the con-

versions in 78,000 and 121,000 clock cycles, respectively.

However, a modular multiplication bk mod q is also re-

quired and it takes about 73,000 clock cycles. This gives

total latencies of about 151,000 and 194,000 clock cy-

cles, respectively. Both converters also require datap-

ath extensions similarly to the new algorithms and they

cannot be computed as efficiently with standard ALUs.

Hence, the proposed techniques are faster and improve

upon solutions based on conversions already with un-

rolling factor ω = 2. The above comparison is collected

in Table 4.

9.2 Power and Energy

Power and energy consumption are essential character-

istics for lightweight implementations. In the case of

τ -adic arithmetic, they depend strongly on the ALU,

which uses the datapath extensions, as well as on the

type of memory, etc. Hence, in order to give exact num-

bers, we would need to implement an entire ECC ALU
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Table 4 Latency comparison of different options for com-
puting b× k or b×K for NIST K-283 with 16-bit ALU and a
single-port RAM. Conv. and mult. denote the number of clock
cycles for computing the conversions (to either direction) and
multiplications with integers or partial τ -adic expansions.

Option Conv. Mult. Total

Fig. 1(a) with [38] 78,000 73,000 151,000
Fig. 1(b) with Sect. 8.1 121,000 73,000 194,000

Fig. 1(c) (ω = 1) — 206,000 206,000
Fig. 1(c) (ω = 2) — 126,000 126,000
Fig. 1(c) (ω = 4) — 85,000 85,000
Fig. 1(c) (ω = 8) — 66,000 66,000
Fig. 1(c) (ω = 16) — 55,000 55,000

and even in that case the numbers would represent only

the design choices taken in designing that specific ALU.

This prevents us from giving accurate numbers, but we

discuss these issues and provide rough estimates of the

effects of τ -adic arithmetic on power and energy con-

sumption in the following.

For this analysis, we assume that power consump-

tion is proportional to the area of the active part of the

circuit. Consider, for instance, the ALU of [38] which

computes conversions and modular integer multiplica-

tions with a 16-bit adder/subtractor but uses a 16-bit

binary multiplier for scalar multiplications. Then, the

power consumption of the conversion Pc is dominated

by the adder/subtractor and the power consumption of

the scalar multiplication Ps is determined mostly by

the multiplier. The power of τ -adic arithmetic Pτ is

dominated by the datapath extension. Hence, we as-

sume Pc ∼ Ac = 138.25 GE1, Pm ∼ Am = 856.5 GE1,

and Pτ ∼ Aτ = 114.75–792.75 GE, where Ac, Am, and

Aτ are the areas of a 16-bit adder/subtractor, a 16-bit
binary multiplier, and the datapath extension (see Ta-

ble 3), respectively. This shows that τ -adic arithmetic

uses less power than conversions (Pτ < Pc) only if

ω = 1. However, peak power is usually more important

than average power for lightweight applications (such

as passive RFID tags). Hence, the power consumptions

of τ -adic arithmetic and conversions are less important

in practice because both Pτ < Pm and Pc < Pm and

scalar multiplication determines the peak power con-

sumption.

If a device is battery-powered, then energy consump-

tion is more important than power consumption. Esti-

mates for energy consumptions are obtained by multi-

plying the above areas with the latencies from Table 4.

They show that τ -adic arithmetic reduces energy con-

sumption compared to the option of Fig. 1(b) if ω < 8.

1 Obtained by synthesizing 16-bit adder/subtractor and 16-
bit binary multiplier codes for 130 nm CMOS using the same
setup as above.

The energy consumption of τ -adic arithmetic is on the

same level (or only slightly higher) than that of the

option of Fig. 1(a) for ω < 8. Therefore, τ -adic arith-

metic offers lower latencies without using (significantly)

more energy. However, it is clear that scalar multiplica-

tion will dominate also energy consumption because it

has both significantly longer latency and larger average

power consumption.

10 Conclusions

We provided a comprehensive set of algorithms and

hardware architectures for arithmetic with τ -adic ex-

pansions. They allow delegating conversions from a con-

strained device (e.g., an RFID tag or a sensor node) to

a more powerful party (e.g., a server). In particular,

we showed that, e.g., ECDSA signatures can be com-

puted with low latency and without leaking the secrets

through side-channels by using partial τ -adic expan-

sions and unrolled datapath extensions.

We showed that τ -adic arithmetic improves over

previous options for implementing Koblitz curve cryp-

tography in lightweight applications. It allows both faster

operations and lower power consumption (with differ-

ent choices for ω) with similar energy consumption lev-

els compared to previous options based on conversions.

Hence, τ -adic arithmetic opens up possibilities for trade-

offs that are not available by using conversions.

We also showed that Koblitz curves are feasible for

lightweight applications even when modular arithmetic

is required. All that is needed are small datapath exten-

sions for implementing either τ -adic arithmetic or con-

versions. The use of Koblitz curves and our techniques
based on the partial τ -adic expansions can offer major

improvements over general elliptic curves in lightweight

cryptosystems because Koblitz curves require consider-

ably less computation for similar security levels, which

leads to direct improvements, especially, in energy con-

sumption of scalar multiplication.
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