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Hyperelliptic curves over finite fields are used in cryptosystems. To reach better performance,
Koblitz curves, i.e. subfield curves, have been proposed. We present fast scalar multiplication
methods for Koblitz curve cryptosystems for hyperelliptic curves enhancing the techniques
published so far. For hyperelliptic curves, this paper is the first to give a proof on the finiteness
of the Frobenius-expansions involved, to deal with periodic expansions, and to give a sound
complexity estimate.

As a second topic we consider a different, even faster set-up. The idea is to usdia
expansion as the key instead of starting with an integer which is then expanded. We show
that this approach has similar security and is especially suited for restricted devices as the
requirements to perform the operations are reduced to a minimum.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Many protocols for public key cryptography rely on the use of cyclic groups. In the
Diffie—Hellman key exchange as well as in EIGamal’s encryption and signature schemes
the main operation is the computation wf times a group element. Thus a group is
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suitable if this computation is fast, the group order can be determined efficiently, and—
most importantly—the discrete logarithm problem, i.e. the problem of obtaimifrgm

the knowledge ofD and E = mD, is hard. Elliptic and hyperelliptic curves provide
suitable groups—there are no currently known subexponential algorithms for solving the
DLP on such curves of genus< 3, except for curves of special classes. Furthermore,
fast explicit formulae for addition and doubling exist, making the curves applicable in
practice. The finite field the arithmetic is based on becomes smaller with increasing
genus which might be advantageous for implementations. Compared to the common
choice of the cyclic group as the multiplicative group of a finite field, the size of the
finite field can be chosen much smaller on the cost of more complicated formulae to
do arithmetic in the group.

If speed is an issue, cryptosystems based on curves can be speed-up considerably if
one uses special curves. In this paper we investigate Koblitz curves; these are curves
which are defined over a small finite field and are then considered over a large extension
field. We show how to efficiently make use of the Frobenius endomorphism of the curve.
To this end we detail the full generalization of Koblitz’ ideas to hyperelliptic curves
showing how to compute scalar multiples using the Frobenius endomorphism and give
proofs on the properties of these expansions. We show that computihpr m ~
q%" needs onlyx an{;l group operations if{ﬂz_ﬁ elements can be precomputed
and stored. One can trade-off storage for larger speed-up, e.g. if one is allowed to

precompute and storé@} elements then one needs on1§/n‘12gq;1 operations.
As both q and g are assumed to be fairly small the storage requirements are low in
any case.

Our main emphasis in this text is on hyperelliptic curves; from the properties we
use elliptic curves are included as well. A generalization to arbitrary sub-field curves is
obvious as the properties of the expansions depend only on the characteristic polynomial
of the Frobenius endomorphism and not on special properties of the curve. To keep
the mathematical background brief we do not mention more general curves, but all the
results presented in the sequel apply to any Pidadd or more generally anC,,
curve (sed1,2,12).

Our approach is different fronb,43] as our expansions are shorter and are proven
to be finite.

For elliptic curves, Koblitz24] investigates using a Frobenius expansion as a secret
instead of an integer which is then expanded. He credits the idea to H. Lenstra. This
approach has the advantage that one saves the time (and more importantly the space
for the code) needed for the expansion. In the casg ©f1, ¢ = 2 Solinas[47] gives
some heuristics that this approach should lead to uniformly distributed multipliers. The
idea of using such random tuples instead of random integensas pointed out to us
by Schroeppel. We investigate the applications in protocols and consider attacks that
might be possible due to this different choice.

The paper is organized as follows. We first recall the mathematical background
needed in the following sections and sketch the development of Koblitz curves in
cryptography. Then we present in detail the algorithms to obtain the fast method of
computingm-folds, which is analyzed in the next section. The analysis contains a care-
ful study on the length of the resulting expansions. In combination with the density
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this allows to state the complexity of computing scalar multiples using the Frobenius

endomorphism. For applications in restricted environments this might require too much

computational overhead. We analyze the effects of a different set-up and deal with

security concerns. Finally, we provide some examples to show the effects in practice and
to give evidence that the asymptotical results obtained before already apply to the used
setting.

2. Mathematical background

In this section we state results without proofs. For an introduction to hyperelliptic
curves see the appendix by Menezes ef{28], for more details and proofs we refer
the interested reader to Lorenzif@3], Stichtenoth[49], and Frey and Langgl3].

2.1. Hyperelliptic curves and ideal class group

Let g = p” be a prime power and Idt, denote the finite field witly elements. The
curves we consider can be defined via an equation of the type

C:y?+h(x)y = f(x), f.helylx], degf =2¢+1 degh<g, f monic (1)

. . . . -2
where we require the curve to be nonsingular, i.e. no pairy) € F, satisfying the

equation fulfills both partial derivative equations, Wh@gedenotes the algebraic closure
of [,. The curveC is called ahyperelliptic curve of genus.dn the case of odd| we
may assume thai = 0.

The group one uses is the ideal class group of a maximal order of the function field
Fyn (x, y)/(y2+h(x)y — f(x)), denoted by GIC/F,»). For applications, it is enough to
keep the following routine in mind: take the polynomial rifig:[x, y] and replace any
occurrence ofy? by —h(x)y + f(x), thus every element is of the shapéx) + b(x)y.

The ideal class group is the factor group of the fractional ideals by the principal
ideals.

For implementations, it is necessary to have a compact representation of the group
elements. Each nontrivial ideal class can be represented via an ordered pair of polynomi-
als [u(x), v(x)], u,v € Fyn[x], degv < degu <g, u monic, that satisfw|f—v2—hv.

To unify notation we represent the class of the principal ideald1pQ]. Therefore,
each class can be represented by at mgst@efficients and if one considers classes
in CI(C/F,m) then the coefficients are if,». The inverse ofu, v] equals[u, —h — v]
where the second entry is reduced modujohence, computing inverses can be per-
formed efficiently. To need less storage for a class one can recofrem u and some
additional information (se§21,48)). In any case thé&ey length is cnglog(g) for some
small constantt depending on whether all users agree on the same curve or if the
curve has to be included in the key as well. For the group size one has

ICI(C/Fyn)| = ¢"¢ + O(¢"¢~Y/?)) )
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by the theorem of Hasse-Weil. Hence, the trade-off between group size and key length
is optimal.

By a Koblitz curvewe understand a curve defined over a small finite field which
is considered over a large extension field. More requirements on the curve for crypto-
graphic applications will be introduced later when the terminology is presented.

2.2. Frobenius endomorphism

In [+ the Frobenius automorphism mapso x9. This operation is inherited by the
curve and by the ideal class group as well. The Frobenius endomorphisperates
on the ideal classes via their representativess@s(x), v(x)]) = [6(u(x)), o(v(x))]
for u,v € Fylx], wheres(X u;x’) = Y ufx'. It satisfies a characteristic polynomial
in Z[T] of degree 2 of the form

P(T) =T +aiT% 4 4 a,T8 + -+ a1g® T + ¢°. @)

From P one can easily obtain the group order of the ideal class group for any finite
field extension. The complex roots of P(T') have the following propertiesz;| = /g,

Ti+¢ = 7; for an appropriate ordering and the group order of the ideal class group over
F,» is given by

2g

ICIC/Fg)l = [ —1D.

i=1

To compute P(T) it is enough to know the number of points on the curve over
Fy. ..., F4e satisfying the defining equation of the curve. Fpe= 1 we simply have
ap =|C(Fy)l—g—1and forg =2 itisay = |CFHl—g—La = (IC(F,2)| —

g% —1+a?)/2. Hence, for curves defined over small finite fields, computing the group
order poses no problem.

This is in contrast to the general case that for curves of gerusver fields of large
characteristic it is still inefficient to determine the group order for randomly chosen
curves. For genus two curves over prime fields the current record is held by Gaudry
and Schos{18], but they need~1 week on a single machine to compute the group
order for a single curve ovek,, log, p = 80.

2.3. Arithmetic inCI(C/Fyn)

As usual we write the group additively. To compute scalar multiples of an element,
doublings and general additions are needed. Cantor's algofth23] performs the
group operations on the representatifiesv]. Recently, very efficient explicit formulae
for the most frequent cases of addition and doubling were published2@jf.and the
references therein fog = 2 and[25,44] for ¢ = 3). For elliptic curves such formulae
have long been known. Using the standard affine representation, these formulae involve
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field inversions infF,». For ¢ = 1 and odd characteristic, an addition of ideal classes
needs 1 inversion, 2 multiplications, and 1 squaringrin whereas a doubling needs

one more squaring. Fgy = 2 we use 1 inversion, 3 squarings, and 22 multiplications
for a generic addition and 2 more squarings for a doubling, both independent of the
characteristic. Depending on the implementation environment it can be advantageous
to trade-off the inversions for more multiplications using different coordinates.

Note that the size of the finite field decreases with increaggibthe group size;$”"
remains fixed. For genus 3!" can be represented within 64 bits for common security
requirements. This size of the finite field can be handled advantageously by some
computers. To compare the effects for different genera one must take into account the
costs of inversions relative to multiplications to find out for which system the arithmetic
is fastest.

3. Background on Koblitz curves
3.1. Elliptic curves oveff;

The first attempt to use the Frobenius endomorphism to speed up the computation on
an elliptic curve was made by Menezes and Vans{8¢ using the curvey? 4+ y = x°
over Fo.. The characteristic polynomial of the Frobenius ”T) = T2 + 2, thus
doubling is replaced by a two-fold application of the Frobenius endomorphism and
taking the negative. However, these curves are supersingular and thereforf8djeéls
“the next best thing” Koblit24] suggested to use the remaining two nonsupersingular
curves defined oveF,, namelyy?+xy = x3+ax?+1, a € {0, 1}. They are considered
as curves ovelf>:, wheren is chosen large enough to achieve a group size of the
desired bit length. The characteristic polynomial of the Frobenius endomorphism is
P(T)=T?+ (-1)T + 2.

The Frobenius endomorphism of the curve acts on a pBist (x, y) € [an of the
curve C by mapping it toa(P) = (x2, y2). If the ground field is represented via a
normal basis this operation is virtually for free as it is realized by a cyclic shift of the
field elements. Also for polynomial basis representations a squaring of all coordinates
is performed much faster than the whole addition formula (@88 for a software
implementation).

Let © be a complex root ofP(T). To use the fast-to-compute endomorphisnin
computingmP for an integerm, one expandsn to the base ofr using the relation
2 = —(—=1)?t — 2. Unfortunately this direct approach leads to expansions of twice
the bit-length ofm. Refinements have been obtained by Meier and Staffellja@h
and Solinag46]. A very detailed study can be found in Solingk/]. To reduce the
length of these expansions for a fixed extension figfd, one reducean in Z[r]
modulo (7" — 1)/(r — 1) and expands the resulting element. That is, one looks for an
elementM € Z[] that is equivalent tan modulo (" — 1)/(tr — 1) and which has a
shorter expansion. Furthermore, Solinas suggests to use a signed-aliljjit expansion
achieving an expression of length(the degree of extension) and densgy
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3.2. Generalizations

For larger ground fields, such subfield curves have been studied by NHlleand
Smart[45]. In any case the field of definition is small such t#at7’) can be computed
easily. The process of expanding is as described above, however, their studies are not
as detailed as Solinas’.

Already in his initial paper on hyperelliptic curves, Koblif23] suggested applying
the Frobenius endomorphism in computations ofdds. Gunther et al[19] general-
ized the concept of Koblitz curves to larger genus curves and studied two curves of
genus two oveffa. In [26] it has been shown that this approach works for any genus
and characteristic and this study has been detailg@8h

4. Hyperelliptic Koblitz curves

The results of this section hold independently of the genus, characteristic, and size
of the ground field. However, we suggest restricting to really small figjds; <7 and
large prime order extensions Additionally, we requireP(T) to be irreducible over
Z.

The size of the ground field needs to be kept small as the number of precomputations
grows like g8. The degree of extension should be prime to get an almost prime group
order: due to|CI(C/Fyn)| = ]_[,-Zil(l -1 = ]_[,-Zil(l — A4+ + 7:?‘1) =
ICI(C/F)I ]_[l.zil(l +Ti4+-+ r?‘l) we cannot avoid having a cofactor of sizé,
any divisor ofn will lead to additional factors. Likewise a composiegives rise to
cofactors for any degree of extension. Furthermore, for composite or medium degree
extensions, Weil descent attacki,17,36] have to be taken seriously. Therefore, we
suggest to choosg and n prime for cryptographic applications. For this article we
keep the arbitrary ground fieli, as the results are true in general.

Let |CI(C/F4n)| = kI for a primel. For cryptographic applications the cofactor
should not be significantly larger than the inevitable fa¢@iXC/F,)| from the ground
field. From the Hasse-Weil boun@)(we can hope foi &~ ¢¢®~D . Furthermore, we
assume that is large such that?f|CI(C/Fn)|.

As supersingular curves are always weak under the Frey-Ruck attacKl4¢i5)
we suggest to avoid these curves for usual applications in DL systems. In any case
one needs to check that for the minimalsatisfying/|¢"* — 1 we havek > n—%.

However, supersingular curves and—more generally—curves with smalin be
useful in pairing-based cryptosystems and the speed-up obtained from the Frobenius
endomorphism can be exploited there as well.

Example 1. Over > we can classify up to isogenies the nine classes of hyperelliptic
curves of genus 2 given by an equation of fort) With irreducible P(T), which are
given in Tablel.

The first five examples were given in Koblitf23]. Besides the first three
classes these curves are nonsupersingular. The fourth and fifth case were studied by
Gunter et al[19].
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Table 1
Binary curves of genus 2

Equation ofC P(T)

y24y=x2443 T4+ 278 + 272 + 4T + 4
V2t y=x>+x341 T4 — 2734272 —4T + 4
y2+y:x5+x3+x T4+ 2724+ 4
y24xy=x5+1 T4+ T3 42T +4
y2txy=x24+x2+1 TA—T3_2T+4
y2+(x2+x)y:x5+l T4-T24+4

Y2+ 2 +x+Dy=x5+1 T4+ 71244

Y2+ @2 x+ Dy =x+x T4+ 213 + 372 44T + 4
Y2+ (24 x+Dy=x"4x+1 T4 —2T3 4372 — 4T + 4

Group orders and characteristic polynomids$7) for all Koblitz curves of genus
<4 over [, with ¢ <7 can be found irf27].

4.1. Expansions to the Base of

Like before let P(T) denote the characteristic polynomial of the Frobenius en-
domorphism and lett be one of its complex roots. To make use of the Frobenius
endomorphism we need to be able to represe as a linear combination of the
¢’ (D) with bounded coefficients. This is equivalent to expandimtp the base of as
m = Zﬁ:o r;tt, where ther; € R for a set of coefficientRR to be defined later. If one
precomputegD for all occurring coefficients € R then the computation oD is
realized by applications of the Frobenius endomorphism, table-look-ups and additions
of ideal classes whenever the coefficient is nonzero.

The elements ofZ[z] are of the forme = co + c17+ - - - + c2p_17% 71 with ¢; € Z.

By (3), t satisfies a polynomial of degrees 2vith constant termg$. Thus one can
replace the computation af¢D by ¢8D = —(¢% la10(D) + g% 2%a26%(D) + --- +
aga8(D) + --- 4+ a16%~1(D) + ¢2¢(D)). But this need not be faster than comput-
ing ¢4 D by the usual method of double-and-add. Still it is the clue observation used
in expanding an integer. To compute the expansion we need a division With
remainder.

Lemma 2. c =cg+c1t+-- -—i-czg,lrzé’*l € Z[1] is divisible byz if and only if g&|co.

Proof. tjc &

c=1w=1Co+C1T+ -+ Ezg,lrzg_l)

= CoT+ G112 4 -+ Ezg—zfzgfz — C2g-1(q% + a1g® e agr®h

2g—1

= —Co-19% + 1T+ -+ + c2g-17 & q8lco. O



T. Lange/Finite Fields and Their Applications 11 (2005) 200—-229 207

Accordingly the set of coefficientR® must include a complete set of remainders
modulog® to allow an expansion. Since taking the negative of a class is essentially for
free we will useR = {0, &1, £2, ..., i(qu,’l}} as minimal set of remainders. Note
that we would not need to includeg®/2 in the case of even characteristic. But as we
get it for free we will make use of it.

We now derive ar-adic expansion ofn € Z. Putrg = m mod ¢8 for ro € R, d1 =
(m —ro)/q8, r1 = —dia1g® 1 mod g8 for r1 € R, anddo = (—d1a1g®~1 — r1)/¢%.

Then

m = rg+m —ro=ro+dig®
= ro — d1(¢® tarT + g8 Papt® + -+ agté + -+ art? T 4 1%)
= 1o + 1(—d1g® ta1 — d1g®2apt — - - — d1agt T — o — dyar T — di1?8 Y
= 1o+ 17+ 1(d2g® — dig® 2azt — -+ - — dlagrg_l — o —d1art® % — 1%L

= ro + r17 + 72(.. ).

The expansions derived by repeatedly applying this process with minimal remainders
Iri] < [%‘11 might become periodic in some cases. We study this question in Sec-
tion 4.3 In the following algorithm we assume th& has been chosen to contain
a complete set of remainders and some further coefficients if necessary. Furthermore,
later on in the text we shall impose conditions to achieve a sparse representation and
therefore we will use different choices of the set of coefficigRtsdepending on the
structure of P(T).

Now we state the algorithm for expanding an elementZ¢f] to the base ofr.
Note that at the moment we would only need to represent integers, but in the further
sections we will reduce the length of the representation. Thereby we stumble over this
more general problem:

Algorithm 1.
INPUT: ¢ =co+c1t+---+ 17271, P(T), a suitable set R
OUTPUTYy, ..., r;_q With ¢ = Y /-3 riti, r; € R.

(1) Puti:=0;
(2) While for any0< j <2g — 1 there exists arr; # 0 do
if g8|co chooser; := 0;
else choose; € R with ¢8|co — ry;
/*possibly taking into account further requireméehts
/*in even characteristic choose = cq if |co| = g%/2/*
d = (co—ri)/q%;
for 0<j<g—1do
cji=cjy1—aj+195 7,
for 0<j<g—2do
Cgtj i= Cgtj+1 — dg—j-1d,
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C2g-1 = —d,
i=i+1
(3) output (ro, ..., ri—1).

4.2. On the finiteness of the representation

We now consider the finiteness of theadic representations and establish the depen-
dence of the length on an expression involvingn case of a finite representation. We
show that for any curve the expansions are either finite or periodic and provide a way
to find out what happens for a given individual curve and how to deal with periods.

For the original instance of elliptic Koblitz curves ovép, the ring Z[t] was Eu-
clidean, this allowed an easy proof that the resulting expansion was finite. For elliptic
curves over fielddFyr with small r Muller [40] shows that the remainder of the ex-
pansion decreases in each step with respect to a certain norm and then shows that
there are only finitely many elements of such a small norm and that they all allow a
finite expansion. In our more general case the number theoretic norm as the product
over all conjugates does not satisfy the Triangle inequality. Therefore, to investigate
the finiteness we now consider @ 2limensional lattice associated to the elements of
Z[7].

Let 71,..., 1, be theg independent roots oP and take the set of elements
2g—1 ) 2g—1 )
A= ... ) et |icjez
j=0 j=0

These elements form a lattice @¢, since the sum of any two and integer multiples of
the vectors are inl. Since the polynomiaP is irreducible the lattice has full dimension

2g¢. We now investigate the nortnof vectors in this lattice, where the norm is given
by the usual Euclidean norm @f¢

Nt Genoxg) I oo g2,

where | . | is the complex absolute value. We can also consider this lattice as a 2
dimensional lattice oveR by the usual representation &f as R?.

By abuse of notation we writd/(c) for ¢ = co+ c17+ - - - + c,—17% "1 and speak
of the norm ofc since these vectors are parameterized by the integers., coo—1.

1There are two notions of length—the length of theadic expansion and the norm of the vector,
which is often referred to as (Euclidean-)length in the literature. We hope not to confuse the reader and
use norm in the second case.
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Thus then\ (c) reads

Nc) =

Now we study the behavior of the norm of the remainders during the expansion of
Showing that the norm decreases down to a certain limit will be the important step to
prove the following theorem:

Theorem 3. Let C be a hyperelliptic curve of genus g andtdie a root of the charac-
teristic polynomial of the Frobenius endomorphism. Then the expansios-ah+ci1t+

-+ cge-17%¢ 71 € Z[1] to the base ot with coefficients inR = {0, +1, ...,i["gz‘lﬂ
is either finite or becomes periodic

Proof. We first show that for elements of bounded norm the expansion cannot lead
to a remainder with larger norm than that bound. Showing that the expansion of any
element leads to a remainder of norm bounded by that constant concludes the proof.

Let NV(c) < \/_2(f i) (respectively < \/_2(?;11) for even characteristic). Then
using the Triangle inequality om = r + ¢ —r =: r + ¢’t, ¢ = r modg®, we get
N (D) EN(e) + Nr) <N () + /g(q® — 1)/2 (respectivelyN (¢) + ,/gq¢/2) and
N(zc') = /gN (c'). Now direct calculation shows thalt’(c’) is bounded by the same
constant.

Since we consider a discrete lattice, the number of elements with bounded norm is
finite. Thus the expansion of these elements of bounded norm either ends after hitting
at most one time all these elements or runs into a cycle since the choice HHred
therefore the next elemenrt—is unique for givenc. Hence, for these elements the
expansion is either periodic or finite.

The following two lemmata show that expanding an elentetd the base ot leads
to an element’ with N(c/)<f2([ 5 (or <JV&83—T ‘1 _in even characteristic) after

WVaD
2(y7-DN (m)
NG

at most 2log + 1 steps concluding the proof. [

Later we shall refer to an algorithm to find these elements of small norm and show
how to recognize periods and how to avoid them. Hence the problem is solved in
practice.

Lemma 4. Let q be odd. For everyn € Z[t] we have a unique expansion =

it +m'th, wherer; € {0, +1, +2, ..., +471),
, 98 2(/q — DN (m)
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Proof. Putmg :=m. The expansion of to the base of leads to

mo = ro+mit =ro +r1T+m2T2
j—1

E rit +mjt/,

i=0

where by Lemma2 the r; € {0, £1, iZ,...,iL{l} are uniquely determined.
The Triangle inequality for A leads to ./gN(m;)<N(mj_1) + N(rj—1) <
N(mj_1) + ﬁL{l. Hence,

N(mo) + 3(q® — 1/2Y 15 qi1?

N(mj) q]/z
N (mo) g8 -1
07 TVSF oD

then¥m0) « Y& _ and the claim follows.

If we choose;j >2log, MJ)ENWO) i N20J7-D
O

For even characteristic we proceed similarly.

Lemma 5. Let g be even. For everryz € Z[t] we have an expansion = Z -0 rlr +

~ wherer; € {0, £1, £2, .. ., 2 },
/ g8 +1 2(\/q — DN (m)
./\/(m)<\/§—2(ﬂ_1) and /< ’72|0gq —\/E —‘

Proof. Putmg :=m. The expansion ofm to the base of leads to

2

mo = ro+m1t =rg+r1t + mot
j—1

E ri‘c’ +ijj,

i=0

where ther; € {0, £1, +2, . ..,:I:%} are given like in Algorithm1.
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The Triangle inequality forA leads to ./gN (mj)<N(mj_1) + N(rj_1)<
N(mj_1) +\/§%. Hence,

N(mo) + za%/2Y 10 4"
L

N (mo) q®

< + \/EZ(\/? T

Nmj) <

42

If we choose;j >2log, Z(ﬁfyg(’"“) then /\g(j’}?) < 2(\/?_1) and the claim follows.
O

From the lemmata we see that the length of the expansion depends mainly on

N(m). They leave open to study the length of expansions of elements of norm less
4

than Ky, := /g 22,
Remark 6. For elliptic curves, Miller[40] and Smart45] followed this approach to
give bounds on the length of the Frobenius expansions. There, the normNearfs=
¢ — aicoe1 + qc? and the bounds on the remaindeX&(m’) = N (m{ + m)t) from
Lemmas4 and5 can be translated to explicit bounds on the After at most 3 further
expansion steps the remainder is zero unless in the case of the(gaifg equal to
(5, +4) and (7, £5), where the expansion becomes periodic on inh + 1)/2. The
easy way out in these cases is to inclulg; + 1)/2 in the set of coefficients, using
an additional precomputation and a little further space.

For arbitrary genus, one can state the nokmexplicitly in the coefficients of the
polynomial P(T) and express it in terms of the coefficients ..., co,—1. This can be
done using the symmetric functions in thheand with the help of the formulae derived
for computing the number of points on Koblitz curves[28].

Example 7. For g = 2 we have forc = cg + c17 + c212 + cat®
N(e)? = 2¢§ — arcoc1 + (af — 2az)coc2 — (a3 — 3(araz — a1q))cocs
+2g¢f — argeicy + (a% — 2az)gercs

+2¢%c3 — arq®cocs

+2¢°3¢3.
For ¢ = 3 we have forc = cg + c17 + €272 + €313 + c41% + ¢57°

N()? = 3¢5 — arcoct + (af — 2az)coc2 — (a3 — 3(araz — az))cocs

+(af — 4aZaz — araz + azq) + 2a3)coca
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—(a3 — 5(ataz — ajaz — a1a3 + a1a2q + azaz — a1q))cocs
+3qc% —aiqcic2 + (a% — 2ap)qcic3 — (le — 3(araz — az))qcicy
+(af — 4(a2ap — araz + azq) + 2a2)qcics + 3q%c3 — arg®cacs
+(a% — 2ap)q?cocs — (af — 3(a1a2 — az))q’cocs + 3q3c§ —a1¢3cacs

+(aZ — 2a2)q>c3cs + 3q%c — a1q*cacs + 3¢°cE.

In general\V (¢)? is a quadratic form in the@variablesco, . . . , c2¢—1. The coefficient
of ci2 is gg' and of ¢ic;,i < j is ¢'(¢" +1— |C(Fy)]), wherev = j —i. Due to
its origin in the interpretation as Euclidean norm in a lattis& is a positive definite
quadratic form.

Experiments show that an element of norm boundedkhy, has an expansion of
length at most 2 + 1 or becomes periodic. We did not succeed in proving this for
arbitrary curves (se¢28] for detailed study forg = 2). However, for each specific
curve one can easily determine an upper bound on the length of the expansion:

Finke and Pohsf10] provide an algorithm for finding all vectors of norm bounded
by a constanK in a lattice in R®, respectively for finding all arraysxo, ..., xs_1)
for which the value of the corresponding quadratic formsimariables is less thaK.
This allows to determine the complete set of elements of small norm. They prove the
following upper bound on the number of elements of norm bounde&:by

QLKY?) + l)<L4KJ +s5— 1)

[4K ]

Thus for our constank, , we have at mosO ((ﬁ%)(4g‘l)/2> vectors of small

norm. This bounds the maximal length of the expansion in the nonperiodic case, and
also the length of the period.

We use the algorithm to find all elements of small norm for individual curves. For
each of them we compute the expansion. These experiments show that for each such
elementc = co + - + c2,—17%~1 of small norm we have; € R for 1<g<2g —

1 and |cg|<¢q8, and if cg € R the other coefficients are fairly small. If no pe-
riods occur then every such element has an expansion of length at mostl2

thus either allc; € R or the next remainder in the expansion has all coefficients
in this set. Hence, the above bound is appropriate for the number of elements of
small norm, however, the expansions are by far shorter than hitting each element
once.

Together with Theoren8 and Lemmas4 or 5 respectively, this allows to sum up
the result in the nonperiodic case.
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Summary 1. Let P(T) be such that no periodic expansions occur. Then the length of
the expansion of m with coefficients in R is bounded by

2(Jq — DN (m)
NG

wherek, . is the maximal length of an element of noknK, .

[2 Iogq 1+ kqq,

Our observations and experiments stress that= 2¢ + 1 is a good upper bound.
4.3. Periodic expansions

One argument that can be used in the proof of the finiteness in the elliptic curve
case is that periods of length larger than one (except for a change of sign) cannot
occur since otherwise the coefficients and ¢1 would be larger than allowed. Now
we investigate in which situations periods can occur at all. For the elliptic curve case
the expansion can become cyclic onlyldf| —1 > (¢ —1)/2 thus forq < 14. For odd
characteristic these are just the cases where we included a further coefficient. For even
characteristic it was shown i0] by Mdller that we always obtain a finite expansion
if we use the seR as given above.

For curves of larger genus the situation is a bit different. First of all—although
obvious from the experiments and motivated by the detailed examp]28infor the
genus 2 case—we have no proof how large the coefficients with N'(c) < K, ¢
can get, but we can obtain some information as well, which makes it easy to check
for periods for an individual curve.

In the following we assume tha& consists of a complete set of remainders modulo
q¥. For larger setsR’ similar observations hold.

The first observation is that each element in the period must have norm less than
K, as otherwise we know that the norm decreases.

4.3.1. Period length one
Assume that for a curve WitR(T) = T2 +a1 T2 14+ +a, T8 +- - -+a1g8 1T +q8
we have that

c=co+c1t+---+ ng_l.[ngl

=ro£1(co+c1t4 -+ o177

with ro € R and N (c)? < K2,,. Without loss of generality we assume thgt> 0 and
thereforeco > [(¢8 — 1)/2] = rmax- Putd = (co — ro)/q% € Z-o.
The rules for expanding an element lead to a system of equations

= = ciy1—dai+19°7 71 0<i<g - 1,
f¢ = ciy1—dazg 1 gxi<2g -2,
+ cngl = _d’
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where the signs are assumed simultaneously. If this system can be fulfilled for a curve
with the positive sign for(co, c1, . .., c2,—1) then the equations hold for the quadratic
twist of the curve with the opposite sign and the above coefficient vector with alternating
signs. Thus we restrict ourselves to the case of positive sign. Inserting all equations in
the one forcg yields

coz—d—dal—-~-—dag—dag—lq—---—dalqg_l,
thus cg = dg® — d|CI(C/F,)|. Inserting the definition otl we obtain
ro = —d|CI(C/Fy)l.

Since bothd and |CI(C/[,)| are nonnegative anth € R the crucial part to be fulfilled
for either the curve or its twist i§(¢8 —1)/2] >d|CI(C/[,)|. Since a lower bound on
the class number is given by the Theorem of Hasse-Vi¢jlq and d have to be such
that [(¢* — 1)/21>d(\/q — 1)2¢, i.e. ¢ must be small enough.

We have just shown

Theorem 8. Let C be a hyperelliptic curve oveF, of genus g. An expansion using
the set of remainders R with maximal coefficieptyx can be periodic of period length
1 up to change of sign only if

rmax= |CI(C /T,

where C is either the curve or its quadratic twist. If in this case the period starts a
somec € Z[1], then N'(¢c) < K, .. One needs to include-d(¢® — [CI(C/F,)]) into R
for all 1<d<rmax/|CI(C‘/[Fq)| to guarantee finite expansions

For a given curve it is again fairly easy to check whether the expansion can run
into a cycle at all by applying the bound of Theoré&@nFurthermore, it shows which
additional coefficients might have to be included in the RetUsing the algorithm
of Finke and Pohst we can compute all elements of such a small horm and expand
all these elements to the base ©fThis shows that not all the curves for which the
inequality of the theorem holds lead to cyclic expansions. In case this happens, we just
need to use the additionally included coefficients instead of the whole period that would
follow. Thus if we choose such a curve for implementation we need to precompute
and stored more elements. Sincé and q are bounded by relatively small constants,
the time for this further precomputation can be neglected.

Example 9. Putg = 2, ¢ = 3. Among all the isogeny classes of curves with irreducible
P(T)only P(T) = T*+ 213+ 2712+ 67T +9, P(T) = T*+ T3 - 272+ 3T +9, and
P(T) =T*+ 373 +5724 97T + 9 lead to periods. The coefficients to include a8

in the first two cases and6 in the last one.
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Example 10. In the case of even characteristic the situation is even a bit more relaxed.
If we choose coefficients fronfO, £1, ..., £¢8/2 — 1, ¢%/2} unlessco = —¢8/2 (cf.
Algorithm 1) then for all classes of curves of genus two over(see Tabularl) the
expansions are finite.

Even though we do not propose the ground fieldwe checked all possible curves.
We run into a cycle only forP(T) = T# + 4T3 + 972 + 16T + 16. To deal with this
we include+10 in the set of coefficients.

4.3.2. Longer periods
Here one can follow the same approach allowing more quotiént®\ necessary
condition to have a period of length 2 is that

—(do +d1)|CI(C/Fy)| =ro+r1

can be fulfilled forrg, r1 € R.

For do = —dy we getrg = —r1, i.e. the case of period length one with a change of
sign.

In the other cases we see as well, thatand dy are of the same order and that
both andqg have to be reasonably small. On the other hand excepiifet —d; = 1
this did not occur in the experiments and the same holds for periods of higher order.

Again this can be explained by the bounds on the coefficients. If we haye<
Jqrmax and |¢;| € R, i>1, thendy < (/g +1)/2 and|d1| < 1+ g + 1/,/q in the
worst case.

We did not get any longer periods.

4.3.3. Different strategies

A different way to proof the finiteness of such expansions can be extended from
Lesage[32]. He investigates expansions to the basevherew is a root of a quadratic
polynomial overZ and the set of remainders is of cardinaljty?, symmetric to 0. He
uses difference equations to prove the finiteness and succeeds in general for the case of
nonreal roots (except some cases where one obtains periods). For a special polynomial
he computes the expected length of the expansion as well. The approach generalizes to
the kind of polynomials considered here due to the symmetry @) but again the
expressions for the general case involving thecannot be handled. Like before it is
possible to get bounds for an individual curve with explicit coefficients.

4.4. Reducing the length of the expansion

The strategy explained so far would lead to expansions of length, 2dog 2ng—
thus expansions that areg Zimes as long as @S$-adic expansion which mitigates
the advantage of using the Frobenius. Thus, actually one does not expaise|f
but looks for an elemenM € Z[t] having a short expansion ardD = mD for all
D e CI(C/F4n). Once we decide to use such a curve we need to fix the figld
i.e. the degree of extension. This gives us the additional equatica 1. (Note that
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for a € Fyn we havea?" = a and the application of the Frobenius endomorphism on
the ideal classes does nothing but raising field elements to the poveg) ©herefore,

if M =m mod (<" — 1) thenMD = mD for D e CI(C/F;») and we can choose an
equivalentM with a short expansion.

Remark 11. Note that for a fixed extension field, satisfies two equations. Since we
consider only irreducible polynomiaR and since the constant term Bfis ¢8 # +1,

the polynomialsP(T) andT" — 1 are co-prime. Thus their gcd ov&[T] is one. But

we are working inZ[T]. The ideal generated by these polynomials is a principal ideal
generated by an integer (since the gcd ol@f’] is 1). In fact this number is equal
to the cardinality of the ideal class group ouej:.

Namely, write P(T) = ]_[l.zil(T —1;). Then in the ideal under consideration we have
T" = 1. Transformingl’ — T" we have to evaluate

2g

2g
[T =y = J@ =1 = 1CIC/Fgn).
i=1

i=1

which is indeed the class number.

To rephrase this, modul€l(C/[F,»)| these polynomials have a common linear factor.
Hence, if we consider only the cyclic group of ordethe polynomials have a common
factor T — s in [;[T], wherel is a prime factor of|CI(C/F,#)|. This means that
the operation of the Frobenius endomorphism on an ideal class corresponds to the
multiplication of the ideal class by the integemodulol.

In the applications one usually restricts the computations to a subgroup of large prime
order. Let!/||CI(C/F,)| be a large prime such tha%ﬂCI(C/[Fqn)L Then we can even
look for elements equivalent tm modulo (<" —1)/(t—1) = " 14" 24... 4141
as the Frobenius endomorphism cannot correspond to the identity.

In this section we prove the following theorem:

Theorem 12. Let t be a root of the characteristic polynomid (7)) of the Frobenius
endomorphism of the hyperelliptic curve C of genus g defined byeConsider the
curve overl,» and letm € Z. There is an elemen/ € Z[7] such that

Q) m=M mod(t" —1)/(t—1)

and

@) 2|091WLJ%N(M> <n+2g.

where N denotes the norm defined in the previous section

The proof is constructive, thus it provides a way to compute such an elevherat
us fix some notation which shall be useful for the proof and to state the algorithms.
For an elemenD € Q let z =nearest (Q) be the nearest integer 19, if ambiguity
arises it is defined to be the integer with the least absolute value. This can be realized
computationally by choosing = [Q — 0.5] if 0 > 0 andz = |Q + 0.5] else. We
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will also usenearest (.) for elements ofQ[z] where it is understood coefficient-
wise.

Proof. In the field @[] one can invert elements. Thus, pOt:=m(t—1)/(<" —1) €

Q[z], s0 Q = Zzg L 0i7 where 0; € Q. For 0<i <2¢ —1 putz; = nearest (Q)
and put

2¢—1
7= Z T and M:=m—z(t" —1)/(t—1).

i=0

Thus it is easy to see thai = M mod (z" — 1)/(t — 1). To compute the value

_ z(t" = 1) =1 /m(t—1)
N(M)_N( G —1>> N(r—l ( v -1 _Z>>

we need an estimate ON("’(T —2)=N(Q —2).

8
NQ-2) = Z

j=1 \ i=0

29— 2\ 2 ¢ 291 ‘ 2\ 2
Z Qi —z)7| | < Z(Z|<Qi—zi>rg|)

1

i( 2g_1)2 : s g —1
=\2/a-1 TV -1

VAN
]~
/=~
NI -
N
AN
S|
N——
N
Nl

Therefore we have

N M) =/\/’<T:_1 (m(r—l) )) ZN((m(r 1) z)‘c’)

4t =t i -1 Jq"-1
( $207 - 1? ) ‘/_Z(I—l)f—l

M \

It follows that

-1
+2log,(¢® — 1) <n+2g. 0
7 5
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Remark 13. The usage ofnearest might not be the best choice, nevertheless it
provides an efficient way to compute a length-reduced representation which works for
every genusy, ground fieldl,, and degree of extensiam For the two binary elliptic
curves, Solinas investigates in more detail an optimal way of reduction. Considering
the lattice spanned bjl, 1} he shows that for each element @fz] there is a unique
lattice point within distance less tharyZ For larger genera the computation of the
nearest point is computationally hard to realize and we do not lose much choosing the
“rounded” elements the way presented here.

Thus from the discussion of Sectigh2 we have the following result:

Theorem 14 (Main result on the lengih Let C be a hyperelliptic curve ovef, of
genus g and with characteristic polynomial of the Frobenius endomorpi®ish). Let
P be such that the-adic expansion is not periodic and that for an element &Zpf]
of norm < K, , the r-adic expansion is no longer tha2g 4 1. Then we have

For every elemenin € Z we can compute a-adic expansion of lengthl using
coefficients in the set R onlwhere

A<n+4g+ 1.

The remainder of this section is devoted to computational aspects. One first needs
to compute (" — 1)/(r — 1) and its inverse inQ[z], which is doneonly oncefor
C and n. The computations are performed using recurrence sequences. To derive the
inverse in Q[t] one uses the extended Euclidean algorithmClfand n are system
parameters these elements can be computed externally and stored on the device as they
are independent of the chosen ideal classes. In Sebtisa state a way to circumvent
this, see also Remarks.

First of all one needs the representation(df — 1)/(t — 1) in Z[1].

Algorithm 2.

INPUT: n e N, P(T).

OUTPUTzeq, ..., e2—1 € Z such that(z" —1)/(t — 1) = eg + 17T + - - - + egg_1728 71
in Z[1].

(1) initialize: dp :=1 and d; := 0 for 1<i<2¢g — 1;
eo:=1lande; :=0 for 1<i<2¢g —1;
(2) for 1<j<n—1do
(@) doid := d2g—1;
(b) for 2¢ —1>i>g do

di == di—1 — azg—idold;
ej = e¢; +d;;

(c) forg—1>i>1do ‘
di :==d;i1— a;q5 'doiq;

eii=e +di;
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(d) do := —q®doid:
eo 1= ep + do;
(3) output (eg, e, ..., e24—1).

Consideringe(T) = Y ¢;T' we can inverte modulo P(T) in Q[T] by the extended
Euclidean Algorithm, as for gad, P) = e¢’ + PP’ one hase’ = e~ mod P. For fixed
genus and hence degree of the involved polynomials, this can be made explicit.

We now present the algorithm for computing scalar multiples as a whole.

Algorithm 3 (Computation of m-folds using-adic expansions
INPUT: m e Z,D =[u,v], u,v € Fgu[x], P(T), R (appropriate set of
coefficienty e = (" — 1)/(t — 1), ¢ = ¢~ mod P.
OUTPUTmD represented by the reduced idddl= [s, 1], s,t € Fyn[x].
(1) /*precomputatiory
(@) for i € R,i > 0 compute
D(i) :=iD; [* use double-and-add and previous computatibns
D(—i) := —D();/* for free can also be computed fronD(i)
when usetf
(2) /*compute m modul@r” — 1)/(t — 1) using e ande’*/
(a) computez(T) :=nearest (m -¢'(T));
(b) let M =Y %, MiT! := m — e(T) - 2(T) mod P(T);
(3) /*compute ther-adic representation of M/ ~
use Algorithml to compute expansion aff = Z;
(4) /* compute m-fold of P/
(a) initialize H := D(r;_);
(b) for A—2>i>0do
() H:=o0(H); /* this means cyclic shiftirtg
(i) if r; #£0 then
H := H + D(ry); [* one table-look-upone additiori/
(c) output (H).

;érj‘l?j;

Step 1 needs to be performed only once per curve and basedppisd in some
applications one saves the precomputed points on the device and skips this step.

Remark 15. Arithmetic in @ has high system requirements. Therefore, for binary el-
liptic curves, Solinag47] proposespartial modular reduction Instead of computing
M < Z[7] of minimal norm he obtains an elememt’ = m mod (7" —1)/(t — 1) which
might have a slightly longer expansion but the computations involve only truncated
divisions by powers of 2 which can easily be realized in soft- and hardware. For the
particular curves he considers one can explicitly state the group order as an expression
of the degree of extensiamand therefore find appropriate denominators giving a good
approximation.

In our general case this is not possible, but one can work with an arbitrary good
approximatiore’ of ¢’ in which all denominators are powers of two. The idea of Solinas
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to use the number theoretic norm can be generalized to computing

2g
(-1 F@-1 @ - (i =1
(ﬂ—b_£hﬁ—b£& rI-—D

Thus, one can also precompute a Barrett-inversiorklohnd get the inversion by
multiplications and modular reductions.
Note that in any case the resulting will still be in the same class am since

M:m—@wqya—nnwma(ijmm)smmMQRAw@—n
4.5. Complexity and comparison

The estimates for the complexity are given as number of group operations. Using
precomputations as suggested one only needs to use additions. If the elements are
represented with respect to a normal basis théh) can be computed for free. Thus
we ignore these operations in the following.

By Theorem14 the length of ar-adic expansions is normally bounded by 4g +1
in the nonperiodic case. Furthermore, the experiments show that even a bowrddof
is sufficient for the range off and g considered here.

The second important characteristic for the complexity is the dedsitiithe expan-
sion. By density we mean the number of nonzero coefficients divided by the number
of coefficients. Thus) times the length gives the number of additions needed.

We first consider the minimal seR = {0, +1,...,+|q%/2]}. A zero-coefficient
occurs with probability 198, therefore the asymptotic density (§% — 1)/¢% < 1.
Certainly all usual (signed) windowing methods carry through-adic windows, thus
if one precomputes all multipleggD + ri6(D) + - - - + ry_16" YD), ri € R,ro # 0
the density reduces t@™® — 1)/(wg™8) on average for fixed windows and to even
less for sliding ones. Thus one can trade-off storage for larger speed-up. Depending on
the curve one can also use other sets of coefficients[18:28] for details.

These numbers need to be compared to the usual arithmetic. Using binary double-
and-add the number of operationsgiogzm ~ %’gn log, ¢ and using a NAF ofm it

still is ~ 3gnlog, q.

Summary 2. If we disregard storage and time for precomputations and assume a
adic expansion of length: n 4+ 2g + 1, the speed-up factor is approximately

3gq4log, q

1.5¢
2q¢ -1 ¥

compared to the binary expansion and

4gq41og, q

1.3
3qs—1 ¢
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Table 2
g Binary t-adicw =1 Speed-up Binary t-adic, w = 2 Speed-up factor
window factor window

2 11/4n 3/4n 11/3 3Y12n 3/7n 217/36~ 6

3 31/8n 7/8n 31/7 573160 7/15n 1719224~ 7.6

4 79/16n 15/16n 79/15 1023224 15/31n 105771120~ 9.4

Table 3

g  Wpin Binary t-adic, w=1  Speed-up wpin Binary t-adic, w=2  Speed-up
window factor window factor

2 4 47/8n 24/251 6 9 & 24/49% 12

3 7 511/64n n 8 13 & 124/24% 16

4 9 10 n 10 18 16 1/2n 20

compared to the NAF expansiohoth for the minimal set of coefficients and for n
large compared to g and.q

Precomputations and signed digit expansions cannot be taken into account in a general
formula, as it is a bit tricky to allow the same number of precomputations. We state
g = 2 and 5 as examples allowing windows of length at most 2. Tablaad 3 list
the average number of group operations to compute a scalar multiple using a signed
digit windowing method and using the Frobenius endomorphismgker2 andw =1
the corresponding binary system is allowed to use a window of wgdtlor w =2 a
width of 2¢ — 1 is more than fair.

For ¢ = 5 we cannot directly express the width,, for the binary method as a
function in g, thus we include this parameter in the table. Entries may be rounded to
nearest integer.

4.6. Disadvantages

So far we have seen how to speed up the computation-fmids on Koblitz curves.
Certainly an attacker can also make use of the Frobenius endomorphism—first of all
to speed up his computations. Furthermore, algorithms like Pollard’s rho method allow
to consider equivalence classes under the Frobenius endomorphism as “one element”
(see[8,50] as the concepts generalize to hyperelliptic curves easily). This leads to a
speed-up by a factor of/n for Pollard's method. Thus allowing slightly larger field
extensions is enough to deal with this potential weakness.

The choice of Koblitz curves implies that one needs precomputations ugless
1, g = 2 to obtain the described performance. Furthermore, to reduce the length of the
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expansions we use polynomial arithmetic o@rvhich as well restricts the applications.
We consider these two points in more detail in the next section.

5. Alternative set-up

For a cryptosystem or protocol based on Koblitz curves we now suggest to start with
an expansion of fixed length and use this as the secret scalar—not caring to which
integer it corresponds if at all. This implies that the device need not be able to perform
polynomial arithmetic and to deal with arithmetic both in finite fields andlin

If—as usual—we restrict ourselves B of prime orderl, we work in a cyclic group
and g operates as a group automorphism. Then for the action of the Frobenius we have
a(D) = s D, wheresis an integer moduld (see Remarlk 1). Henceany sume;l rt
corresponds to an integer modulonamely tozf“;ol ris' modl, and one can replace
the whole procedure to choose random integers and compute a reduced expansion
described above by choosing a randartuple of coefficients; € R. The integers is
obtained via gcdP(T), T" 1+ ...+ T +1) = (T —s) in [[T]. This computation is
done only once ang is included in the curve parameters. Here, we use the minimal
setR=1{0,41,..., :I:qu_l} in odd characteristic an& = {0, &1, ..., :i:(% -1, %}
in even characteristic to avoid ambiguity. We assume that the chosen curve fulfills all
requirements listed in the previous sections.

Remark 16. Likewise we can use the enlarged sBt®f size ¢%(¢% — 1) and impose
conditions on the density to obtain sequen¢es...,r;,_1) resembling outputs of the
reduction and expansion procedure. Obviously, this leads to faster computations but it
requires more precomputed points. We skip the details as most considerations are very
similar.

By a random expansion of length we mean a tuple- = (ro,...,r;_1) with r;
chosen randomly iR along with the interpretation as + rit + - - - + r;_1t*~1. We
will show that a reasonable choice is=n — 1.

We first consider applications of this modified set-up and then investigate security
issues.

5.1. Applications of the alternative set-up

We now care about the practicability of these new keys and show that we can still
use the standard protocols:

In the Diffie—Hellman key-exchangg’] and in the EIGamal cryptosystenf9] all
scalar multiplications can be performed using the random tuples. It is likewise possible
that only one user applies the new idea whereas the other uses the standard Koblitz
curve techniques or a binary expansion.

As signature schem&e choose an inversion-free scheme. However, the same con-
siderations hold for any signature scheme. (For an overview of applicable schemes
consider the Handbook of Applied Cryptograpf3b][Note 11.70].) LetH (.) and k(.)
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be hash functions from the message space resp. from the first polynomial of an ideal
class to the integers modulo the group ordéFhe hash functions are publig. secretly
choosesa and publishesEa = aD. To sign a message, she chooses a nonéeand
sendsp(k) = kD and u(k, m) = aH (m) + kh(kD) mod!/ together with the message

m. To check the validity one compareeD and H(m)Ea + h(p)p and accepts upon
equality. As one can see, the secret numbers are not only used as multipliers but
also as integers modulo As such they can be recovered using the correspondence of
7 ands. To computek as an integek, we need at least — 2 multiplications modulo

| plus some additions for the coefficients. Note, that we can compuaad kD on

the run as we need not store the coefficients and start from the highest power of
or o respectively. Thus, we také random elements of R and each time compute
the intermediate results(p) + rD and sk + r mod! from the previous intermediate
resultsp and k. Usually this can be performed faster than computing the expansion as
presented in Sectiod. To obtaina we proceed the same way, but we saveogether

with its expansion.

5.2. Collisions

To apply the idea described in the previous section, we need to ensure that the
corresponding multipliers occurring as integers modulare equally distributed. Re-
spectively, we need to be aware of collisions. Since we knowsthat 1 mod!, because
s corresponds to the Frobenius endomorphism on this restricted group,zaridmod!
the highest exponent of in the expansion should be less or equahkte 2, to avoid
multiple occurrences of a number. There can be other combinations of powers of
with bounded coefficients depending on the chosen curve, but here we try to exclude
those polynomials that occur in any case. Namely, note that the known equivalences
1454 -+s""1 = 0 mod! ands? +a1s28~1+4.. Fagss4-- +a1g% s+ = 0 mod/
do not lead to such a representation, since in the first one the highest power is
and all powers’ mod/, 0<i <n—2 are different and also not equal to the negative of
another powerr(is an odd prime), the second one contains the coeffi¢ciént R, and
any combination of both still has the maximal powernof 1 or too large coefficients.

A mathematical sound study of collisions for these curves can be foufljrshowing
that for | large enough collisions do not or only rarely occur foe=n — 1.

5.3. Attacks

We now investigate extra weaknesses imposed by applying a random tuple instead
of the expansion of a random integer. The obvious difference is that actual expansions
are somer-adic digits longer than the tuples. The standard low-storage square-root
algorithms for computing discrete logarithms cannot make use of the fact that the last
digits of the baser expansion of the multiplier are zero. Clearly, a brute-force search
throughout the key-space can make use of the reduced amount of possible keys, but
this is far too inefficient to be threat. One can design-adic baby-step-giant-step
algorithm which slightly reduces the security but usually the storage requirements are
prohibitively large. To play safe one should increasby some bits.
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If we consider digital signatures we have to pay more attention. We first outline what
happens if parts of theinary expansion of the nonces are known and then show that
this attack does not apply for our case. Building ug8i22], Nguyen and Shparlinski
[41] invented a way to reveal the secret signing leeif only some bits of the nonces
k are known. They apply it to signature schemes based on the multiplicative group
of a finite field and on elliptic curves. Although our notation and signature scheme
differ from the one presented id1], we now present essentially their ideas, however,
in the new context of ideal class groups. Then we investigate to which extend this
can be generalized to-adic bits. Let|x|; denote the unique integer<Or < [ with
x =X mod/.

The task of computing is transformed to a hidden number problem, which can
be solved by lattice reduction. Assume that the higldsits of k are known, i.e. one
knows k’ such that &k — k’ = k < [/2/, where as beforé denotes the prime group
order. AsaH(m) = u(k, m) — kh(kD) = u(k, m) — (k' + k)h(kD) mod!/, the attacker
can compute

T(k,m) = h(kD)"*H(m) modl, Uk, m)= —k' + uk, m)h(kD)~* mod!
from the publicly knows values and gets the problem of findinguch that
LU (k,m) —aT (k,m)|; <1/27.

This hidden number problem can be solved given that one receives enough instances,
i.e. different values ok and m for fixed a and equal most significant part & and

that the nearest vector problem in the associated lattice can be solved (this is likely as
the dimension is relatively low). Shparlinski and Nguyen verify this experimentally for
elliptic curves and succeed even for a small number of known bitg &s3. There

are no reasons to expect a different behavior for larger genus curves. Hence, the attack
has to be taken seriously.

Using our alternative scheme, the attacker knows that the “most significadic
bits” of k are zero, respectively, as the corresponding intsgereasy to compute, that
the highest powers o do not occur. On the other hand we can bogras an integer
from below:

We have thatP(s) = 0 mod/. This equation cannot hold in the integers since we
assumeP to be irreducible. Hence® +a1s? 1+ +aps8 +- - +args s +q8>1.
Neglecting lower order terms? 4+ O(s2 1>l = s> (1 + 0V ~ ¢r-D/2,
Therefore,s is large and in the expressiagn= ::g ris' one in fact computes modulo
I. So, the attack does not carry through directly as one only knowsntbatlo |the
highest coefficients are zero.

Techniques to solve subset sum problejdigl2] show that one can also deal with
modular congruences by increasing the dimension by one and adding a further co-
ordinate to stand for the unknown multiple &f They show that for subset sums
Zf:l o;d;, o € {0,1} out of t elementsd; modulo an integef the secret coefficients
can be determined far/log,! < 0.94. That setting allows only coefficients {0, 1}.
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To model larger coefficients<rmay one includes @, 22d;, ..., 2% malg; in the set
for eachd;. If rmax is not a power of 2 one needs to take into account that not all
linear combinations of these additional numbers are allowed but this does not affect the
procedure. This enlargasby a factor of~ log, rmax. Allowing negative signs works
just the same.

In our casel is the group order, i.el ~ g8, The d; are the distinct powers’
of s modulol. Therefore the set contains= [2(n — 1) log,(l¢%/2])] ~ (n —1)glog, ¢
elements. The fraction/log,/ is very close to 1—for the approximations detailed
above it even equals 1. In general, one should check thkig,/ > 0.94 before
applying a curve.

6. Example

In this section we present one example, however, further good instances are easy to
get [27]. Consider the binary curve of genus 2 given by

C:y2+(x2+x+1)y=x5+x+1

with characteristic polynomial of the Frobenius endomorphiBgT) = 74 — 273 +
372 — 4T + 4. For the extension of degree 89 the class number is almost prime

|CI(C/Fo89)| = 2-191561942608242456073498418252108663615312031512914969

Let | be the large prime number. The operationcobn the group of ordel corre-
sponds to the multiplication by

s = —10909476359861941088449855420776379666052262767680104/1 mod

For a high-level comparison we provide two Magma programs. The program for
this curve FrobExample and a program to play around with a user-defined curve
FrobSelf can be obtained fromj27]. A detailed paper about implementation of
hyperelliptic Koblitz curves using normal and polynomial bases in comparison is in
preparatior[30]. It gives evidence that the theoretic and asymptotic results of this paper
actually hold true in practice.

7. Conclusion

We gave details on the use of Koblitz curves and presented an alternative set-up in
which the random integem is replaced by a random — 1 tuple of elements from
R. This alternative set-up allows to save the time needed to compute the expansion.
Furthermore, in this case the mathematical features needed are reduced to a minimum,
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e.g. no arithmetic ir is used. Hence, this set-up is especially appropriate for memory-
constrained environments like smart cards. The devices of the participants need only
be able to perform addition, to execute and to randomly choose elements frdn

A little amount of storage is required to keep precomputed multiples.

The proposed alternative set-up can be applied to the usual protocols where in
the case of a signature scheme one needs to compute the secret multiple as an in-
teger as well. Concerning security issues, we considered generalizations of known
attacks and dealt with collisions. To conclude one can say that using this modi-
fied system saves the time needed to compute the expansion without weakening the
system.

An extremely careful user might feel better to use it only for ElGamal and
Diffie-Hellman although to our knowledge signature schemes are just as well
secure.

Remark 17. (1) In this paper we considered the effects of knowadic bits only in

the section on the alternative set-up. The same considerations hold true for side-channel
attacks where the leakage allows to obtain somalic bits. Our analysis shows that
Koblitz curve systems are not vulnerable to such attacks if the number of leaked bits
is small, such that the parametemn Section5.3 is close to 1.

We thank the anonymous referee for pointing out this observation.

(2) One can restrict the key size even more by choosing a smaller set of coeffi-
cients for ther-adic expansion. This reduces the storage requirements and the proba-
bility of collisions but for extreme choices—Ilik&" = {0, 1}, g, g > 2, thus without
precomputations—one has to be aware of lattice based attacks on the subset sum prob-
lem [6,42]. If one tries to get around these by using longer keys of length ¢,
collisions get more likely since one has to deal with-% + --- + s"~1 = 0 modI.

Then the zero element occurs at Ieaé'f*g;”n:i_l) +1 times, wherer/,,, is the maximal

coefficient of R’. Another idea is to consider only sparse representations to reduce the
complexity. Although this reduces the size of the key-space as well, the implications
are less dramatic.

(3) The use of reduced-expansions may help to improve any cryptographic method
of key-exchange, signing and encryption based on the Jacobian of curves or other
Abelian varieties which are defined over a smaller field than they are considered. In-
cluded are for example Jacobians of superelliptic @pgtcurves and one might apply
the construction to other efficiently computable endomorphisms with known character-
istic polynomial.

(4) UnlessP(T) = T? + 4%, the standard method as well as the alternative set-up
can be applied to speed up pairing schemes based on supersingular curves, as pointed
out by Stein.
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