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Hyperelliptic curves over finite fields are used in cryptosystems. To reach better performance,
Koblitz curves, i.e. subfield curves, have been proposed. We present fast scalar multiplication
methods for Koblitz curve cryptosystems for hyperelliptic curves enhancing the techniques
published so far. For hyperelliptic curves, this paper is the first to give a proof on the finiteness
of the Frobenius-expansions involved, to deal with periodic expansions, and to give a sound
complexity estimate.
As a second topic we consider a different, even faster set-up. The idea is to use a�-adic

expansion as the key instead of starting with an integer which is then expanded. We show
that this approach has similar security and is especially suited for restricted devices as the
requirements to perform the operations are reduced to a minimum.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Many protocols for public key cryptography rely on the use of cyclic groups. In the
Diffie–Hellman key exchange as well as in ElGamal’s encryption and signature schemes
the main operation is the computation ofm times a group element. Thus a group is
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suitable if this computation is fast, the group order can be determined efficiently, and—
most importantly—the discrete logarithm problem, i.e. the problem of obtainingm from
the knowledge ofD and E = mD, is hard. Elliptic and hyperelliptic curves provide
suitable groups—there are no currently known subexponential algorithms for solving the
DLP on such curves of genusg�3, except for curves of special classes. Furthermore,
fast explicit formulae for addition and doubling exist, making the curves applicable in
practice. The finite field the arithmetic is based on becomes smaller with increasing
genus which might be advantageous for implementations. Compared to the common
choice of the cyclic group as the multiplicative group of a finite field, the size of the
finite field can be chosen much smaller on the cost of more complicated formulae to
do arithmetic in the group.
If speed is an issue, cryptosystems based on curves can be speed-up considerably if

one uses special curves. In this paper we investigate Koblitz curves; these are curves
which are defined over a small finite field and are then considered over a large extension
field. We show how to efficiently make use of the Frobenius endomorphism of the curve.
To this end we detail the full generalization of Koblitz’ ideas to hyperelliptic curves
showing how to compute scalar multiples using the Frobenius endomorphism and give
proofs on the properties of these expansions. We show that computingmD for m ≈
qgn needs only≈ n

qg−1
qg

group operations if� qg−12 � elements can be precomputed
and stored. One can trade-off storage for larger speed-up, e.g. if one is allowed to
precompute and store� qg(qg−1)2 � elements then one needs only≈ n

qg−1
2qg operations.

As both q and g are assumed to be fairly small the storage requirements are low in
any case.
Our main emphasis in this text is on hyperelliptic curves; from the properties we

use elliptic curves are included as well. A generalization to arbitrary sub-field curves is
obvious as the properties of the expansions depend only on the characteristic polynomial
of the Frobenius endomorphism and not on special properties of the curve. To keep
the mathematical background brief we do not mention more general curves, but all the
results presented in the sequel apply to any Picard[11] or more generally anyCab
curve (see[1,2,12]).
Our approach is different from[5,43] as our expansions are shorter and are proven

to be finite.
For elliptic curves, Koblitz[24] investigates using a Frobenius expansion as a secret

instead of an integer which is then expanded. He credits the idea to H. Lenstra. This
approach has the advantage that one saves the time (and more importantly the space
for the code) needed for the expansion. In the case ofg = 1, q = 2 Solinas[47] gives
some heuristics that this approach should lead to uniformly distributed multipliers. The
idea of using such random tuples instead of random integersm was pointed out to us
by Schroeppel. We investigate the applications in protocols and consider attacks that
might be possible due to this different choice.
The paper is organized as follows. We first recall the mathematical background

needed in the following sections and sketch the development of Koblitz curves in
cryptography. Then we present in detail the algorithms to obtain the fast method of
computingm-folds, which is analyzed in the next section. The analysis contains a care-
ful study on the length of the resulting expansions. In combination with the density
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this allows to state the complexity of computing scalar multiples using the Frobenius
endomorphism. For applications in restricted environments this might require too much
computational overhead. We analyze the effects of a different set-up and deal with
security concerns. Finally, we provide some examples to show the effects in practice and
to give evidence that the asymptotical results obtained before already apply to the used
setting.

2. Mathematical background

In this section we state results without proofs. For an introduction to hyperelliptic
curves see the appendix by Menezes et al.[38], for more details and proofs we refer
the interested reader to Lorenzini[33], Stichtenoth[49], and Frey and Lange[13].

2.1. Hyperelliptic curves and ideal class group

Let q = pr be a prime power and letFq denote the finite field withq elements. The
curves we consider can be defined via an equation of the type

C : y2 + h(x)y = f (x), f, h ∈ Fq [x], degf = 2g + 1,degh�g, f monic, (1)

where we require the curve to be nonsingular, i.e. no pair(x, y) ∈ F
2
q satisfying the

equation fulfills both partial derivative equations, whereFq denotes the algebraic closure
of Fq . The curveC is called ahyperelliptic curve of genus g. In the case of oddq we
may assume thath = 0.
The group one uses is the ideal class group of a maximal order of the function field

Fqn(x, y)/(y
2+h(x)y−f (x)), denoted by Cl(C/Fqn). For applications, it is enough to

keep the following routine in mind: take the polynomial ringFqn [x, y] and replace any
occurrence ofy2 by −h(x)y + f (x), thus every element is of the shapea(x)+ b(x)y.
The ideal class group is the factor group of the fractional ideals by the principal
ideals.
For implementations, it is necessary to have a compact representation of the group

elements. Each nontrivial ideal class can be represented via an ordered pair of polynomi-
als [u(x), v(x)], u, v ∈ Fqn [x],degv < degu�g, u monic, that satisfyu|f − v2−hv.
To unify notation we represent the class of the principal ideals by[1,0]. Therefore,
each class can be represented by at most 2g coefficients and if one considers classes
in Cl(C/Fqm) then the coefficients are inFqm . The inverse of[u, v] equals[u,−h− v]
where the second entry is reduced modulou, hence, computing inverses can be per-
formed efficiently. To need less storage for a class one can recoverv from u and some
additional information (see[21,48]). In any case thekey length is cnglog(q) for some
small constantc depending on whether all users agree on the same curve or if the
curve has to be included in the key as well. For the group size one has

|Cl(C/Fqn)| = qng +O(qn(g−1/2)) (2)
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by the theorem of Hasse-Weil. Hence, the trade-off between group size and key length
is optimal.
By a Koblitz curvewe understand a curve defined over a small finite field which

is considered over a large extension field. More requirements on the curve for crypto-
graphic applications will be introduced later when the terminology is presented.

2.2. Frobenius endomorphism

In Fqn the Frobenius automorphism mapsx to xq . This operation is inherited by the
curve and by the ideal class group as well. The Frobenius endomorphism� operates
on the ideal classes via their representatives as�([u(x), v(x)]) = [�(u(x)),�(v(x))]
for u, v ∈ Fq [x], where�(

∑
uix

i) = ∑
u
q
i x
i . It satisfies a characteristic polynomial

in Z[T ] of degree 2g of the form

P(T ) = T 2g + a1T
2g−1 + · · · + agT

g + · · · + a1q
g−1T + qg. (3)

From P one can easily obtain the group order of the ideal class group for any finite
field extension. The complex roots�i of P(T ) have the following properties:|�i | = √

q,
�i+g = �i for an appropriate ordering and the group order of the ideal class group over
Fqn is given by

|Cl(C/Fqn)| =
2g∏
i=1
(1− �ni ).

To computeP(T ) it is enough to know the number of points on the curve over
Fq, . . . ,Fqg satisfying the defining equation of the curve. Forg = 1 we simply have
a1 = |C(Fq)| − q − 1 and for g = 2 it is a1 = |C(Fq)| − q − 1, a2 = (|C(Fq2)| −
q2−1+ a21)/2. Hence, for curves defined over small finite fields, computing the group
order poses no problem.
This is in contrast to the general case that for curves of genus>1 over fields of large

characteristic it is still inefficient to determine the group order for randomly chosen
curves. For genus two curves over prime fields the current record is held by Gaudry
and Schost[18], but they need≈1 week on a single machine to compute the group
order for a single curve overFp, log2p = 80.

2.3. Arithmetic inCl(C/Fqn)

As usual we write the group additively. To compute scalar multiples of an element,
doublings and general additions are needed. Cantor’s algorithm[4,23] performs the
group operations on the representatives[u, v]. Recently, very efficient explicit formulae
for the most frequent cases of addition and doubling were published (cf.[29] and the
references therein forg = 2 and[25,44] for g = 3). For elliptic curves such formulae
have long been known. Using the standard affine representation, these formulae involve
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field inversions inFqn . For g = 1 and odd characteristic, an addition of ideal classes
needs 1 inversion, 2 multiplications, and 1 squaring inFqn whereas a doubling needs
one more squaring. Forg = 2 we use 1 inversion, 3 squarings, and 22 multiplications
for a generic addition and 2 more squarings for a doubling, both independent of the
characteristic. Depending on the implementation environment it can be advantageous
to trade-off the inversions for more multiplications using different coordinates.
Note that the size of the finite field decreases with increase ofg if the group sizeqgn

remains fixed. For genus 3,qn can be represented within 64 bits for common security
requirements. This size of the finite field can be handled advantageously by some
computers. To compare the effects for different genera one must take into account the
costs of inversions relative to multiplications to find out for which system the arithmetic
is fastest.

3. Background on Koblitz curves

3.1. Elliptic curves overF2

The first attempt to use the Frobenius endomorphism to speed up the computation on
an elliptic curve was made by Menezes and Vanstone[37] using the curvey2+y = x3

over F2n . The characteristic polynomial of the Frobenius isP(T ) = T 2 + 2, thus
doubling is replaced by a two-fold application of the Frobenius endomorphism and
taking the negative. However, these curves are supersingular and therefore weak[34]. As
“the next best thing” Koblitz[24] suggested to use the remaining two nonsupersingular
curves defined overF2, namelyy2+xy = x3+ax2+1, a ∈ {0,1}. They are considered
as curves overF2n , where n is chosen large enough to achieve a group size of the
desired bit length. The characteristic polynomial of the Frobenius endomorphism is
P(T ) = T 2 + (−1)aT + 2.
The Frobenius endomorphism of the curve acts on a pointP = (x, y) ∈ F22n of the

curve C by mapping it to�(P ) = (x2, y2). If the ground field is represented via a
normal basis this operation is virtually for free as it is realized by a cyclic shift of the
field elements. Also for polynomial basis representations a squaring of all coordinates
is performed much faster than the whole addition formula (see[20] for a software
implementation).
Let � be a complex root ofP(T ). To use the fast-to-compute endomorphism� in

computingmP for an integerm, one expandsm to the base of� using the relation
2 = −(−1)a� − �2. Unfortunately this direct approach leads to expansions of twice
the bit-length ofm. Refinements have been obtained by Meier and Staffelbach[39]
and Solinas[46]. A very detailed study can be found in Solinas[47]. To reduce the
length of these expansions for a fixed extension fieldF2n , one reducesm in Z[�]
modulo (�n − 1)/(� − 1) and expands the resulting element. That is, one looks for an
elementM ∈ Z[�] that is equivalent tom modulo (�n − 1)/(� − 1) and which has a
shorter expansion. Furthermore, Solinas suggests to use a signed digit�-adic expansion
achieving an expression of lengthn (the degree of extension) and density13.
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3.2. Generalizations

For larger ground fields, such subfield curves have been studied by Müller[40] and
Smart[45]. In any case the field of definition is small such thatP(T ) can be computed
easily. The process of expanding is as described above, however, their studies are not
as detailed as Solinas’.
Already in his initial paper on hyperelliptic curves, Koblitz[23] suggested applying

the Frobenius endomorphism in computations of 2r -folds. Günther et al.[19] general-
ized the concept of Koblitz curves to larger genus curves and studied two curves of
genus two overF2. In [26] it has been shown that this approach works for any genus
and characteristic and this study has been detailed in[28].

4. Hyperelliptic Koblitz curves

The results of this section hold independently of the genus, characteristic, and size
of the ground field. However, we suggest restricting to really small fieldsFq , q�7 and
large prime order extensionsn. Additionally, we requireP(T ) to be irreducible over
Z.
The size of the ground field needs to be kept small as the number of precomputations

grows like qg. The degree of extension should be prime to get an almost prime group
order: due to|Cl(C/Fqn)| = ∏2g

i=1(1− �ni ) = ∏2g
i=1(1− �i )(1+ �i + · · · + �n−1i ) =

|Cl(C/Fq)|∏2g
i=1(1+ �i + · · · + �n−1i ) we cannot avoid having a cofactor of sizeqg,

any divisor ofn will lead to additional factors. Likewise a compositeP gives rise to
cofactors for any degree of extension. Furthermore, for composite or medium degree
extensions, Weil descent attacks[16,17,36] have to be taken seriously. Therefore, we
suggest to chooseq and n prime for cryptographic applications. For this article we
keep the arbitrary ground fieldFq as the results are true in general.
Let |Cl(C/Fqn)| = kl for a prime l. For cryptographic applications the cofactork

should not be significantly larger than the inevitable factor|Cl(C/Fq)| from the ground
field. From the Hasse–Weil bound (2) we can hope forl ≈ qg(n−1). Furthermore, we
assume thatl is large such thatl2�|Cl(C/Fqn)|.
As supersingular curves are always weak under the Frey-Rück attack (cf.[14,15])

we suggest to avoid these curves for usual applications in DL systems. In any case
one needs to check that for the minimal� satisfying l|qn� − 1 we have� > 2000

n log2 q
.

However, supersingular curves and—more generally—curves with small� can be
useful in pairing-based cryptosystems and the speed-up obtained from the Frobenius
endomorphism can be exploited there as well.

Example 1. Over F2 we can classify up to isogenies the nine classes of hyperelliptic
curves of genus 2 given by an equation of form (1) with irreducibleP(T ), which are
given in Table1.
The first five examples were given in Koblitz[23]. Besides the first three

classes these curves are nonsupersingular. The fourth and fifth case were studied by
Günter et al.[19].
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Table 1
Binary curves of genus 2

Equation ofC P(T )

y2 + y = x5 + x3 T 4 + 2T 3 + 2T 2 + 4T + 4
y2 + y = x5 + x3 + 1 T 4 − 2T 3 + 2T 2 − 4T + 4
y2 + y = x5 + x3 + x T 4 + 2T 2 + 4
y2 + xy = x5 + 1 T 4 + T 3 + 2T + 4
y2 + xy = x5 + x2 + 1 T 4 − T 3 − 2T + 4
y2 + (x2 + x)y = x5 + 1 T 4 − T 2 + 4
y2 + (x2 + x + 1)y = x5 + 1 T 4 + T 2 + 4
y2 + (x2 + x + 1)y = x5 + x T 4 + 2T 3 + 3T 2 + 4T + 4
y2 + (x2 + x + 1)y = x5 + x + 1 T 4 − 2T 3 + 3T 2 − 4T + 4

Group orders and characteristic polynomialsP(T ) for all Koblitz curves of genus
�4 over Fq with q�7 can be found in[27].

4.1. Expansions to the Base of�

Like before let P(T ) denote the characteristic polynomial of the Frobenius en-
domorphism and let� be one of its complex roots. To make use of the Frobenius
endomorphism we need to be able to representmD as a linear combination of the
�i (D) with bounded coefficients. This is equivalent to expandingm to the base of� as
m = ∑l

i=0 ri�i , where theri ∈ R for a set of coefficientsR to be defined later. If one
precomputesrD for all occurring coefficientsr ∈ R then the computation ofmD is
realized by applications of the Frobenius endomorphism, table-look-ups and additions
of ideal classes whenever the coefficient is nonzero.
The elements ofZ[�] are of the formc = c0 + c1� + · · · + c2g−1�2g−1 with ci ∈ Z.

By (3), � satisfies a polynomial of degree 2g with constant termqg. Thus one can
replace the computation ofqgD by qgD = −(qg−1a1�(D) + qg−2a2�2(D) + · · · +
ag�g(D) + · · · + a1�2g−1(D) + �2g(D)). But this need not be faster than comput-
ing qgD by the usual method of double-and-add. Still it is the clue observation used
in expanding an integer. To compute the expansion we need a division by� with
remainder.

Lemma 2. c = c0+c1�+· · ·+c2g−1�2g−1 ∈ Z[�] is divisible by� if and only if qg|c0.

Proof. �|c ⇔

c = �c̃ = �(c̃0 + c̃1� + · · · + c̃2g−1�2g−1)

= c̃0� + c̃1�2 + · · · + c̃2g−2�2g−2 − c̃2g−1(qg + a1q
g−1� + · · · + a1�2g−1)

= −c̃2g−1qg + c1� + · · · + c2g−1�2g−1 ⇔ qg|c0. �
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Accordingly the set of coefficientsR must include a complete set of remainders
moduloqg to allow an expansion. Since taking the negative of a class is essentially for
free we will useR = {0,±1,±2, . . . ,±� qg−12 �} as minimal set of remainders. Note
that we would not need to include−qg/2 in the case of even characteristic. But as we
get it for free we will make use of it.
We now derive a�-adic expansion ofm ∈ Z. Put r0 ≡ m mod qg for r0 ∈ R, d1 =

(m − r0)/q
g, r1 ≡ −d1a1qg−1 mod qg for r1 ∈ R, and d2 = (−d1a1qg−1 − r1)/q

g.
Then

m = r0 +m− r0 = r0 + d1q
g

= r0 − d1(q
g−1a1� + qg−2a2�2 + · · · + ag�g + · · · + a1�2g−1 + �2g)

= r0 + �(−d1qg−1a1 − d1q
g−2a2� − · · · − d1ag�g−1 − · · · − d1a1�2g−2 − d1�2g−1)

= r0 + r1� + �(d2qg − d1q
g−2a2� − · · · − d1ag�g−1 − · · · − d1a1�2g−2 − d1�2g−1)

= r0 + r1� + �2(. . .).

The expansions derived by repeatedly applying this process with minimal remainders
|ri |�� qg−12 � might become periodic in some cases. We study this question in Sec-
tion 4.3. In the following algorithm we assume thatR has been chosen to contain
a complete set of remainders and some further coefficients if necessary. Furthermore,
later on in the text we shall impose conditions to achieve a sparse representation and
therefore we will use different choices of the set of coefficientsR depending on the
structure ofP(T ).
Now we state the algorithm for expanding an element ofZ[�] to the base of�.

Note that at the moment we would only need to represent integers, but in the further
sections we will reduce the length of the representation. Thereby we stumble over this
more general problem:

Algorithm 1.
INPUT: c = c0 + c1� + · · · + c2g−1�2g−1, P(T ), a suitable set R.

OUTPUT:r0, . . . , r�−1 with c = ∑�−1
i=0 ri�i , ri ∈ R.

(1) Put i := 0;
(2) While for any0�j�2g − 1 there exists ancj �= 0 do

if qg|c0 chooseri := 0;
else chooseri ∈ R with qg|c0 − ri ;

/*possibly taking into account further requirements/*
/* in even characteristic chooseri = c0 if |c0| = qg/2/*

d := (c0 − ri)/q
g;

for 0�j�g − 1 do
cj := cj+1 − aj+1qg−j−1d;

for 0�j�g − 2 do
cg+j := cg+j+1 − ag−j−1d;
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c2g−1 := −d;
i := i + 1;

(3) output (r0, . . . , ri−1).

4.2. On the finiteness of the representation

We now consider the finiteness of the�-adic representations and establish the depen-
dence of the length on an expression involvingm in case of a finite representation. We
show that for any curve the expansions are either finite or periodic and provide a way
to find out what happens for a given individual curve and how to deal with periods.
For the original instance of elliptic Koblitz curves overF2, the ringZ[�] was Eu-

clidean, this allowed an easy proof that the resulting expansion was finite. For elliptic
curves over fieldsF2r with small r Müller [40] shows that the remainder of the ex-
pansion decreases in each step with respect to a certain norm and then shows that
there are only finitely many elements of such a small norm and that they all allow a
finite expansion. In our more general case the number theoretic norm as the product
over all conjugates does not satisfy the Triangle inequality. Therefore, to investigate
the finiteness we now consider a 2g dimensional lattice associated to the elements of
Z[�].
Let �1, . . . , �g be theg independent roots ofP and take the set of elements

� :=



2g−1∑
j=0

cj�
j
1, . . . ,

2g−1∑
j=0

cj�
j
g


 : cj ∈ Z


 .

These elements form a lattice inCg, since the sum of any two and integer multiples of
the vectors are in�. Since the polynomialP is irreducible the lattice has full dimension
2g. We now investigate the norm1 of vectors in this lattice, where the norm is given
by the usual Euclidean norm ofCg

N : (x1, . . . , xg) �→
√

|x1|2 + · · · + |xg|2,

where | . | is the complex absolute value. We can also consider this lattice as a 2g

dimensional lattice overR by the usual representation ofC asR2.
By abuse of notation we writeN (c) for c = c0 + c1� + · · · + c2g−1�2g−1 and speak

of the norm ofc since these vectors are parameterized by the integersc0, . . . , c2g−1.

1 There are two notions of length—the length of the�-adic expansion and the norm of the vector,
which is often referred to as (Euclidean-)length in the literature. We hope not to confuse the reader and
use norm in the second case.
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Thus thenN (c) reads

N (c) =

√√√√√ g∑
i=1

∣∣∣∣∣∣
2g−1∑
j=0

cj�
j
i

∣∣∣∣∣∣
2

.

Now we study the behavior of the norm of the remainders during the expansion ofc.
Showing that the norm decreases down to a certain limit will be the important step to
prove the following theorem:

Theorem 3. Let C be a hyperelliptic curve of genus g and let� be a root of the charac-
teristic polynomial of the Frobenius endomorphism. Then the expansion ofc = c0+c1�+
· · ·+c2g−1�2g−1 ∈ Z[�] to the base of� with coefficients inR = {0,±1, . . . ,±� qg−12 �}
is either finite or becomes periodic.

Proof. We first show that for elements of bounded norm the expansion cannot lead
to a remainder with larger norm than that bound. Showing that the expansion of any
element leads to a remainder of norm bounded by that constant concludes the proof.
Let N (c) <

√
g

qg

2(
√
q−1) (respectively<

√
g

qg+1
2(

√
q−1) for even characteristic). Then

using the Triangle inequality onc = r + c − r =: r + c′�, c ≡ r modqg, we get
N (c′�)�N (c) + N (r)�N (c) + √

g(qg − 1)/2 (respectivelyN (c) + √
gqg/2) and

N (�c′) = √
qN (c′). Now direct calculation shows thatN (c′) is bounded by the same

constant.
Since we consider a discrete lattice, the number of elements with bounded norm is

finite. Thus the expansion of these elements of bounded norm either ends after hitting
at most one time all these elements or runs into a cycle since the choice of ther—and
therefore the next elementc′—is unique for givenc. Hence, for these elements the
expansion is either periodic or finite.
The following two lemmata show that expanding an elementc to the base of� leads

to an elementc′ with N (c′)<√
g

qg

2(
√
q−1) (or <

√
g

qg+1
2(

√
q−1) in even characteristic) after

at most 2 logq
2(

√
q−1)N (m)√

g
+ 1 steps concluding the proof. �

Later we shall refer to an algorithm to find these elements of small norm and show
how to recognize periods and how to avoid them. Hence the problem is solved in
practice.

Lemma 4. Let q be odd. For everym ∈ Z[�] we have a unique expansionm =∑�−1
i=0 ri�i +m′��, where ri ∈ {0,±1,±2, . . . ,± qg−1

2 },

N (m′) < √
g

qg

2(
√
q − 1)

and ��
⌈
2 logq

2(
√
q − 1)N (m)√

g

⌉
.
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Proof. Putm0 := m. The expansion ofm to the base of� leads to

m0 = r0 +m1� = r0 + r1� +m2�2

=
j−1∑
i=0

ri�i +mj�j ,

where by Lemma2 the ri ∈ {0,±1,±2, . . . ,± qg−1
2 } are uniquely determined.

The Triangle inequality forN leads to
√
qN (mj )�N (mj−1) + N (rj−1)�

N (mj−1)+ √
g
qg−1
2 . Hence,

N (mj ) � N (m0)+ √
g(qg − 1)/2

∑j−1
i=0 qi/2

qj/2

<
N (m0)

qj/2
+ √

g
qg − 1

2(
√
q − 1)

.

If we choosej�2 logq
2(

√
q−1)N (m0)√

g
, then N (m0)

qj/2
�

√
g

2(
√
q−1) and the claim follows.

�

For even characteristic we proceed similarly.

Lemma 5. Let q be even. For everym ∈ Z[�] we have an expansionm = ∑�−1
i=0 ri�i+

m′��, where ri ∈ {0,±1,±2, . . . ,± qg

2 },

N (m′) < √
g

qg + 1

2(
√
q − 1)

and ��
⌈
2 logq

2(
√
q − 1)N (m)√

g

⌉
.

Proof. Putm0 := m. The expansion ofm to the base of� leads to

m0 = r0 +m1� = r0 + r1� +m2�2

=
j−1∑
i=0

ri�i +mj�j ,

where theri ∈ {0,±1,±2, . . . ,± qg

2 } are given like in Algorithm1.
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The Triangle inequality forN leads to
√
qN (mj )�N (mj−1) + N (rj−1)�

N (mj−1)+ √
g
qg

2 . Hence,

N (mj ) � N (m0)+ √
gqg/2

∑j−1
i=0 qi/2

qj/2

<
N (m0)

qj/2
+ √

g
qg

2(
√
q − 1)

.

If we choosej�2 logq
2(

√
q−1)N (m0)√

g
then N (m0)

qj/2
�

√
g

2(
√
q−1) and the claim follows.

�

From the lemmata we see that the length of the expansion depends mainly on
N (m). They leave open to study the length of expansions of elements of norm less
thanKq,g := √

g
�qg/2�+1/2√

q−1 .

Remark 6. For elliptic curves, Müller[40] and Smart[45] followed this approach to
give bounds on the length of the Frobenius expansions. There, the norm readsN (c)2 =
c20 − a1c0c1 + qc21 and the bounds on the remaindersN (m′) = N (m′

0 + m′
1�) from

Lemmas4 and5 can be translated to explicit bounds on them′
i . After at most 3 further

expansion steps the remainder is zero unless in the case of the pairs(q, a1) equal to
(5,±4) and (7,±5), where the expansion becomes periodic on input±(q + 1)/2. The
easy way out in these cases is to include±(q + 1)/2 in the set of coefficients, using
an additional precomputation and a little further space.

For arbitrary genus, one can state the normN explicitly in the coefficients of the
polynomialP(T ) and express it in terms of the coefficientsc0, . . . , c2g−1. This can be
done using the symmetric functions in the�i and with the help of the formulae derived
for computing the number of points on Koblitz curves in[28].

Example 7. For g = 2 we have forc = c0 + c1� + c2�2 + c3�3

N (c)2 = 2c20 − a1c0c1 + (a21 − 2a2)c0c2 − (a31 − 3(a1a2 − a1q))c0c3

+2qc21 − a1qc1c2 + (a21 − 2a2)qc1c3

+2q2c22 − a1q
2c2c3

+2q3c23.

For g = 3 we have forc = c0 + c1� + c2�2 + c3�3 + c4�4 + c5�5

N (c)2 = 3c20 − a1c0c1 + (a21 − 2a2)c0c2 − (a31 − 3(a1a2 − a3))c0c3

+(a41 − 4(a21a2 − a1a3 + a2q)+ 2a22)c0c4
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−(a51 − 5(a31a2 − a21a3 − a1a
2
2 + a1a2q + a2a3 − a1q))c0c5

+3qc21 − a1qc1c2 + (a21 − 2a2)qc1c3 − (a31 − 3(a1a2 − a3))qc1c4

+(a41 − 4(a21a2 − a1a3 + a2q)+ 2a22)qc1c5 + 3q2c22 − a1q
2c2c3

+(a21 − 2a2)q
2c2c4 − (a31 − 3(a1a2 − a3))q

2c2c5 + 3q3c23 − a1q
3c3c4

+(a21 − 2a2)q
3c3c5 + 3q4c24 − a1q

4c4c5 + 3q5c25.

In generalN (c)2 is a quadratic form in the 2g variablesc0, . . . , c2g−1. The coefficient
of c2i is gq

i and of cicj , i < j is qi(q� + 1− |C(Fq�)|), where � = j − i. Due to
its origin in the interpretation as Euclidean norm in a lattice,N 2 is a positive definite
quadratic form.
Experiments show that an element of norm bounded byKq,g has an expansion of

length at most 2g + 1 or becomes periodic. We did not succeed in proving this for
arbitrary curves (see[28] for detailed study forg = 2). However, for each specific
curve one can easily determine an upper bound on the length of the expansion:
Finke and Pohst[10] provide an algorithm for finding all vectors of norm bounded

by a constantK in a lattice inRs , respectively for finding all arrays(x0, . . . , xs−1)
for which the value of the corresponding quadratic form ins variables is less thanK.
This allows to determine the complete set of elements of small norm. They prove the
following upper bound on the number of elements of norm bounded byK:

(2�K1/2� + 1)

(�4K� + s − 1

�4K�
)
.

Thus for our constantKq,g we have at mostO
(
(
√
g

qg√
q−1)

(4g−1)/2
)
vectors of small

norm. This bounds the maximal length of the expansion in the nonperiodic case, and
also the length of the period.
We use the algorithm to find all elements of small norm for individual curves. For

each of them we compute the expansion. These experiments show that for each such
elementc = c0 + · · · + c2g−1�2g−1 of small norm we haveci ∈ R for 1�g�2g −
1 and |c0|�qg, and if c0 �∈ R the other coefficients are fairly small. If no pe-
riods occur then every such element has an expansion of length at most 2g + 1,
thus either allci ∈ R or the next remainder in the expansion has all coefficients
in this set. Hence, the above bound is appropriate for the number of elements of
small norm, however, the expansions are by far shorter than hitting each element
once.
Together with Theorem3 and Lemmas4 or 5 respectively, this allows to sum up

the result in the nonperiodic case.
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Summary 1. Let P(T ) be such that no periodic expansions occur. Then the length of
the expansion of m with coefficients in R is bounded by

�2 logq
2(

√
q − 1)N (m)√

g
� + kq,g,

wherekq,g is the maximal length of an element of norm< Kq,g.

Our observations and experiments stress thatkq,g = 2g+ 1 is a good upper bound.

4.3. Periodic expansions

One argument that can be used in the proof of the finiteness in the elliptic curve
case is that periods of length larger than one (except for a change of sign) cannot
occur since otherwise the coefficientsc0 and c1 would be larger than allowed. Now
we investigate in which situations periods can occur at all. For the elliptic curve case
the expansion can become cyclic only if|a1|−1> (q−1)/2 thus forq < 14. For odd
characteristic these are just the cases where we included a further coefficient. For even
characteristic it was shown in[40] by Müller that we always obtain a finite expansion
if we use the setR as given above.
For curves of larger genus the situation is a bit different. First of all—although

obvious from the experiments and motivated by the detailed example in[28] for the
genus 2 case—we have no proof how large the coefficients ofc with N (c) < Kq,g
can get, but we can obtain some information as well, which makes it easy to check
for periods for an individual curve.
In the following we assume thatR consists of a complete set of remainders modulo

qg. For larger setsR′ similar observations hold.
The first observation is that each element in the period must have norm less than

Kq,g as otherwise we know that the norm decreases.

4.3.1. Period length one
Assume that for a curve withP(T ) = T 2g+a1T 2g−1+· · ·+agT g+· · ·+a1qg−1T+qg

we have that

c = c0 + c1� + · · · + c2g−1�2g−1

= r0 ± �(c0 + c1� + · · · + c2g−1�2g−1)

with r0 ∈ R andN (c)2 < K2
q,g. Without loss of generality we assume thatc0 > 0 and

thereforec0 > �(qg − 1)/2� = rmax. Put d = (c0 − r0)/q
g ∈ Z>0.

The rules for expanding an element lead to a system of equations

± ci = ci+1 − dai+1qg−i−1 0� i�g − 1,
± ci = ci+1 − da2g−1−i g� i�2g − 2,
± c2g−1 = −d,
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where the signs are assumed simultaneously. If this system can be fulfilled for a curve
with the positive sign for(c0, c1, . . . , c2g−1) then the equations hold for the quadratic
twist of the curve with the opposite sign and the above coefficient vector with alternating
signs. Thus we restrict ourselves to the case of positive sign. Inserting all equations in
the one forc0 yields

c0 = −d − da1 − · · · − dag − dag − 1q − · · · − da1q
g−1,

thus c0 = dqg − d|Cl(C/Fq)|. Inserting the definition ofd we obtain

r0 = −d|Cl(C/Fq)|.

Since bothd and |Cl(C/Fq)| are nonnegative andr0 ∈ R the crucial part to be fulfilled
for either the curve or its twist is�(qg −1)/2��d|Cl(C/Fq)|. Since a lower bound on
the class number is given by the Theorem of Hasse-Weil (2), q andd have to be such
that �(qg − 1)/2��d(√q − 1)2g, i.e. q must be small enough.
We have just shown

Theorem 8. Let C be a hyperelliptic curve overFq of genus g. An expansion using
the set of remainders R with maximal coefficientrmax can be periodic of period length
1 up to change of sign only if

rmax� |Cl(C̃/Fq)|,

where C̃ is either the curve or its quadratic twist. If in this case the period starts a
somec ∈ Z[�], thenN (c) < Kq,g. One needs to include±d(qg − |Cl(C̃/Fq)|) into R
for all 1�d�rmax/|Cl(C̃/Fq)| to guarantee finite expansions.

For a given curve it is again fairly easy to check whether the expansion can run
into a cycle at all by applying the bound of Theorem8. Furthermore, it shows which
additional coefficients might have to be included in the setR. Using the algorithm
of Finke and Pohst we can compute all elements of such a small norm and expand
all these elements to the base of�. This shows that not all the curves for which the
inequality of the theorem holds lead to cyclic expansions. In case this happens, we just
need to use the additionally included coefficients instead of the whole period that would
follow. Thus if we choose such a curve for implementation we need to precompute
and stored more elements. Sinced and q are bounded by relatively small constants,
the time for this further precomputation can be neglected.

Example 9. Putg = 2, q = 3. Among all the isogeny classes of curves with irreducible
P(T ) only P(T ) = T 4± 2T 3+ 2T 2± 6T + 9, P(T ) = T 4± T 3− 2T 2± 3T + 9, and
P(T ) = T 4± 3T 3+ 5T 2 ± 9T + 9 lead to periods. The coefficients to include are±5
in the first two cases and±6 in the last one.
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Example 10. In the case of even characteristic the situation is even a bit more relaxed.
If we choose coefficients from{0,±1, . . . ,±qg/2− 1, qg/2} unlessc0 = −qg/2 (cf.
Algorithm 1) then for all classes of curves of genus two overF2 (see Tabular1) the
expansions are finite.
Even though we do not propose the ground fieldF4 we checked all possible curves.

We run into a cycle only forP(T ) = T 4 ± 4T 3 + 9T 2 ± 16T + 16. To deal with this
we include±10 in the set of coefficients.

4.3.2. Longer periods
Here one can follow the same approach allowing more quotientsdi . A necessary

condition to have a period of length 2 is that

−(d0 + d1)|Cl(C/Fq)| = r0 + r1

can be fulfilled forr0, r1 ∈ R.
For d0 = −d1 we getr0 = −r1, i.e. the case of period length one with a change of

sign.
In the other cases we see as well, thatd1 and d0 are of the same order and that

both andq have to be reasonably small. On the other hand except ford0 = −d1 = 1
this did not occur in the experiments and the same holds for periods of higher order.
Again this can be explained by the bounds on the coefficients. If we have|c0| <√
qrmax and |ci | ∈ R, i�1, thend0 < (

√
q + 1)/2 and |d1| < 1+ g + 1/

√
q in the

worst case.
We did not get any longer periods.

4.3.3. Different strategies
A different way to proof the finiteness of such expansions can be extended from

Lesage[32]. He investigates expansions to the base�, where� is a root of a quadratic
polynomial overZ and the set of remainders is of cardinality|�|2, symmetric to 0. He
uses difference equations to prove the finiteness and succeeds in general for the case of
nonreal roots (except some cases where one obtains periods). For a special polynomial
he computes the expected length of the expansion as well. The approach generalizes to
the kind of polynomials considered here due to the symmetry ofP(T ) but again the
expressions for the general case involving theai cannot be handled. Like before it is
possible to get bounds for an individual curve with explicit coefficients.

4.4. Reducing the length of the expansion

The strategy explained so far would lead to expansions of length 2 logq m ≈ 2ng—
thus expansions that are 2g times as long as aqg-adic expansion which mitigates
the advantage of using the Frobenius. Thus, actually one does not expandm itself
but looks for an elementM ∈ Z[�] having a short expansion andMD = mD for all
D ∈ Cl(C/Fqn). Once we decide to use such a curve we need to fix the fieldFqn ,
i.e. the degree of extension. This gives us the additional equation�n = 1. (Note that
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for a ∈ Fqn we haveaq
n = a and the application of the Frobenius endomorphism on

the ideal classes does nothing but raising field elements to the power ofq.) Therefore,
if M ≡ m mod (�n − 1) thenMD = mD for D ∈ Cl(C/Fqn) and we can choose an
equivalentM with a short expansion.

Remark 11. Note that for a fixed extension field,� satisfies two equations. Since we
consider only irreducible polynomialsP and since the constant term ofP is qg �= ±1,
the polynomialsP(T ) andT n−1 are co-prime. Thus their gcd overQ[T ] is one. But
we are working inZ[T ]. The ideal generated by these polynomials is a principal ideal
generated by an integer (since the gcd overQ[T ] is 1). In fact this number is equal
to the cardinality of the ideal class group overFqn .

Namely, writeP(T ) = ∏2g
i=1(T − �i ). Then in the ideal under consideration we have

T n = 1. TransformingT → T n we have to evaluate

2g∏
i=1
(T n − �ni )|T n=1 =

2g∏
i=1
(1− �ni ) = |Cl(C/Fqn)|,

which is indeed the class number.
To rephrase this, modulo|Cl(C/Fqn)| these polynomials have a common linear factor.

Hence, if we consider only the cyclic group of orderl, the polynomials have a common
factor T − s in Fl[T ], where l is a prime factor of|Cl(C/Fqn)|. This means that
the operation of the Frobenius endomorphism on an ideal class corresponds to the
multiplication of the ideal class by the integers modulo l.

In the applications one usually restricts the computations to a subgroup of large prime
order. Let l||Cl(C/Fqn)| be a large prime such thatl2�|Cl(C/Fqn)|. Then we can even
look for elements equivalent tom modulo (�n−1)/(�−1) = �n−1+ �n−2+ · · · + �+1
as the Frobenius endomorphism cannot correspond to the identity.
In this section we prove the following theorem:

Theorem 12. Let � be a root of the characteristic polynomialP(T ) of the Frobenius
endomorphism of the hyperelliptic curve C of genus g defined overFq . Consider the
curve overFqn and letm ∈ Z. There is an elementM ∈ Z[�] such that
(1) m ≡ M mod (�n − 1)/(� − 1)
and
(2) 2 logq

2(
√
q−1)N (M)√

g
< n+ 2g,

whereN denotes the norm defined in the previous section.

The proof is constructive, thus it provides a way to compute such an elementM. Let
us fix some notation which shall be useful for the proof and to state the algorithms.
For an elementQ ∈ Q let z =nearest (Q) be the nearest integer toQ, if ambiguity
arises it is defined to be the integer with the least absolute value. This can be realized
computationally by choosingz = �Q − 0.5� if Q > 0 and z = �Q + 0.5� else. We
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will also use nearest (.) for elements ofQ[�] where it is understood coefficient-
wise.

Proof. In the fieldQ[�] one can invert elements. Thus, putQ := m(� − 1)/(�n − 1) ∈
Q[�], soQ = ∑2g−1

i=0 Qi�i whereQi ∈ Q. For 0� i�2g−1 put zi = nearest (Qi)

and put

z :=
2g−1∑
i=0

zi�i and M := m− z(�n − 1)/(� − 1).

Thus it is easy to see thatm ≡ M mod (�n − 1)/(� − 1). To compute the value

N (M) = N
(
m− z(�n − 1)

(� − 1)

)
= N

(
�n − 1

� − 1

(
m(� − 1)

�n − 1
− z

))

we need an estimate onN (
m(�−1)
�n−1 − z) = N (Q− z).

N (Q− z) =

 g∑
j=1

∣∣∣∣∣∣
2g−1∑
i=0

(Qi − zi)�ij

∣∣∣∣∣∣
2



1
2

�


 g∑
j=1


2g−1∑
i=0

|(Qi − zi)�ij |


2



1
2

�


 g∑
j=1


1
2

2g−1∑
i=0

√
q
i



2



1
2

=

 g∑
j=1

( √
q2g − 1

2(
√
q − 1)

)2
1
2

= √
g

qg − 1

2(
√
q − 1)

.

Therefore we have

N (M) = N
(

�n − 1

� − 1

(
m(� − 1)

�n − 1
− z

))
�

n−1∑
i=0

N
((

m(� − 1)

�n − 1
− z

)
�i
)

=
n−1∑
i=0

(√
g

qg − 1

2(
√
q − 1)

qi/2
)

= √
g

qg − 1

2(
√
q − 1)

√
qn − 1√
q − 1

.

It follows that

2 logq
2(

√
q − 1)N (M)√

g
�2 logq

(√
qn − 1√
q − 1

)
+ 2 logq(q

g − 1) < n+ 2g. �
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Remark 13. The usage ofnearest might not be the best choice, nevertheless it
provides an efficient way to compute a length-reduced representation which works for
every genusg, ground fieldFq , and degree of extensionn. For the two binary elliptic
curves, Solinas investigates in more detail an optimal way of reduction. Considering
the lattice spanned by{1, �} he shows that for each element ofQ[�] there is a unique
lattice point within distance less than 4/7. For larger genera the computation of the
nearest point is computationally hard to realize and we do not lose much choosing the
“rounded” elements the way presented here.

Thus from the discussion of Section4.2 we have the following result:

Theorem 14 (Main result on the length). Let C be a hyperelliptic curve overFq of
genus g and with characteristic polynomial of the Frobenius endomorphismP(T ). Let
P be such that the�-adic expansion is not periodic and that for an element c ofZ[�]
of norm< Kq,g the �-adic expansion is no longer than2g + 1. Then we have:
For every elementm ∈ Z we can compute a�-adic expansion of length� using

coefficients in the set R only, where

��n+ 4g + 1.

The remainder of this section is devoted to computational aspects. One first needs
to compute(�n − 1)/(� − 1) and its inverse inQ[�], which is doneonly once for
C and n. The computations are performed using recurrence sequences. To derive the
inverse inQ[�] one uses the extended Euclidean algorithm. IfC and n are system
parameters these elements can be computed externally and stored on the device as they
are independent of the chosen ideal classes. In Section5 we state a way to circumvent
this, see also Remark15.
First of all one needs the representation of(�n − 1)/(� − 1) in Z[�].

Algorithm 2.
INPUT: n ∈ N, P(T ).
OUTPUT:e0, . . . , e2g−1 ∈ Z such that(�n − 1)/(� − 1) = e0 + e1� + · · · + e2g−1�2g−1
in Z[�].

(1) initialize: d0 := 1 and di := 0 for 1� i�2g − 1;
e0 := 1 and ei := 0 for 1� i�2g − 1;

(2) for 1�j�n− 1 do
(a) dold := d2g−1;
(b) for 2g − 1� i�g do

di := di−1 − a2g−idold;
ei := ei + di ;

(c) for g − 1� i�1 do
di := di−1 − aiq

g−idold;
ei := ei + di ;
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(d) d0 := −qgdold;
e0 := e0 + d0;

(3) output (e0, e1, ..., e2g−1).

Consideringe(T ) = ∑
eiT

i we can inverte moduloP(T ) in Q[T ] by the extended
Euclidean Algorithm, as for gcd(e, P ) = ee′ +PP ′ one hase′ ≡ e−1 modP . For fixed
genus and hence degree of the involved polynomials, this can be made explicit.
We now present the algorithm for computing scalar multiples as a whole.

Algorithm 3 (Computation of m-folds using�-adic expansions).
INPUT: m ∈ Z,D = [u, v], u, v ∈ Fqn [x], P(T ), R (appropriate set of

coefficients), e = (�n − 1)/(� − 1), e′ ≡ e−1 modP .
OUTPUT:mD represented by the reduced idealH = [s, t], s, t ∈ Fqn [x].
(1) /*precomputation*/

(a) for i ∈ R, i > 0 compute
D(i) := iD; /* use double-and-add and previous computations*/
D(−i) := −D(i);/* for free, can also be computed fromD(i)

when used*/
(2) /*compute m modulo(�n − 1)/(� − 1) using e ande′*/

(a) computez(T ) :=nearest (m · e′(T ));
(b) let M = ∑2g−1

i=0 MiT
i :≡ m− e(T ) · z(T ) modP(T );

(3) /*compute the�-adic representation of M*/
use Algorithm1 to compute expansion ofM = ∑�−1

j=0 rj�j ;
(4) /* compute m-fold of D;*/

(a) initialize H := D(r�−1);
(b) for � − 2� i�0 do
(i) H := �(H); /* this means cyclic shifting*/
(ii) if ri �= 0 then

H := H +D(ri); /* one table-look-up, one addition*/
(c) output (H).

Step 1 needs to be performed only once per curve and base-pointD, so in some
applications one saves the precomputed points on the device and skips this step.

Remark 15. Arithmetic in Q has high system requirements. Therefore, for binary el-
liptic curves, Solinas[47] proposespartial modular reduction. Instead of computing
M ∈ Z[�] of minimal norm he obtains an elementM ′ ≡ m mod (�n−1)/(�−1) which
might have a slightly longer expansion but the computations involve only truncated
divisions by powers of 2 which can easily be realized in soft- and hardware. For the
particular curves he considers one can explicitly state the group order as an expression
of the degree of extensionn and therefore find appropriate denominators giving a good
approximation.
In our general case this is not possible, but one can work with an arbitrary good

approximationẽ′ of e′ in which all denominators are powers of two. The idea of Solinas
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to use the number theoretic norm can be generalized to computing

(�1 − 1)

(�n1 − 1)
=

2g∏
i=1

(�i − 1)

(�ni − 1)

2g∏
i=2

(�ni − 1)

(�i − 1)
= (kl)−1

2g∏
i=2

(�ni − 1)

(�i − 1)
.

Thus, one can also precompute a Barrett-inversion ofkl and get the inversion by
multiplications and modular reductions.
Note that in any case the resulting̃M will still be in the same class asm since

M̃ = m− (�n − 1)/(� − 1)·nearest
(∑2g−1

i=0 mẽ′i�i
)

≡ m mod (�n − 1)/(� − 1).

4.5. Complexity and comparison

The estimates for the complexity are given as number of group operations. Using
precomputations as suggested one only needs to use additions. If the elements are
represented with respect to a normal basis then�(D) can be computed for free. Thus
we ignore these operations in the following.
By Theorem14 the length of a�-adic expansions is normally bounded byn+4g+1

in the nonperiodic case. Furthermore, the experiments show that even a bound ofn+4
is sufficient for the range ofq and g considered here.
The second important characteristic for the complexity is the density� of the expan-

sion. By density we mean the number of nonzero coefficients divided by the number
of coefficients. Thus� times the length gives the number of additions needed.
We first consider the minimal setR = {0,±1, . . . ,±�qg/2�}. A zero-coefficient

occurs with probability 1/qg, therefore the asymptotic density is(qg − 1)/qg < 1.
Certainly all usual (signed) windowing methods carry through to�-adic windows, thus
if one precomputes all multiplesr0D + r1�(D) + · · · + rw−1�w−1(D), ri ∈ R, r0 �= 0
the density reduces to(qwg − 1)/(wqwg) on average for fixed windows and to even
less for sliding ones. Thus one can trade-off storage for larger speed-up. Depending on
the curve one can also use other sets of coefficients, see[19,28] for details.
These numbers need to be compared to the usual arithmetic. Using binary double-

and-add the number of operations is32 log2m ∼ 3
2gn log2 q and using a NAF ofm it

still is ∼ 4
3gn log2 q.

Summary 2. If we disregard storage and time for precomputations and assume a�-
adic expansion of length≈ n+ 2g + 1, the speed-up factor is approximately

3gqg log2 q

2(qg − 1)
> 1.5g

compared to the binary expansion and

4gqg log2 q

3(qg − 1)
> 1.3g
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Table 2

g Binary �-adic,w = 1 Speed-up Binary �-adic, w = 2 Speed-up factor
window factor window

2 11/4n 3/4n 11/3 31/12n 3/7n 217/36∼ 6
3 31/8n 7/8n 31/7 573/160n 7/15n 1719/224∼ 7.6
4 79/16n 15/16n 79/15 1023/224n 15/31n 10571/1120∼ 9.4

Table 3

g wbin Binary �-adic, w = 1 Speed-up wbin Binary �-adic, w = 2 Speed-up
window factor window factor

2 4 47/8n 24/25n 6 9 6n 24/49n 12
3 7 511/64n n 8 13 8n 124/249n 16
4 9 10n n 10 18 10n 1/2n 20

compared to the NAF expansion, both for the minimal set of coefficients and for n
large compared to g and q.

Precomputations and signed digit expansions cannot be taken into account in a general
formula, as it is a bit tricky to allow the same number of precomputations. We state
q = 2 and 5 as examples allowing windows of length at most 2. Tables2 and 3 list
the average number of group operations to compute a scalar multiple using a signed
digit windowing method and using the Frobenius endomorphism. Forq = 2 andw = 1
the corresponding binary system is allowed to use a window of widthg, for w = 2 a
width of 2g − 1 is more than fair.
For q = 5 we cannot directly express the widthwbin for the binary method as a

function in g, thus we include this parameter in the table. Entries may be rounded to
nearest integer.

4.6. Disadvantages

So far we have seen how to speed up the computation ofm-folds on Koblitz curves.
Certainly an attacker can also make use of the Frobenius endomorphism—first of all
to speed up his computations. Furthermore, algorithms like Pollard’s rho method allow
to consider equivalence classes under the Frobenius endomorphism as “one element”
(see [8,50] as the concepts generalize to hyperelliptic curves easily). This leads to a
speed-up by a factor of

√
n for Pollard’s method. Thus allowing slightly larger field

extensionsn is enough to deal with this potential weakness.
The choice of Koblitz curves implies that one needs precomputations unlessg =

1, q = 2 to obtain the described performance. Furthermore, to reduce the length of the
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expansions we use polynomial arithmetic overQ which as well restricts the applications.
We consider these two points in more detail in the next section.

5. Alternative set-up

For a cryptosystem or protocol based on Koblitz curves we now suggest to start with
an expansion of fixed length and use this as the secret scalar—not caring to which
integer it corresponds if at all. This implies that the device need not be able to perform
polynomial arithmetic and to deal with arithmetic both in finite fields and inQ.
If—as usual—we restrict ourselves toD of prime orderl, we work in a cyclic group

and� operates as a group automorphism. Then for the action of the Frobenius we have
�(D) = sD, wheres is an integer modulol (see Remark11). Hence,any sum

∑�−1
i=0 ri�i

corresponds to an integer modulol, namely to
∑�−1
i=0 risi mod l, and one can replace

the whole procedure to choose random integers and compute a reduced expansion
described above by choosing a random�-tuple of coefficientsri ∈ R. The integers is
obtained via gcd(P (T ), T n−1 + · · · + T + 1) = (T − s) in Fl[T ]. This computation is
done only once ands is included in the curve parameters. Here, we use the minimal
setR = {0,±1, . . . ,± qg−1

2 } in odd characteristic andR = {0,±1, . . . ,±( qg2 − 1), q
g

2 }
in even characteristic to avoid ambiguity. We assume that the chosen curve fulfills all
requirements listed in the previous sections.

Remark 16. Likewise we can use the enlarged setsR of size qg(qg − 1) and impose
conditions on the density to obtain sequences(r0, . . . , r�−1) resembling outputs of the
reduction and expansion procedure. Obviously, this leads to faster computations but it
requires more precomputed points. We skip the details as most considerations are very
similar.

By a random expansion of length� we mean a tupler = (r0, . . . , r�−1) with ri
chosen randomly inR along with the interpretation asr0 + r1� + · · · + r�−1��−1. We
will show that a reasonable choice is� = n− 1.
We first consider applications of this modified set-up and then investigate security

issues.

5.1. Applications of the alternative set-up

We now care about the practicability of these new keys and show that we can still
use the standard protocols:
In the Diffie–Hellman key-exchange[7] and in theElGamal cryptosystem[9] all

scalar multiplications can be performed using the random tuples. It is likewise possible
that only one user applies the new idea whereas the other uses the standard Koblitz
curve techniques or a binary expansion.
As signature schemewe choose an inversion-free scheme. However, the same con-

siderations hold for any signature scheme. (For an overview of applicable schemes
consider the Handbook of Applied Cryptography[35][Note 11.70].) LetH(.) andh(.)
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be hash functions from the message space resp. from the first polynomial of an ideal
class to the integers modulo the group orderl. The hash functions are public.A secretly
choosesa and publishesEA = aD. To sign a messagem, she chooses a noncek and
sends	(k) = kD and 
(k,m) ≡ aH(m) + kh(kD) mod l together with the message
m. To check the validity one compares
D andH(m)EA + h(	)	 and accepts upon
equality. As one can see, the secret numbersa, k are not only used as multipliers but
also as integers modulol. As such they can be recovered using the correspondence of
� and s. To computek as an integer̃k, we need at least� − 2 multiplications modulo
l plus some additions for the coefficients. Note, that we can computek̃ and kD on
the run as we need not store the coefficients and start from the highest power ofs
or � respectively. Thus, we take� random elementsr of R and each time compute
the intermediate results�(	̃) + rD and sk̃ + r mod l from the previous intermediate
results	̃ and k̃. Usually this can be performed faster than computing the expansion as
presented in Section4. To obtaina we proceed the same way, but we savea together
with its expansion.

5.2. Collisions

To apply the idea described in the previous section, we need to ensure that the
corresponding multipliers occurring as integers modulol are equally distributed. Re-
spectively, we need to be aware of collisions. Since we know thatsn ≡ 1 modl, because
s corresponds to the Frobenius endomorphism on this restricted group, ands �≡ 1 modl
the highest exponent of� in the expansion should be less or equal ton− 2, to avoid
multiple occurrences of a number. There can be other combinations of powers ofs
with bounded coefficients depending on the chosen curve, but here we try to exclude
those polynomials that occur in any case. Namely, note that the known equivalences
1+s+· · ·+sn−1 ≡ 0 modl ands2g+a1s2g−1+· · ·+agsg+· · ·+a1qg−1s+qg ≡ 0 modl
do not lead to such a representation, since in the first one the highest power isn− 1
and all powerssi mod l,0� i�n−2 are different and also not equal to the negative of
another power (n is an odd prime), the second one contains the coefficientqg �∈ R, and
any combination of both still has the maximal power ofn−1 or too large coefficients.
A mathematical sound study of collisions for these curves can be found in[31] showing
that for l large enough collisions do not or only rarely occur for� = n− 1.

5.3. Attacks

We now investigate extra weaknesses imposed by applying a random tuple instead
of the expansion of a random integer. The obvious difference is that actual expansions
are some�-adic digits longer than the tuples. The standard low-storage square-root
algorithms for computing discrete logarithms cannot make use of the fact that the last
digits of the base� expansion of the multiplier are zero. Clearly, a brute-force search
throughout the key-space can make use of the reduced amount of possible keys, but
this is far too inefficient to be threat. One can design a�-adic baby-step-giant-step
algorithm which slightly reduces the security but usually the storage requirements are
prohibitively large. To play safe one should increasen by some bits.
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If we consider digital signatures we have to pay more attention. We first outline what
happens if parts of thebinary expansion of the nonces are known and then show that
this attack does not apply for our case. Building upon[3,22], Nguyen and Shparlinski
[41] invented a way to reveal the secret signing keya if only some bits of the nonces
k are known. They apply it to signature schemes based on the multiplicative group
of a finite field and on elliptic curves. Although our notation and signature scheme
differ from the one presented in[41], we now present essentially their ideas, however,
in the new context of ideal class groups. Then we investigate to which extend this
can be generalized to�-adic bits. Let�x�l denote the unique integer 0�x < l with
x ≡ x mod l.
The task of computinga is transformed to a hidden number problem, which can

be solved by lattice reduction. Assume that the highestj bits of k are known, i.e. one
knows k′ such that 0�k − k′ = � < l/2j , where as beforel denotes the prime group
order. AsaH(m) ≡ 
(k,m) − kh(kD) ≡ 
(k,m) − (k′ + �)h(kD) mod l, the attacker
can compute

T (k,m) ≡ h(kD)−1H(m) mod l, U(k,m) ≡ −k′ + 
(k,m)h(kD)−1 mod l

from the publicly knows values and gets the problem of findinga such that

�U(k,m)− aT (k,m)�l < l/2j .

This hidden number problem can be solved given that one receives enough instances,
i.e. different values ofk andm for fixed a and equal most significant part ofk, and
that the nearest vector problem in the associated lattice can be solved (this is likely as
the dimension is relatively low). Shparlinski and Nguyen verify this experimentally for
elliptic curves and succeed even for a small number of known bits asj = 3. There
are no reasons to expect a different behavior for larger genus curves. Hence, the attack
has to be taken seriously.
Using our alternative scheme, the attacker knows that the “most significant�-adic

bits” of k are zero, respectively, as the corresponding integers is easy to compute, that
the highest powers ofs do not occur. On the other hand we can bounds as an integer
from below:
We have thatP(s) ≡ 0 modl. This equation cannot hold in the integers since we

assumeP to be irreducible. Hence,s2g +a1s2g−1+· · ·+agsg +· · ·+a1qg−1s+qg� l.
Neglecting lower order termss2g + O(s2g−1)� l ⇒ s�(1+ O(1))l1/2g ≈ q(n−1)/2.
Therefore,s is large and in the expressionk = ∑n−2

i=0 risi one in fact computes modulo
l. So, the attack does not carry through directly as one only knows thatmodulo l the
highest coefficients are zero.
Techniques to solve subset sum problems[6,42] show that one can also deal with

modular congruences by increasing the dimension by one and adding a further co-
ordinate to stand for the unknown multiple ofl. They show that for subset sums∑t
i=1 �idi , �i ∈ {0,1} out of t elementsdi modulo an integerl the secret coefficients

can be determined fort/ log2 l < 0.94. That setting allows only coefficients in{0,1}.
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To model larger coefficients�rmax one includes 2di,22di, . . . ,2�log2 rmax�di in the set
for eachdi . If rmax is not a power of 2 one needs to take into account that not all
linear combinations of these additional numbers are allowed but this does not affect the
procedure. This enlargest by a factor of≈ log2 rmax. Allowing negative signs works
just the same.
In our casel is the group order, i.e.l ≈ qg(n−1). The di are the distinct powerssi

of smodulo l. Therefore the set containst = �2(n−1) log2(�qg/2�)� ≈ (n−1)g log2 q
elements. The fractiont/ log2 l is very close to 1—for the approximations detailed
above it even equals 1. In general, one should check thatt/ log2 l > 0.94 before
applying a curve.

6. Example

In this section we present one example, however, further good instances are easy to
get [27]. Consider the binary curve of genus 2 given by

C : y2 + (x2 + x + 1)y = x5 + x + 1

with characteristic polynomial of the Frobenius endomorphismP(T ) = T 4 − 2T 3 +
3T 2 − 4T + 4. For the extension of degree 89 the class number is almost prime

|Cl(C/F289)| = 2 · 191561942608242456073498418252108663615312031512914969.

Let l be the large prime number. The operation of� on the group of orderl corre-
sponds to the multiplication by

s = −109094763598619410884498554207763796660522627676801041 modl

For a high-level comparison we provide two Magma programs. The program for
this curveFrobExample and a program to play around with a user-defined curve
FrobSelf can be obtained from[27]. A detailed paper about implementation of
hyperelliptic Koblitz curves using normal and polynomial bases in comparison is in
preparation[30]. It gives evidence that the theoretic and asymptotic results of this paper
actually hold true in practice.

7. Conclusion

We gave details on the use of Koblitz curves and presented an alternative set-up in
which the random integerm is replaced by a randomn − 1 tuple of elements from
R. This alternative set-up allows to save the time needed to compute the expansion.
Furthermore, in this case the mathematical features needed are reduced to a minimum,
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e.g. no arithmetic inQ is used. Hence, this set-up is especially appropriate for memory-
constrained environments like smart cards. The devices of the participants need only
be able to perform addition, to execute�, and to randomly choose elements fromR.
A little amount of storage is required to keep precomputed multiples.
The proposed alternative set-up can be applied to the usual protocols where in

the case of a signature scheme one needs to compute the secret multiple as an in-
teger as well. Concerning security issues, we considered generalizations of known
attacks and dealt with collisions. To conclude one can say that using this modi-
fied system saves the time needed to compute the expansion without weakening the
system.
An extremely careful user might feel better to use it only for ElGamal and

Diffie–Hellman although to our knowledge signature schemes are just as well
secure.

Remark 17. (1) In this paper we considered the effects of known�-adic bits only in
the section on the alternative set-up. The same considerations hold true for side-channel
attacks where the leakage allows to obtain some�-adic bits. Our analysis shows that
Koblitz curve systems are not vulnerable to such attacks if the number of leaked bits
is small, such that the parametert in Section5.3 is close to 1.
We thank the anonymous referee for pointing out this observation.
(2) One can restrict the key size even more by choosing a smaller set of coeffi-

cients for the�-adic expansion. This reduces the storage requirements and the proba-
bility of collisions but for extreme choices—likeR′ = {0,±1}, g, q > 2, thus without
precomputations—one has to be aware of lattice based attacks on the subset sum prob-
lem [6,42]. If one tries to get around these by using longer keys of lengthn + �,
collisions get more likely since one has to deal with 1+ s + · · · + sn−1 ≡ 0 modl.

Then the zero element occurs at least 2
(�+r ′max−1

r ′max

)+1 times, wherer ′max is the maximal
coefficient ofR′. Another idea is to consider only sparse representations to reduce the
complexity. Although this reduces the size of the key-space as well, the implications
are less dramatic.
(3) The use of reduced�-expansions may help to improve any cryptographic method

of key-exchange, signing and encryption based on the Jacobian of curves or other
Abelian varieties which are defined over a smaller field than they are considered. In-
cluded are for example Jacobians of superelliptic andCab-curves and one might apply
the construction to other efficiently computable endomorphisms with known character-
istic polynomial.
(4) UnlessP(T ) = T 2g + qg, the standard method as well as the alternative set-up

can be applied to speed up pairing schemes based on supersingular curves, as pointed
out by Stein.
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