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Abstract. It has become increasingly common to implement discrete-logarithm based public-key protocols on

elliptic curves over finite fields. The basic operatioségalar multiplication taking a given integer multiple of a

given point on the curve. The cost of the protocols depends on that of the elliptic scalar multiplication operation.
Koblitz introduced a family of curves which admit especially fast elliptic scalar multiplication. His algorithm

was later modified by Meier and Staffelbach. We give an improved version of the algorithm which runs 50% faster

than any previous version. It is based on a new kind of representation of an integer, analogous to certain kinds of

binary expansions. We also outline further speedups using precomputation and storage.
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1. Introduction

It has become increasingly common to implement discrete-logarithm based public-key pro-
tocols on elliptic curves over finite fields. More precisely, one works with the points on the
curve, which can be added and subtracted. If we add the pdimitselfn times, we denote
the result byn P. The operation of computingP from P is calledscalar multiplicationby
n. Elliptic public-key protocols are based on scalar multiplication, and the cost of executing
such protocols depends mostly on the complexity of the scalar multiplication operation.
Scalar multiplication on an elliptic curve is analogous to exponentiation in the multiplica-
tive group of integers modulo a fixed integar Various techniques have been developed
[4] to speed modular exponentiation using memory and precomputations. Such methods,
for the most part, carry over to elliptic scalar multiplication.
There are also efficiency improvements available in the elliptic case that have no analogue
in modular exponentiation. There are three kinds of these:

1. One can choose the curve, and the base field over which it is defined, so as to optimize
the efficiency of elliptic scalar multiplication. Thus, for example, one might choose
the field of integers modulo a Mersenne prime, since modular reduction is particularly
efficient [9] in that case. This option is not available for, say, RSA systems, since the
secret primes are chosen randomly in order to maintain the security of the system.

2. One can use the fact that subtraction of points on an elliptic curve is just as efficient
as addition. (The analogous statement for integers (mpd false, since modular
division is more expensive than modular multiplication.) The efficient methods for
modular exponentiation all involve a sequence of squarings and multiplications that is

* This paper is an expanded and updated version of the paper appearing in the Proceedings of Crypto '97.
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based on the binary expansion of the exponent. The analogous procedure for elliptic
scalar multiplication uses a sequence of doublings and additions of points. If we allow
subtractions of points as well, we can replace [15] the binary expansion of the coefficient
n by a more efficiensigned binary expansiofie. an expansion in powers of two with
coefficients 0 and-1).

3. One can useomplex multiplication Every elliptic curve over a finite fieldcomes
equipped with a set of operations which can be viewed as multiplication by complex
algebraic integers (as opposed to ordinary integers). These operations can be carried
out efficiently for certain families of elliptic curves. In these cases, they can be utilized
in various ways [10] to increase the efficiency of elliptic scalar multiplication.

Itis the purpose of this paper to present a new technique for elliptic scalar multiplication.
This new algorithm incorporates elements from all three of the above categories. The
new method is 50% faster than any method previously known for operating on a non-
supersingular elliptic curve.

2. Field and Elliptic Operations in Fum

We begin with a brief survey of the various operations we will need in thefigldand on
elliptic curves over this field.

Squaring. We will assume that the fielBom is represented in terms ofreormal basis a
basis oveff, of the form

{9, 02,67, ..., 92“] .

The advantage of this representation is that squaring a field element can be accomplished
by a one-bit cyclic shift of the bit string representing the element. This property will be
crucial in what follows. Ifm is not divisible by 8, then one can use Gaussian cyclotomic
periods to construct easily [1] an efficient normal basisfer. (Since our application will
requirem to be prime, we can always use the Gaussian method.)

Our emphasis in this paper will be the case in which the field arithmetic is implemented
in hardware. Although the algorithms that follow will be efficient in software as well, the
full advantage of our method occurs in hardware, where the bit shifts (and therefore field
squarings) are virtually free.

Addition and Multiplication. We may neglect the cost of additiongiign since they involve

only bitwise XORs. A multiplication (of distinct elements) takes aboutimes as long,

just as in the case of integer arithmetic. The cost of an elliptic operation depends mostly
on the number of field multiplications it uses.

Inversion. Multiplicative inversion inF,m can be performed in

Lm-1)+W(m-1) -2
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field multiplications using the method of [7]. Hek&k) represents the length of the binary
expansion ofk, and W(k) the number of ones in the expansion. This fact may be a
consideration when choosing the degree (Alternatively, one can use the Euclidean
algorithm [2], but one must first convert from the normal basis representation to the more
familiar polynomial basis form, and then back again after the inversion.)

Elliptic Addition. The standard equation for an elliptic curve olfer is theWeierstrass
equation

E: v’ +xy=x3+ax®+b 1)

whereb # 0. Public key protocols based on this curve work on the group consisting of the
points(X, y) on this curve, along with the group identity. (The elemen®© is called the
point at infinity, but it is most convenient to represenrthiy (0, 0).)

ROUTINE 2 (ELLIPTIC GROUP OPERATION)

Input:
Points Band R on E

Output:
The sum P:= Py + Py

Computation:
If Py= O then output P, < P; and stop
If Pp= 0O then output P, < Py and stop

If Xo=X;
then
if Yot+yi=X1
then
output O and stop
else
set A<« X3+ Y1/X1
Xo < A2+ r+a
Yo < X2+ (A + 1) X
else

set A < (Yo+ Y1)/ (Xo + X1)
Xo < A2+ A+ Xo+ X +a
Vo< (X1 +X) A+ X+ W
Output P> < (Xo, Y2)

To subtractthe pointP = (x, y), one adds the point P = (X, X + V).

Except for the special cases involvidy the above addition and subtraction operations
each require 1 multiplicative inversion and 2 multiplicatidrié\s always, we disregard the
cost of adding and squaring field elements.)

127



198 SOLINAS

3. Elliptic Scalar Multiplication

We next discuss the common methods for performing scalar multiplication on an arbitrary
elliptic curve. These results will not be necessary for the subject of this paper, but will serve
to motivate the new algorithms, which are analogues of these methods.

3.1. The Addition-Subtraction Method

The basic technique for elliptic scalar multiplication is #ulition-subtraction methodt
is based on tha@onadjacent forn{NAF) of the coefficienth: a signed binary expansion
with the property that no two consecutive coefficients are nonzero. For example,

NAF(29) = (1,0,0, —1,0, 1) ©)

since 29=32—-4+1.

Just as every positive integer has a unique binary expansion, it also has a unique NAF.
Moreover, NAKN) has the fewest nonzero coefficients of any signed binary expansion of
n [4]. There are several ways to construct the NAFfdfom its binary expansion. We
present the one that most resembles the new algorithm we will present in 84.

The idea is to divide repeatedly by 2. Recall that one can derive the binary expansion of
an integer by dividing by 2, storing off the remainder (O or 1), and repeating the process
with the quotient. To derive a NAF, one allows remainders of &ar If the remainder is
to be+1, one chooses whichever makes the quotient even.

ROUTINE 4 (NAF)

Input:
a positive integer n

Output:
NAF(n)

Computation:
Set C<«n
Set S« ()
While ¢>0
If c odd
then
set U<« 2—(cmod 4
set c<«c—u
else
set u<«20
Prepend u to S
Set c<«c/2
EndWhile
Output S
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c u S
29 ()
28 1
14 (1)
14 0

7 {0,1)

8 -1

4 (-1,0,1)

4 0

2 (0,-1,0,1)

2 0

1 (0,0,-1,0,1)

0 1

0 (1,0,0,-1,0,1)

Figure 1. Computing a NAF.

For example, to derive (3), one applies (4) with= 29. The results are shown in Fig. 1.

Note that, although we have phrased the algorithm in terms of integer arithmetic, it can
be implemented in terms of bit operations on the binary expansion ddo arithmetic
operations are needed beyond integer addition by 1.

In the derivation of the ordinary binary expansion, the sequengeéecreasing, but that
is not true in general in (4). As a result, the NAF of a number may be longer than its binary
expansion. Fortunately, it can be at most one bit longer, because

2t < 3n < 21 (5)

wheret is the bit length of NAKEn) [15].
The routine (4) can be modified as follows to produce an algorithm for elliptic scalar
multiplication.

ROUTINE 6 (ADDITION-SUBTRACTION METHOD)

Input:
a positive integer n
an elliptic curve point P

Output:
the point nP

Computation:
Set c<«n
Set Q« 0O, Py« P
While ¢>0
If c odd then
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set U<« 2— (cmod 4
set c<«<cCc—u
if u=1then set Q<« Q+ P
if u=—-1then set Q<+ Q-—Fy
Set c<«c¢c/2
Set Py < 2P,
EndWhile
Output Q

This algorithm is aright-to-left method, since (4) builds up the NAF starting at the
least significant bit and ending at the most significaits possible to give #eft-to-right
addition-subtraction method, but it has the disadvantage that it requires the entire NAF to
be computed first, thus requiring more storage space and memory calls.

The cost of the addition-subtraction method depends on the bit |éngthAF (n), which
we now estimate. It follows from the Hasse theorem [22] that the order of an elliptic curve
overFom is

HE (Fom) = 2™ + O(2™?).

Most public-key protocols on elliptic curves use a base point of prime ordgince all of
the curves (1) have even order, then

r <2™t4 0@2m?).
We can assume that< r; indeed, by using the identity

we can assume that< r /2. Thus¢ < m, so that (6) requires abont doubles at most.

The number of additions is one less than the Hamming weightoh(@imber of nonzero
coefficients in) NAKn). The average density of nonzero coefficients among NAF’s of
length? is

20(36 —4) — (=)t (64 — 4)
9 -2 - (-1

(7)

or approximately (and asymptotically)3[15]. It follows via (5) that the Hamming weight
H of NAF(n) satisfies

H =~ % log, n. (8)

Therefore, the average cost of (6)4sm doubles and~ m/3 additions, for a total of
~ 4m/3 elliptic operations. This compares favorably to the class$icary methogdwhich
uses the ordinary binary expansion in place of the NAF. For binary expansions, the average
density is exactly 12 rather than the value (7); thus the binary method requires about 12%
more elliptic operations than the addition-subtraction method.
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3.2. Window Methods

The addition-subtraction method can be generalized to produce still more efficient algo-
rithms provided extra memory is available and precomputation is permitted. We present
the basic method, called thddth-w window method

Letw be an integer greater than 1. Then each positive integer has a widthev NAF:
an expression

=1 _
n=> u2
j=0
where:
e each nonzera; is odd and less thart*2* in absolute value;

e among anyw consecutive coefficients, at most one is nonzero.

The casev = 2 is that of the ordinary NAF.
The widthaw NAF is written

NAF, (n) = (Up_1, ... Ug).
It can be computed via the following generalization of (4).
ROUTINE 9 (WIDTH-w NAF)

Input:
a positive integer n

Output:
NAF,, (n)
Computation:
Set c<«n
Set § <« ()
While ¢>0
If ¢ odd
then set U<« cmods?
set c<«<cCc—u
else set u<«0
Prepend u to S
Set c<«c/2
EndWhile
Output S

The notation

a:=b modsc
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means thah is the integer satisfying
a=b (modc)
and

c_ c
—5= a< >
The routine (9) is commonly described by saying that one slides a “window” of width
along the binary expansion from right to left, using the contents to output the next entry of
NAF,,(n).
Given the widthw NAF, one can perform elliptic scalar multiplication byvia the
following algorithm.

ROUTINE 10 (WIDTH-w ADDITION-SUBTRACTION METHOD)

Input:
a positive integer n
an elliptic curve point P

Output:
the point nP

Precomputation:
Set Pp«~ P
Set Pou-2_1 « 2Py
For i fom 1to 2*2—-1 do
Set B <« P_1+ Pu2_4

Next i
Computation:
Compute NAF,(n) = (Ug_1, ..., Ug) (via (9))
Set Q<O
For j from ¢ —1 downto O do
Set Q <« 2Q
If u; #0 then
i< (uj| —1/2
if uj > 0
then set Q <« Q+ P,
else set Q <« Q—PR
Output Q

The routine (10) is a left-to-right algorithm. The right-to-left algorithm (6) does not
generalize well to the widths case, since each poiRt would have to be double@itimes.
Asremarkedin[19], thisis a general difficulty with window methods: the binary expansions
must be computed right to left in general, but the elliptic scalar multiplication is best done
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from left to right. This difficulty will not arise with the particular curves that are the subject
of this paper.

The average density of a width-NAF is (w + 1)~1. Thus one can diminish greatly
the number of elliptic additions in an elliptic scalar multiplication, provided the memory is
available. These speedups, however, do nothing to reduce the number of elliptic doublings.
There seems to be little that can be done about this in general. The following special curves,
however, admit elliptic scalar multiplication that do not use doublings at all.

4. Koblitz Curves

Theanomalous binary curvg®r ABC's) are the curve&y and E; defined oveif, by
Ea y2+xy=x3+ax?+1.

They are more commonly calleé€bblitz curvessince their efficient scalar multiplication
properties were first presented in [10].

4.1. Basic Properties
We survey the basic properties of Koblitz curves that we will need.

Group Orders. We denote bye, (Fom) the group offfom-rational points orE,. This is the
group on which the public-key protocols are performed. The group should be chosen so
that it is computationally difficult to compute discrete logarithms of its elements. Thus, for
example, the orderE;, (IFom) should be divisible by a large prime [17]. IdeallyE#Fom)
should be a prime or the product of a prime and small integer. This can only happemwhen
is itself prime, for otherwise there are large divisors arising from subgrBus,«) where
d dividesm.

Whenm is prime, the only such divisor is that arising fram= 1. The Koblitz curves
overlF, are

El(]FZ) {Os (01 1)}
Eo(F2) = {0,(0,1),(1,0), (1, D}

SinceE,4(Fy) is a subgroup oE,(Fom), it follows that the order E,(Fom) is always divis-
ible by

2 fora=1

4 fora=0. 11)

f =#Ea(F2) = {

We define an integer to beery nearly primef it is of the form N = f .r, wheref =2
or4 andr > 2is prime. Although the ordersE(Fom) are never prime fom > 1, they are
frequently very nearly prime. The valuegof< 512 forwhich#; (F,m) is twice a prime are

m=3,5,7,11, 17,19, 23 101 107, 109, 113 163 283 311 331, 347, 359,
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The values ofn < 512 for which #(IF,m) is 4 times a prime are
m=>5,7,13, 19, 23,41, 83,97, 103 107, 131, 233 239 277, 283 349, 409,

(The calculation of the orders is quite simple; the technique is given below.) The curves
with very nearly prime order are the ones of most cryptographic interest.

The Main Subgroup. Suppose thatE,(F,n) = f -r is very nearly prime. We define
the main subgroupio be the subgroup of order It is commo# to perform cryptographic
operations in the main subgroup rather than the entire curve.

PROPOSITION12 Suppose that#E, (o) is very nearly prime, and let P be a point on
Ea(Fom). Then P is in the main subgroup if and only if=P f Q for some Q on HFom).

Proof. Both curvesk,(IF,) are cyclic groups; to see this, one need only observe that
2(1,0) = (1,1) on E1(F). Thus the curveE,(Fom) is cyclic whenever its order is very
nearly prime. The result follows from the standard properties of finite cyclic
groups. [ |

As a result of (12), we have the following simple conditions to determine whether a
given point is in the main subgroup. & = 1, then a pointP = (X, y) is in the main
subgroup if and only if Tgx) = 1 [21]. If a = 0, then(x, y) is in the main subgroup if
and only if Tix) = 0 and TXy) = Tr(x X), wherex is an element withh?2 + A = x. (See
Appendix A for proofs.) With a normal basis representation of the field, both the trace and
the computation of can be done very efficiently. Thus, checking for membership in the
main subgroup is essentially freesif= 1, and costs only one field multiplicationaf= O.

Because the main subgroup is the object of cryptographic interest, it is most important to
optimize the elliptic scalar multiplication operation there. In 87.2, an algorithm for elliptic
scalar multiplication in the main subgroup will be presented.

Complex Multiplication. Since the Koblitz curves are defined o\ér, they have the
following property:if P = (x, y) is a point on g, then so is the poinix?, y?). Moreover,
one can verify from (2) that

Oy +206y) = - 2y (13)
for every(x, y) on E,, where

wi= (=12 (14)
This relation can be written more easily in terms of the Frobenius (squaring) map-over

(X, y) = (X%, y2). (15)
Using this notation, (13) becomes

t(tP)+2P=utP
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forall P € E;. Symbolically, this can be written
(T’ +2)P=ptP.

This means that the squaring map can be regarded as implementing multiplication by the
complex numbet satisfying

24+2=pr.
Explicitly, this number is

T_u—l—\/—?
=—

By combining the squaring map with ordinary scalar multiplication, we can multiply points
on E, by any element of the ring[t]. We say thatE, hascomplex multiplicatiorby
7 [10].

Lucas SequencesThelLucas sequencese sequences of integers that facilitate computa-
tions involving quadratic irrationals. The Lucas sequences for the numbwitsbe used
frequently in what follows; thus we summarize here their relevant properties.

e There are two Lucas sequenddg andVy, associated with a given quadratic irrational.
For z, the sequences are defined as follows.

Up=0, Uy=1 and Uy =uUx—2Ux, fork > 1,
Vo=2, Vi=u and Vi1 =puVe—2V1 fork>1. (16)

e It can be proved by induction that
U = (=79 /v—7
Ve = 4+ 7% 17)
If 6 := tan(+/7), then (17) can be written as
Uk = uft K2+ sink0) /7
Vi = X221 cogko). (18)

e It can be proved by induction that
™K =Uct —2Uy_; fork > 1. (19)
Multiplying this equation by its conjugate, one obtains

U2 — uUgUg1 +2U2 ; =21 fork > 1. (20)
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e The group orders&,(IFon) are easily computed via
HEL(Fom) = 2™ + 1 — Vpp. (21)

This identity follows from the basic properties of zeta functions of curves; [11].

The Norm. Thenormof an elemen& € Z[] is the product ofr and its complex conjugate
o. Explicitly, the norm ofs :=dp +dy 7 is

N(8) = d3 + udod; + 2d2.
We will require the following properties of the norm.
e The norm function satisfies

N(a B) = N(a) N(B) (22)
forall o, B in Z[7].

e The Euclidean distance fromto 0 in the complex plane is given QYN («). Thus the
Triangle Inequality takes the form

VN +B) < /N(@) +/N(B). (23)

e We will require the norms of some specific elements. It is easily checked that

N(t) =2
and that
Nz -1 =f
wheref is as given in (11).
Finally,
N(t™ — 1) = #E,(Fam) (24)

(see [22]). (As an alternative to (21), the order of a Koblitz curve can be computed
using this identity and (19).)
Sincetr — 1 dividest™ — 1, it follows that f divides #,(Fom) and that

N (™ =1)/(t — 1)) = #Ea(Fom)/f. (25)

e The ringZ[t] is Euclidean with respect to the norm function [23]. That is, given an
elementy and a nonzero elemeéitthere exist elemenisandp suchthay =8« + p
and

N(p) < N(§). (26)

As a result of this property, the ring[z] has unique factorization. The element
having prime norm, is a prime element.
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4.2. Ther-adic NAF

The complex multiplication property is useful for elliptic scalar multiplication because mul-
tiplication by, being implemented by squaring, is essentially free whens represented
in terms of a normal basfsThus it is worthwhile, when computingP, to regardn as an
element ofZ[z] rather than as “just” an integer. More precisely, one replaces the (signed)
binary expansion of the coefficient with a (signeeddic expansionThat is, one represents
n as a sum and difference of distinct powerg of

For example, witta = 1 we have

9=r"—734+1 (27)
Thus, if P = (X, y) is a point onEy, then
9P = (x*2 y*) — (%, y®) + (x, y).

The above example gives 9 as what we catl-adic NAF, since no two consecutive
terms are nonzero. (Both [10] and [18] use signeallic expansions, but neither kind has
the nonadjacency property.) As we shall see, the ugeafic NAF’s gives a significant
reduction in the number of terms, just as NAF’s give a significant improvement over binary
expansions in the case of integers.

The remainder of this section is dedicated to proving the following result, which is

analogous to the case of the ordinary NAF for integers.

THEOREM1 Every element of the ring[t] has a uniquer-adic NAF.

We can therefore speak tife r-adic NAF of an element. We will denote it by TNAK).
Thus (27) is written

TNAF(9) = (1,0, —1,0, 0, 1).

In the course of proving Thm. 1, we will develop an efficient algorithm for computing the
t-adic NAF for any element dZ[z].

LEMMA 28 The elementc+ ¢; T of Z[t] is divisible byz if and only if ¢ is even. Itis
divisible byz? if and only if

Co=2c; (mod 4. (29)

Proof. If u is defined as in (14), then
(do+di7)T =—-20d1 4+ (do + pdp) 7.
It follows at once that, it dividescq + ¢1 7, thency is even.
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Conversely, ifcy is even, then

CO+CT  pG+2C G

T 2 2"

is an element of[z].
To prove the corresponding statements#trwe begin with the identity

2=put—2.
It follows that every multiple ot has the form
(do+d17)(ut —2) =—2(do+ @ dp) + (udg —dp) 7.
It is easily verified that the values

Co = —2(do+ pdy)
Ci = pdo—ds
satisfy (29). Conversely,

o+t 1+2u)co+2ucy Co—2C
= +u- T,
T 4 4
which is easily seen to be an elemen#Zjt] if (29) holds. ]

In light of (28), we have the following algorithm (joint work with R. Reiter) for computing
thet-adic NAF. Itis completely analogous to (4), but here we are dividing bather than
by 2. Sincer has norm 2, then by (26), the possible remainders upon division dng
+1. Earlier algorithms chose the remainder that minimized the norm of the quotient; this is
analogous to the basic division algorithm for generating the binary expansion of an integer.
What we shall do instead is to choose the remainder that makes the quotient divisible by
This is analogous to the computation of the NAF for integers.

ALGORITHM 1 (r-adic NAF)

Input:
integers g, ry

Output:
TNAF(ro+r17)

Computation:
Set Cyp<«1rg, CL<«<1rIg
Set § « ()
While ¢cp#0 or ¢ #0
If ¢p odd
then
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Co [} u S
9 0 ()
8 0 1
4 -4 (1)
4 -4 0

-2 -2 (0,1)
-2 =2 0
-3 1 {0,0,1)
-2 1 -1
0 1 (~1,0,0,1)
0 1 o0
1 0 (0,-1,0,0,1)
0o 0 1
0 o (1,0,-1,0,0,1)

Figure 2. Computing ar-adic NAF.

set U<« 2—(Co—2¢c, mod 4
set Cy<«Cyp—U
else
set u<«0
Prepend uto S
Set (Cop, C1) < (C1+ wCo/2, —Co/2)
EndWhile
Output S

For example, to derive (27), one applies Alg. 1 vath- 1,co = 9, andc; = 0. The results
are shown in Fig. 2.
Note that the implementation of Alg. 1 involves nothing more complicated than integer
addition. (This is slightly more than is required by (4), which only adds 1 to an integer.)
Having described how to compute eadic NAF, we now prove that such a representation
iS unique.

LeEMMA 30 Leta € Z[t]. Then precisely one of the following statements hold:
e « is divisible byr.
e o« =1(modr?).
e o = —1(modr?).
Proof. Leta = cp+cy 7. If ¢pis even, then dividesa by (28). Ifcp is odd, then precisely

one of ¢ + 1 satisfies (29); thust? divides precisely one ofa + 1,
by (28). ]

139



210 SOLINAS

COROLLARY 31 Leta € Z[r]. Then any twa-adic NAF's ofa have the same rightmost
entry.

Proof. Depending on which of the three possibilities hold égithe rightmost entry of a
r-adic NAF fora is O, 1, or—1, respectively. [ |

Proof of Thm. 1. The existence of the-adic NAF is established by Alg. 1. The uniqueness
follows from (31), using induction on the length of theadic NAF. ]

4.3. Length and Density of-adic NAF's

To evaluate the usefulness of theadic NAF as a substitute for an ordinary NAF, it is
necessary to know its Hamming weighe(number of nonzero terms). In the case of the
ordinary NAF, the weight is calculated in terms of the length of the NAF (given by (5)) and
the density of nonzero terms (given by (7)). We now obtain analogous resultsafiic
NAF’s.

The calculation of the density is trivial.

PrOPOSITION32 The average density amonmgadic NAF's of lengti is given by (7), and
is therefore asymptotically/3.

Proof. The result follows from (7) since the same sequences occur as léenNfR's and
length£ t-adic NAF's. [ |

The estimation of the length of a NAF is more involved. Intuitively, the answer should be
£ =~ log,(N(a)),

because Alg. 1 begins with, and divides by the norm-2 elemenin computing each entry
of the r-adic NAF. Of course this ignores the effect of the additions and subtractions, but
provides a benchmark for the results to follow.

We begin with some notation and terminology. By teegthof an element of[z] we
mean the length of its-adic NAF. LetNmax(k) denote the largest norm occurring among
all lengthk elements o[ r].

LEMMA 33 Forall k,

2 Nmax(K) < Nmax(k + 1).

Proof. If « is a lengthk element of maximal norm, therx is an element of lengtk + 1
and norm N («). [ |

COROLLARY 34 Nmax(k) isthe largest norm occurring among all elememtsf Z[ t] whose
length is at most k.
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LEMMA 35 Ifc > e, then

v/ Nmax(©) < 2%2/Nmax(C — €) + v/ Nmax(e).

Proof. Lety be alengths element of maximal norm, so that

N(¥) = Nmax(C). (36)
Let ther-adic NAF ofy be

TNAF(y) = (Uc-1, ..., Ug), (37)
and definep by

TNAF(p) = (Ue_1, ..., Ug). (38)
Thenp has length at mos, so that

N(p) < Nmax(€) (39)
by (34). Finally,

y=1%84+p (40)
for somes of lengthc — e; note that

N(8) < Nmax(c —©). (41)
It follows from the Triangle Inequality (23) that

VNG = 22N + VN(p).
The result now follows by (36), (39), and (41). [ |

For convenience we introduce the notation

Mk := v/27K Nmax(k).
In this notation, (33) states that

Mk < Myi1 (42)
for all k, and (35) states that

Mc < Mge + 2792 Me (43)
ifc>e
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ProOPOSITION44 For d and g positive,

1—2-da2 = 1_ -2

Proof. It follows from (43) that

Mks1d — Mg < 27592 My

fork=1,...,(q—1). Summing ovek, we obtain
g-1 K
Maq — Mg < Mg Y (2792)".
k=1
The result follows from summing the geometric series. [ |

PropPoOSITION4S For ¢ > d,
Mg

Mg < 71_2_(]/2.

Proof. Letd g be the smallest multiple af greater than or equal # ThenM,; < Myq
by (42), and

Mg
1— 2972
by (44). |

Maq <

COROLLARY 46 For ¢ > d,

Nmax(d)

Nmax(¥) < m :

The result (46) provides the basic upper bound for the norm of a lehgkbment. We
now derive a lower bound. Ld¥pin(k) denote the smallest norm occurring among all
lengthk elements o[ z].

LEMMA 47 Ifc > e, then
VNmin(©) = 2% /Nmin(c — € — v/Nmax(©).

Proof. Lety be alengthe element of minimal norm, so that

N(¥) = Nmin(0). (48)
Let thet-adic NAF ofy be as in (37). Defing as in (38), and as in (40). Then

N(8) > Nmin(c —©) (49)
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and

N(p) < Nmax(e), (50)
the latter following from (34). By the Triangle Inequality (23),

VN(y) = 292 /N(8) — /N(p).

The result now follows by (48), (49), and (50). ]

COROLLARY 51 For ¢ > 2d,
~/ Nmax(d) _
Nmin(é) > (\/ Nmin(d) — Zd/n;ax ) .2t

Proof. Follows from (46) and (47). ]

Combining (46) and (51), we obtain the main result of this section.

THEOREM?2 Let¢ > 2d, and leto be a length¢ element ofZ[t]. Then

(\/Nm,n(d vNmax(d) ) 279 < N(a) < Nmax(d) ¢

2d/2 _ (2d/2 _ 1)2

To apply Thm. 2, we choose a small valuedpfand evaluatdNmax(d) and Npin(d) by
direct evaluation of all lengtid-elements ofZ[t]. This is only feasible i is quite small,
but the resulting bounds are quite accurate.

For example, we apply Thm. 2 with= 15. The bounds are

Nmax(15) = 47324 and Npyin(15) = 2996
It follows that

1.399009614 2=% < N(a) < .7301517653 21, (52)
In other words, the length of theadic NAF is bounded by

log,(N(«r)) — .5462682713< £ < log,(N(«)) 4 3.51559412 (53)

when¢ > 30.

To measure the quality of these bounds, we compare them with the norms and lengths of
some specific (infinite) families of elements.

Leta=1and

B = A L N I A
ThenN(8) = 2996, minimal among elements of length 15. Since

N(B) ~ (1.4628906 - 2%,
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it follows that, for anyk > 0, the elemenk := g * of length¢ := k + 15 satisfies
N () ~ (1.4628906 - 24,

This exceeds the lower bound given in (52) by only a small amount.
Now leta = 1 and

B = R L
ThenN(8) = 5842, maximal among elements of length up to 12. Let
y =@ -1p.

Clearly, ther-adic NAF ofy is the concatenation of two copies of that&fseparated by
a zero. Thug has length 25. Its norm is

N(y) = 5842- N(z¥ - 1)
by (22). Now
NEB—1) =28 4+1— Vi
by (24) and (21). Computing the Lucas elem¥gg via (16), we find that
N - 1) =8374
so that
N(y) ~ (.7289783 - 2%°.
It follows that, for anyk > 0, the elemend := y ¥ of length? := k + 25 satisfies
N(a) ~ (.7289783 - 211,

This is just slightly under the upper bound given in (52).

It follows from (32) that the average Hamming weight among lergitNAF’s is roughly
£/3. If we assume that this average value holds for the subset of TNAF’s of rational integers,
then it follows from (53) that the Hamming weight of the t-adic NAF for the integen
satisfies

2
H ~ 2 log; . (54)

This is twice as large as the Hamming weight of an ordinary NAF, because-#ukc
NAF is twice as long. If we replace the ordinary NAF by theadic NAF, then, we will
have eliminated the elliptic doublings in our scalar multiplication method, but doubled the
number of elliptic additions. This largely mitigates the advantage of tadic method.
Fortunately, this situation can be fixed. The solution is to replace-dic NAF by an
equivalent expression, callededucedr-adic NAF, that is only half as long.
Before presenting this, however, it is necessary to develop the machinery of modular
reduction in the ringZ[z].
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5. Modular Reduction in Z[1]

In this section, we define precisely what is meant by modular reduction in th&firlg
and present an efficient method for implementing it.

Our technique is a generalization of the notion of modular reduction in theZin§
rational integers. Supposeandd > 1 are integers. Itis desired to reducmodulod, i.e.
find the integer

0 = ¢ modsd
where the “mods” notation is as in §3.2. The integeran be found by integer division: if
Round(}) := [A +1/2],
then
p=C—xd,
where
k := Round(c/d).

A more compact way of describing is in terms of thefractional partoperation. The
fractional part ofi is defined to be

() := XA —Round(A).
The modular reduction process can then be described by
c
p=d ((a)) : (55)
Since
c 1
(G) <z
it follows that
N
N(p) < %

We now generalize these concepts to the fifg].

5.1. Rounding and Fractional Parts irZ[ ]

We begin by extending t@[ ] the definitions ofRound (i) and((A)). (The variable. now
denotes the expressiag + A1 T, where the\; are real numbers.)
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A1
Do—3h=-2 o
~ Jdt+in =
/ —~ \\
2Xo + A1 =
(_1,0) \ (190)
220+ M =1
>
//
/\0+4/\1=—2 \0/ Ao—3A1=2

Figure 3. The regiori/ for the case = 1.

We defind/ to be the region in théxg, A1)-plane given by the inequalities

|
=
A

< 2h+pri<1

|
N
A

< M+4ur; <2

—2 < M—-3uri<2. (56)

(See Fig. 3 fom = 1 and Fig. 4 fora = 0.) Copies of/ tile the plane (see Fig. 5 for the
casea = 1), with each copy having as its center an elemerifaf. Giveni € Q(),
we “round off” by choosing as € Z[r] the center of the copy @# containingx. We will
denote this operation either by

(0o, 01) = Round (Ao, A1)
or by
Qo+ 017 = Round(Ap + A1 7),

since there is no danger of confusion.
As in the integer case, we define

(2) := XA —Round(})

for all complexa. Itis easy to see that the set of possible values(foy is precisely the
regioni/.
We next prove the main properties of these operations.
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M

/\0 - 4/\1 =2 //O\ \AO: 3N =2
~

/
/

2/\0—A1=1

2/\0 -/\1 =-1

(_la 0)

M+3) ==2

Figure 4. The regiori/ for the case = 0.

L 3 L 4

(—23_1) (—1’_1)

Figure 5. Copies ofif for the casa = 1.

147



218 SOLINAS

PROPOSITIONS7 Suppose that is in the interior of the regiof{. Then

NA) < ;1

Proof. The set of points in thérg, A1)-plane of norm 47 forms the ellipse
2 2 4
Ag+ AoAs + 247 = 7

Now each of the six vertices @f has norm 47, and so lies on the ellipse. Sinteis
convey, it lies entirely in the ellipse. The result follows from the fact that the points inside
the ellipse are those of norm less thai7 4 ]

PROPOSITIONS8 Suppose that is in the interior of the regio{. Then
N < NL + )

for every nonzera € Z[z].

Proof. It is straightforward to check that

N(A) < N(Ax1) ifandonlyif [2x0+ puA1] <1;
that

N(A) < N(x£71) ifandonlyif |uio+4xri] <2;
and that

N) < N(x£7) ifandonlyif |uio— 311 <2

Since lies in the interior ofi/, then by (56) it satisfies all three conditions. Thus the
result is proved fore = +1, +7, £7. Now let « be any other nonzero element of
Z[t]. ThenN(x) > 4; andN(L) < 4/7 by (57). Thus the result in this case follows
from (23). ]

The following properties follow from (57) and (58).
COROLLARY 59 If ¥ := Round()) and¢ := (1)) = A — «, then:
e N(¢) < N(¢ + a) for everya € Z[1].
4
e N() < =
The first condition of (59) simply says thRbund (1) is the element oZ[t] closest toa,
justifying the terminology. The second condition was proved in [18].

We now give an algorithm for computirigound ().
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ROUTINE 60 (ROUNDING OFF)

Input:
real numbers.g, A1 specifying the complex number= 1o + A1t

Output:
real numbers g, o specifying g+ gyt := Round(A)

Set fg < Round(Xg)
f1 < Round(Xq)
Set ng <« Ao — To
m<i-—f
Set hp <0
h1 ~0
Set n<«2no+um
If n>1
then
if no—3um<-1
then set h; < pu
else set hg<«1

else
it npo+4un>2
then set hy < pu
If n<-1
then
if no—3um=>1
then set hy < —u
else set hg <« —1
else

if no+4un< -2
then set hy < —u
Set qg < fo+ hg
i < fi4+hy
Output qo, 1

5.2. Division and Modular Reduction irfZ[z]

We now use the rounding-off operation to develop algorithms for division and modular
reduction inZ[t].

The analogue of integer division is as follows. Given a dividene: ¢y + ¢; T and a
divisord = dp+d; 7, we wish to find a quotient = o+ T and aremaindes = ro+ry 7,
such that

Yy =kd+p
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and such thap is as small (in norm) as possible. To do this, we obialwy rounding off
y /8 and then solving fop. That is, we let

o= L
)
yé
T NO)
_ % + 017
N
find k via
k := Round (% + % r) , (61)
and obtainp via
p =y —kKbé.

The following algorithm gives these steps explicitly in terms of the coefficients.
ROUTINE 62 (DIVISION IN Z[1])

Input:
the dividendy = co + ¢, v and divisor§ = dp+dy t

Output:
the quotientc = qo + g; T and the remaindep =rg+r1 7

Computation:
Qo < Codp+ uCody +2¢y dy
01 < Cido—Coly
N « dg—f—,udodl—f—Zdlz
do < Qo/N
A1 < 01/N
(qO, OI1) <« Round ()»0, )»1)
ro <= Co—doQo+ 20101
ri<C—digo—doQs — iy
Output o, 1, ro, I

If we disregard the quotiertand only output the remaindgr this routine may be viewed
as a modular reduction algorithm. In this case, we write

0 =y modsé.

In analogy with (55) we have

=5 () ©
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It follows via the first item of (59) that the remainder as we have defined it does indeed have
norm as small as possible. It follows via the second item of (59) that

4
N(p) < Z N(). (64)
This represents a strengthening of the ordinary Euclidean condition (26) for this particular

ring.

6. Reducedr-adic NAF's

Having developed the modular reduction operatiotZjm], we now define the reduced
r-adic NAF and apply it to the problem of efficient elliptic scalar multiplication.

6.1. Equivalence ot-adic NAF’s

We recall from the discussion at the end of 84.3 that our goal is a reduadit NAF for
n, equivalent to the ordinary-adic NAF forn but only half as long.

We first define what we mean guivalent.Let G be a set of points on a Koblitz curve,
and suppose that and p are two elements di[z] for whichy P = p P forall P € G.
Then we say that TNAf) and TNAR p) areequivalenwith respectt@;. The terminology
comes from the fact either TNAF) or TNAF(p) can be used to multiply a point i by

Y-
The following result of [18] gives a simple condition for tweadic NAF's to be equivalent

with respect to the entire sgt:= E,(Fom) of Fon-rational points ork.

PROPOSITIONGS If y and p are elements df[ ] with

y=p (modt™—1), (66)
then

yP=pP
forall P € E;(IFom). ThusTNAF(y) andTNAF(p) are equivalent with respect to,Eom).
Proof. Applying the mapping (15)n times toP := (X, y), we obtain

P =", y?).
But x?" = x andy?" = y sincex andy are elements dfon. Thus

mMP=P
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forall P € E5(Fom). It follows that
"-1HP=0 (67)

forall P € Ea(Fom).
Suppose now that (66) holds. Then

y=p+K-(@"=1
for somex € Z[t]. Therefore
yP = pP+k-"-DP
= pP+x0O
= pP+0O
= pP,

proving the result. [

6.2. Equivalence for Points of Prime Order

One can sharpen (65) in the case of cryptographic interest, namely the main subgroup in
a Koblitz curve of very nearly prime order (see 84.1). As in that section, the order of the
curve is

#E;(Fom) = f -1,
wherer is prime andf = 2 or 4 according to (11). By (25), the element
§=0C"-1/x -1 (68)

has nornr.
In this section, we will show that one can weaken the hypotheses of (65) and still retain
equivalence with respect to the main subgroup.

PROPOSITIONGY Let P be a point in the main subgroup in a Koblitz curve of very nearly
prime order, and defing as in (68). Then

sP=0.

Proof. By (12), there is a poin® such thatP = f Q. By (67), we have
T"-1Q=0.
By (68), it follows that

- (r—-1)Q=0. (70)
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Applying the operation — 1 to both sides of (70), we obtain

O=4680@-D-(r-1Q
=8 Nzt-10Q
=45-f0Q
= § P,
proving the result. ]

THEOREM 3 Let P be a pointin the main subgroup in an Koblitz curve of very nearly prime
order, and defing as in (68). Ify andp are elements df[z] with

y=p (mods),
then

ThusTNAF(y) andTNAF(p) are equivalent with respect to the main subgroup.

Proof. The result follows from (69) in the same way as (65) follows from (67). =

6.3. The Reduced-adic NAF

Suppose thak,(F,m) has very nearly prime order, and thais the order of the main
subgroup. Len be a positive integer less thayi2, and lets be as in (68). We define the
reducedr-adic NAFof n to be

RTNAF(n) := TNAF(p),
where
0 :=nmod3s.

It follows from Thm. 3 that RTNAKn) and TNARN) are equivalent with respect to
the main subgroup. Thus RTNAR) can be used in place of TNAR) for elliptic scalar
multiplication in the main subgroup. It follows from the next theorem that this is a more
efficient choice.

THEOREM4 The average Hamming weight among redu€®hF's is ~ m/3.

Proof. Since the Hamming weight of an RTNAF is the product of its length and its density,
we estimate both. We begin with the length.
It follows from (21) that

r=2"2 (V- 1) 22 (71)
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thus
r = 2m—2+a + O(Zm/Z)

by (18). Now

4
N <=r
(p)_7

by (64), so that

m+-a

N(p) < + 0(@2"3).

By (53), we may conclude that the lengthrnar Of RTNAF(n) satisfies
LrTNAE < M4 a+ .7082392
Sinceltnar is an integer, it follows that
LrinaE S M+ A (72)

We now consider the density of a RTNAF. B. Poonen has outlined a tbaf the
TNAF's of integers modula™ — 1 have average density3 + o(1) asmincreases. The
proof is easily modified to the case of RTNAF's. The result now follows via (72). &

It follows from (54) that the RTNAF has about half the weight of the ordinaadic NAF.
By (8), the weight of RTNAN) is about equal to that of NA®). Thus, replacing NAF)
by RTNAF(n) eliminates the elliptic doubles and keeps roughly constant the number of
elliptic additions. We have therefore solved the difficulty mentioned at the end of §4.3.

7. Elliptic Scalar Multiplication on Koblitz Curves

We have now identified the procedure to use for elliptic scalar multiplication on a Koblitz
curve, namely the analogue of the binary method using the RTNAF. We now present the
explicit algorithms for computing the RTNAF, and give the elliptic scalar multiplication
algorithms. Finally, we develop theadic analogue of the window method.

7.1. Computing the Reducettadic NAF

To give an algorithm for computing the reduceédic NAF, we need only specialize the
modular reduction algorithm (62) to the case of reducing an integeodulos.

Thus we sey := n, and let§ = dy + d; t be the nornmr- element given by (68). Then
the integergy; appearing in (62) are

g=sn,
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where
S = do+pudy
S = —di.
The integers can be expressed in terms of the Lucas sequeipaga
(=1
s =—— (1-uUnizai), (73)

f

where f is as in (11) andk is as in (14). Since the Lucas sequehlgecan be computed
efficiently, so can the integess. They need only be computed once per curve. Once that
is done, the reduction method is as follows.

ROUTINE 74 (REDUCTION MODULO (t™ — 1) /(t — 1)))

Per-Curve Parameters:
m, a, S, S, I

Input:
n

Output:
integers p, r; specifyingp+rit :=nmod(z™—1)/(r — 1)

Computation:
do <~ St+us
Ao < Sn/r
AL < S1n/r
(Qo, G1) < Round (%o, A1) (via (60))
fro<N—doCo— 2501
1< S10o— S0
Output rg, rq

Note that one could stog rather than computing it during each reduction. This would
save one integer addition per reduction, but require an additierma} 2 bits of memory.

It will be helpful to have a geometric description of the the elementssulting from
reducing moduld the integers with 0 < n < r. Following [4], we define th&/oronoi
region

Vi={Xr:Arel}
More explicitly, V is given by the equations
—r
—2r
—2r

IA

(2do+ pd) Ao+ (udo+4dp) Ag <t
(do+4ud)ro— @Budg—2dy) A1 < 2r
(do—3ud) Ao+ (@A udg+2dy) Ay < 2r.

A

IA
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PrROPOSITION75 The lattice points
MF+AT, A EZ
in V are precisely the elements

nmods, 0<n<r. (76)

Proof. It follows from (63) that every element (76) must be a lattice poin?inVe must
now prove the conversee. that every lattice point itV is the result of reducing modulb
an integen.

We know that every lattice point il is the result of reducing modulban element of
Z[t]. Since the lattice points are incongruent modilthis means that they correspond to
the elements af[t]/§ Z[t]. Now, sinces has nornr, then

Zltl] _ Z

§Z[t]  rZ

Thus there are precisetylattice points in). Finally, since
ZNSZtl=rZ

(see [23]), the integers A, ..., r — 1 are incongruent moduly thus the elements (76)
are distinct. Thus each of tlidattice points inV is an element (76) for sonme ]

Finally, we combine the modular reduction routine (74) with Alg. 1 to obtain the following
algorithm for computing the reducedadic NAF.

ALGORITHM 2 (Reduced-adic NAF)

Parameters:
m, a S, S, I

Input:
a positive integer n

Output:
RTNAF(n)

Computation:
Compute p < n mods (via (74))
Compute S < TNAF(p) (via Alg. 1)
Output S
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7.2. Thet-adic Method for Elliptic Scalar Multiplication

We now apply the reducettadic NAF to produce an efficient procedure for performing
elliptic scalar multiplication on the main subgroup Bf(Fom). This is done by modify-

ing Alg. 2 in the same way as was done for (4). This produces the following analogue
of (6).

ALGORITHM 3 Scalar Multiplication on Koblitz Curves

Per-Curve Parameters:
m, a, S, S, I

Input:
n, apositive integer less than'2
P, apointinthe main subgroup

Output:
nP

Computation:
Compute (rg,r1) < nmods (via (74))
Set Q <« O
Po ~ P
While rg#0 or ri #0
If ro odd then
set U< 2—(ro—2r; mod 4
set rop<ro—u
if u=1then set Q<« Q+ P
if u=-1then set Q<« Q-—FP

Set Py« 1Py (=RightShift[ Po])
Set (ro,r1) < (fr1+uro/2, —ro/2)

EndWhile

Output Q

Since¢ ~ m, then Alg. 3 requires~ m/3 additions and no doubles. This is at least
50% faster than any of the earlier versions, as shown in Table 1. The “length” and “den-
sity” columns in Table 1 give the approximate length of the relevant representation of the
number and the average density of nonzero terms. The density figuy8 é63Koblitz’
“balanced” expansions is from experimental observation and may be only an approxima-
tion.

It should also be noted that the advantage of the thradic methods over the general
methods is slightly overstated in Table 1, since doubling is more efficient than adding on a
general elliptic curve.
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Table 1.Comparison of elliptic scalar multiplication techniques.

Avg. # of
Type of Length of  Avg. Elliptic
Curve Method Expansion Density Operations
General Binary Method m 1/2 3m/2
" Addition-Subtraction  (1989) m 1/3 4m/3
Koblitz  Koblitz, Balanced (1991) i  3/8 3m/4
" Meier-Staffelbach (1992) m 1/2 m/2
r-adic NAF (1997) m 1/3 m/3

7.3. The Widthw r-adic NAF

It remains to extend Alg. 3 to a*adic window method” analogous to (10). In order to do
this, we first develop a widths T-adic NAF.

In order to motivate our method, we recall the strategy used in the ordinary width-
window method. With that method, we precompute and store the poidtasu runs
over representatives of each odd congruence class (fhpd\®hen an odd integet is
encountered, the rightmost bits are examined to determine which congruence class (mod
2") containsc. The corresponding poietP is subtracted off, and the new coefficient e
is divisible by 2°.

For ar-adic window method, we precompute and store a point corresponding to each
odd congruence class (med). (By “odd” is meant that the elemegj + e; T has odd.)
When an odd elemeng +r; t is encountered, we must determine which congruence class
(modt™) containg +r; r. We can then subtract off the representative of that congruence
class and produce a new coefficient which is divisibler 5y

In analogy with the ordinary case, we can make the determination by examining the
rightmost bits of the appropriate combinatiorrgiandr;. Define the quantitie via

t ;= 2Ux 1 Ut (mod ).

Since the Lucas elemeritk are odd, it follows thaty is a well-defined integer moduld 2
that is even but not divisible by 4. Therefore

t2—ute+2=0 (mod 2

by (20). Thugy satisfies the same polynomial equation dige 7 thatr satisfies over the
complex numbers. Itfollows thatthe correspondenee ty induces aring homomorphism
from Z[t] onto Z/27Z via

o Z[t] — 727
Ug+ Ui T —— Ug+ Ugtg.

It is easy to see that the odd elementZpf] correspond precisely to the odd elements of
7.)2¢7.
We now compute the kernel of the mapping
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LEMMA 77 Leta € Z[z]. Thengy(a) = 0if and only if« is divisible byz.

Proof. Since¢y(r) = t = 2 (mod 4), it follows thaip (t)) = tli is divisible by 2 but
not by 2+1. Thus the power of 2 dividingy(«) is the power ofr dividing a. [ |

It follows that each congruence class (md{ in Z[z] corresponds undefy with an
element ofZ/27Z. Moreover, the odd congruence classes (mbyin Z[z] correspond
undergy with the odd elements &t /2XZ.

We now apply these results to construct a widtiFNAF. It follows from the above
correspondence that the odd numbers

+1, £3,..., @1 -1

are incongruent module”. Therefore, if
oy ;=umodt’,

then the numbers
taq, *as, ... a1

alsoincongruent moduld”. If one precomputes the numbess then there is the following
simple algorithm for generating a width-r-adic NAF.

ALGORITHM 4 (Width-w t-adic NAF)

Parameters:

a, w, t,

ay:=Pu+wr foru=13 ..., 2 1t-1
Input:

an elemenp :=rg+ryt of Z[7]

Output:
TNAF, (p)
Computation:
Set § « ()
While rog#0 or ri #0
If ro odd
then
set U< rg+rqt, mods?
if u>0
then
£« 1
else
E«— -1
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U< —u
set ro<«ro—£&RpBy
set r1<—r1—éyu
prepend oy to S
else
prepend O to S
Set (ro,r1) < (r1+puro/2,—ro/2)
EndWhile
Output S

As before, we define theduced widthw t-adic NAFof n to be
RTNAF,,(n) := TNAF,(p),
where
0 :=nmods.

The following algorithm uses the reduced widthz-adic NAF to perform elliptic scalar
multiplication.

ALGORITHM 5 t-adic Widthw Window Method

Per-Curve Parameters:
ml a., &)l sll r1 wl tw
ay:=Pu+wr foru=13 ..., 2 1-1

Input:
a positive integer n
an elliptic curve point P

Output:
the point nP
Precomputation:
ComputeP, := oy Pforu=1, 3, ..., (2*"1 -1)
Computation:
Set j <0
Compute (ro,r1) :=n mod & (via (74))
Set Q<+« O
While rg#0 or r; #0
If ro odd
then
set U<«rg+ryt, mods?
if u>0
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then
E<«1
else
£« -1
U<~ —u
set Q« Q+&PR,
Set j«—j+1
Set Q <« 1t71Q =LeftShift[ Q]
Set (ro,r1) < (ri+ uro/2, —ro/2)
EndWhile
Set Q< 7lQ =RightShiff Q] (j times)
Output Q

Alg. 5 is a right-to-left window algorithm. We saw in 83.2 that this is usually impossible,
but it can be done in the case of Koblitz curves because the Frobeniuscaage inverted
efficiently.

7.4. Performance

We now discuss the performance of Alg. 5.
The precomputation involves computing and storitig2- 1 points. For practical values
of w, this requires 22 — 1 elliptic additions and no storage beyond that needed to store
the precomputed points. We illustrate for=5,a = 1.
In this case, the precomputation is to prodag® foru = 3, 5, 7, ..., 15. The numbers
ay have the following TNAF's.

o3 = 'L'2—1
oy = 7?41
o7 = —‘L'3—1
g = —1°—134+1=—-13a5+1
o1 = —1:4—r2—1:—12a5—1
13 = —T4—‘52+1=—‘L’20{5+1

15 = ‘L’4—l

Therefore, the point®, := «, P can be computed as follows.

P; = ?P—-P
Ps = 1P+ P
P, = —°P—-P
Po = —t°Ps+ P
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Table 2.Performance at various widths.

Number of Elliptic Operations

Width Precomp- Real Time  Total

utation (avg) (avg)
2 0 543 543
3 1 408 418
4 3 326 356
5 7 272 342
6 15 233 383
7 31 204 514

P]_]_ = —‘L’2 P5 - P
P13 = —‘L’2 P5 + P
Ps = t*P—-P

Since multiplication byt is essentially free, computing each potrequires one elliptic
addition.

This approach works for alb from 3 to 8, and most likely for largap as well.

The main computation is performed on a sequence of lergth and average density
(w 4+ 1)~L. It follows that a scalar multiplication 0B, (Fon) requires

w2 _qp M
2 1+ "] (78)
elliptic additions on average.

Table 2 gives the performance of Alg. 5 on the cuB4€[F:es) for various widths, based
on the estimate (78). (Entries are rounded to the nearest tenth of an integer.) The case
w = 2 is just Alg. 3. By choosingv = 5, one saves well over one-third the work. For
largerw, the precomputation costs overshadow any savings on the real-time computation.
Thus such larger widths would only be used for a long-term fixed pBi(¢.g.a public
key).

Itis remarkable that one can perform a general elliptic scalar multiplicatidey (fpzs:)
using only about 34 multiplicative inversions and 68 field multiplications.

One could obtain still further speedups by using more general window methods. These
would be straightforward adaptations of existing methods such as those found in [13].
On the other hand, such methods are less automatic than the above fixed-width-window
technique, so that more complicated up-front calculations are needed.

8. Efficient Modular Reduction

The modular reduction algorithm (74) is central to computing the reduesdic NAF, but
it can be expensive to implement. The main computational difficulty is in the divisions
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necessary in computing the expression (61). The purpose of this section is to present an
equivalent method which is far more efficient.

8.1. Partial Modular Reduction

The equivalent method involves replacing the modular reduction process (74) by a simplified
technique calleghartial modular reduction As a result, one obtains an element Z[t]
that is congruent ta modulog, but not necessarily of minimal norm.

This is done by replacing the rational numbeérsby approximations.; which can be
computed more efficiently. We denote 6ythe number of bits of accuracy of the approxi-
mationsk;. The largerC is, the more work is required in computing, but the greater the
likelihood thatx{ will actually equalj; .

We begin by presenting the algorithm for computiigWe call this procesapproximate
divisionbecause itreplaces the division used to comguigr by two K -bit multiplications,
where

_ m+5
T2

ALGORITHM 6 (Approximate Division by r)

K : +C. (79)

Per-Curve Parameters:
S, I
Vi (seeg4.1)

Input:
a positive integer n less than2?

Output:
Ai =5 n/r to C bits of accuracy

Computation:

, n
1 n < Lzm—K—Z-&—aJ
2 g<«<sn

/ g
4§ < Vph

5 ¢ < Round (92K+_é )

6 Output A :=¢/ 2° .
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When the output of Alg. 6 is used in the modular reduction process (74), the resulting
algorithm is what we calbartial reductionmoduloé := (z™ — 1)/(z — 1). We shall write

o' = npartmods
for the result. The explicit algorithm is as follows.

ALGORITHM 7 (Partial Reduction modulgr™ — 1)/(z — 1))

Per-Curve Parameters:
m, a S, S, I

Input:
n

Output:
integers §, r; specifying § + r; t := npartmod

Computation:
do <~ S+ us
Ay < S n/r to~ K places via Alg. 6
Ay <= sin/r to~ K places via Alg. 6
(94, A1) < Round(ag, 1))
ro < n—doy— 25101
i< S0y —So0;
Output 1, 1]

We define thepartially reducedr-adic NAFof n by
PRTNAKN) := TNAF(p").
The elemenp’ is congruent tan modulog, since
pl=n—«'$

wherex’ := qy+0; 7. Therefore, PRTNAH) and TNARN) are equivalent with respect to
the main subgroup. Thus PRTNAB can be used in place of TNAR) for elliptic scalar
multiplication in the main subgroup.

On the other handp’ may not be of minimal norm, agp would have been. Thus
PRTNARN) may be longer than RTNA®). If so, then more elliptic operations will
be required in the scalar multiplication step. This would mitigate, and in all likelihood wipe
out, the savings in avoiding the integer divisions in (74).

We examine this question inthe next section. In particular, we shall prove that PRINAF
is never much longer than RTNAR). More importantly, we will show that the probability
that RTNARN) # PRTNARN) can be made arbitrarily small, so that the possibility need
not trouble us in practice.
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8.2. Analysis of Partial Modular Reduction
We begin by analyzing the computational requirements of the partial modular reduction
process.

PrOPOSITION8O Partial modular reduction, as implemented by Algs. 6 and 7, requires
eight K-bit multiplications and no integer divisions, where K is given by (79).

Proof. Since Alg. 7 requires two executions of Alg. 6 (one for eagha total of eight
multiplications is required. No integer divisions are required since all denominators are
powers of 2, so that the required divisions are implemented by simple bit shifts.

The only remaining issue is the number of bits in the numbers to be multiplied. Those
numbers are’, h’, Vi, do, ands andg fori = 0, 1. Each must be less thafh i absolute
value.

The desired bound om follows from the fact thah < r/2. The bounds fos, dy, and
Vi come from (18) via (73). From these bounds is derived the bourid faiong with

M| < 2mv72
for eachi. Thus|q/| < 2K. [
We next address the accuracy of partial modular reduction.
THEOREMS |If ; := gi/r, and{ is the approximation obtained by Alg. 6, then

A — A < 27°C.

Proof. It follows from (71) that

g G Vn—Dg . (Vm—D?g
T T om-a+2 + 22m—a+2 22my ’
so that
Oi gi Vim Gi —m/2
T = om-a+2 + 22m-a+2 +0(2 i )-
Therefore
2€g Oi Vi K —m/2
r om-K-af2 <1+ 2_m> +0@"™). (81)

Now it follows from the definition ofy’ that

Ji /
omkaz 9| <Isl
Thus by (81),
2K, v,
rgI =g+ ggmm +60s +0@"™?)
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for somefy with |6g| < 1. It follows from the definition ofj’ that

o (A V/
| om

< |Vml.

Thus
2“g Y K—m/2
TZQ + "+ 60S +61Vm+ O(2 )

for somef, with |9;] < 1. It follows that

2K Gi / Y
o =g+ ] +0(sl+ [VmD
for somed with |6] < 1. Now

S|+ [Vim| < 2%+mW/2 4 p(m-1/2

< 2M+3)/2
< 2K7C71
so that
2K X
9 (g + )| < 2¢-c-1.
It follows that
g g+ _1
r 2K-C 2’
so that
2C X
rg' — | <1

Dividing this equation by € gives the result.

8.3. Worst-Case Effect of Partial Modular Reduction

In this section and the next, we retain the notaiop for the results of modular reduction
and«’, p’ for the results of partial modular reductionmfnodulos.

We have seen that

4
N <=
(p)_7r,

SOLINAS

and that therefore the TNAJ) has length at mosh + a. (See Thm. 4.) We now obtain

corresponding results far'.
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LEMMA 82 If p’ := npartmods, then
2 2
N(p") < <77 + N(E)) r,
wheres =k — «’.
Proof. Since
p'—=p = N—k'8) —(N—«ké)
= &3,

then

VN() = VN(p) +v/N(e) v©
by the Triangle Inequality (23). The result then follows from (64). ]
THEOREMG6 If C > 2, then the length dPRTNAKN) is at most m4-a + 3.

Proof. By Thm. 5,

1
% =2 < 2

for eachi. It is easy to deduce thatandl’ are either in the same copy &f or adjacent
copies. It follows that the centers of those copies satisfy

k—k' =0, £1, £7, or £ 7.
ThusN((k — «’) < 2, so that
N(p’) < 4.7095185

by (82). It follows via (53) that the length of TNAJ’) is less tharm + a + B, where
B = 3.7511737. The result now follows from the fact that the length must be an inmger.

Thm. 6 states that the upper bound for the length of the PRTNAF is three bits higher than
the corresponding bound for the RTNAF. In any given instance, the difference in length
need not be three bits, since neither TNAF need attain its maximum possible length. Indeed,
we will next prove that the two TNAF’s are identical almost all of the time.

8.4. Practical Effect of Partial Modular Reduction

PROPOSITION83 Let T > O and A := g/r, where g is an integer not divisible by r for
which

lgmodsr | < % —-T. (84)
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(The “mods” notation is as ir§3.2.) If z is a rational number with
T
|Z - }"| < —,
r
then
Round(A) = Round(z).
Proof. The inequality (84) can be rewritten as
)| = LT
-2 r

If « = Round(}), then,

N |<l T
K _2 r.
Therefore
z—«| < |Z=Al+ |2 —«|
T+ 1 7T
- — - _
r 2
1
=< )
- 2

so thatRound(2) = «.

SOLINAS

COROLLARY 85 Let T > 0, and let s be an integer not divisible by r.<lfs a real number

with
le] < —,
r

then

sn sn
Round (r_> = Round (r_ + s)
for all n betweerD and r/2, with at most T exceptions.

Proof. By (83), the only exceptions are the valuesidbr which

! T < |snmods| r
- — < Z.
2 - 2

The following result is proved similarly to (85).

168



EFFICIENT ARITHMETIC ON KOBLITZ CURVES 239

PROPOSITION86 Let T > 0, and let s be an integer not divisible by r. If

sn sn
r r
for all n betweer0 and r/2, with at most T exceptions.

LEMMA 87 Letr be an odd prime, and lepsind § be integers not divisible by r. For n
an integer betwee@land r/2, let; := s n/r fori =0, 1. For each i, write

A=A+
where

5l< T (®9
Then

Round (Ao, A1) = Round (g, A7)

for all values of n with at most4 L exceptions.

Proof. We examine the quantitie§, »;, andh; which are computed in the course of
executing the algorithm (60) dry+ A1 7, and compare them to the corresponding quantities
f/, n{, andh{ from the same computation o + 2} 7.

It follows from (85) withT := L ande := &g that fg = f; for all n with at mostL
exceptions. Similarly,f; = f; for all n with at mostL exceptions. Therefore, we have
fi = f/ for bothi, for all n with at most 2. exceptions.

For each nonexceptional we have

i = + 3
for eachi. It follows that
In—n'| = 1280+ w61
3L

< —.
r

It follows from (86) withT := 3L ande := n — ' that
ln] = Ln']
for all n with at most & exceptions. For thesg

n>lifandonlyify’ > 1
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and
n < —lifandonlyifn’ < —1.
Similarly, one finds that
no — 3uny > 1lifand only ifny — 3un; > 1,
no — 3un1 < —Llifand only ifng — 3un; < -1
for all n with at most 4. exceptions; and that
no + 4umn1 > 2 if and only if ng + 4un) > 2,
no + 4uny < —2 ifand only if ny + 4uny < —2

for all n with at most & exceptions.

It follows that all of the above conditions hold for a| with at most 14 exceptions.
For each nonexceptiona) we havef; = f for bothi, and all of theéf conditions in (60)
evaluate the same for the two computations. Thus= h{ fori = 0, 1. It follows that
Qo = gy anday = 0, for each nonexceptional

THEOREM7 If partial modular reduction with an accuracy of C bits is used, then the
probability thatp # p’ is less than

Prob < 27€-9,
Proof. LetL := 2Cr. Then (88) holds by Thm. 5. By (87), the numbemofor which

o # p’is at most 14_; thus the probability that this happens is at most

14L 1
—_— < .
r/2 265

8.5. Conclusion

We now summarize the advantages and disadvantages of partial modular reduction.
If ordinary modular reduction (74) is used, then faUbit multiplications are required,
whereK := (m+ 3)/2. Also, two divisions are required, where the dividend-i8m/2
bits in length and the divisor is m bits.
Using partial modular reduction (Algs. 6 and 7) with accur@dyas the following effects.

e The two divisions are no longer required.
e Four additional multiplications are required.
e The bit length of the integers to be multiplied is increasedby 1.

e An answerp of non-minimal norm can be obtained with probability2= (-9,
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One can often choog@ large enough that no non-minimal answer will be encountered
in practice, at little practical cost. For examplenif= 163, then a multiplier of at least
83 bits is required. The likeliest available multiplier sizes are 96 or 128 bits. In the former
case, one can choo€e:= 12, for an non-minimal answer at most once every 128 times. In
that case, about three bits will be added to the TNAF, for an increase of about 1.8%. Thus
the average cost comes to .08%, well worth it to avoid the divisions. For the latter case, one
can choos€ up to 54, guaranteeing that non-minimal answers will not occur in practice.

9. Recent Developments and Open Problems

Since the publication in the Proceedings of CRYPTO '97 of many of these results, the
following advances have been made in the study of Koblitz curves.

e The results of [18] have recently been generalized [19] to curves defined over fields
of 29 elements for smalli. For example, the curves with complex multiplication by
(£1+4 /—15)/2 are defined ovef. (The results of this paper should also carry over
to this more general situation.)

e Analogues of Koblitz curves over fields of small odd characteristic have been studied
[12], and representations analogous to thadic NAF (but with even fewer nonzero
terms) have been obtained.

e Ithas been observed [3], [24] that the best square-root attack on elliptic curves [20] can
be modified in the case of Koblitz curves. Rather than working with the points on the
curve, one instead works with the cycles under the Frobenius operation. The resulting
algorithm requires fewer steps than in the general case; however, each step is slightly
more expensive.

e Finally, C. Qinther and A. Stein have extended the concepts in this paper to the case
of hyperelliptic curves [5].

The following are open problems in this field.

e We have presented worst-case upper bounds for the length of TNA# terms of
N(x). It may be more useful to possess analogous average-case results. For example,
let

F (o) i= £(er) — 10g,(N(a))
for a € Z[t], wheref(«) denotes the length of TNAE). It follows from (53) that

—.5462682713< F(x) < 3.51559412

whenever/(a) > 30. It would be a nice result to prove the existence of an average
value forF («) and to evaluate it. (Note that the examples at the end of 84.3 prove that
there is no asymptotic value fér(«) asN(«) gets large.)
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e ltis often required€.g.in many cryptographic algorithms such as the ECDSA digital

signature [8]) to take a random multiple of a point on an elliptic curve. More precisely,
let P be in the main subgroup of a Koblitz curve of very nearly prime order. To take a
random multiple ofP, one generates a random integanodulor, reduces it modulo

the elemend given in (68), and uses the resplto computep P. The techniques in this
paper provide a particularly efficient way of doing the latter, but it would be cheaper
still to produce a random point in the main subgroup directly. This could be’dnpne
generating a “random-adic NAF” of lengthm + a.

By a “randomr-adic NAF” we mean a sequence of 0's ahd’s which is generated as
follows. Generate the first signed bit according to the following probability distribution:

0 prob=1/2
u:= 1 prob=1/4 (89)
—1 prob=1/4.

To generate subsequent signed bits, follow eatdhby a 0, and generate each signed
bit following a 0 according to (89).

The sequences generated in this way represent random selections from the set of all
t-adic NAF’s of given length. In particular, each signed bit occurs with the proper
average frequency.

Once the sequence is generated, one compulewhereq is the element represented
by the sequence.

This method gives random points, but their distribution is not known. Itwould be useful
to measure how uniformly distributed such points are in the main subgroup.

More precisely, it follows from the proof of Thm. 4 that every r has areduced-adic

NAF of length at mostn + a. Thus every point in the main subgroup can be obtained
by scalar multiplication using some nonadjacent sequence-pfa signed bits. It is
easy to see that the number of such sequences is the integer clog&stitty2. Since
there are ~ 2M~2+2 points in the main subgroup, the average number of sequences
leading to a given point is 1@. It would be useful to know how much deviation there

is from this average.

A. Main Subgroup Membership

In this appendix we state and prove the conditions that are used in 84.1 to determine when
a point on a Koblitz curve of very nearly prime order is an element of the main subgroup.
We work on a general Weierstrass curve

E:y’+xy=x3+ax’*+b

over GF(2™). It should be recalled that the order BfG F(2™)) is always even, and
divisible by 4 if and only ifa has trace O.
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PROPOSITION9O Let(Xz, y2) be a pointon E. Then

(X2, ¥2) = 2(X1, Y1) (91)

for some(xy, y1) on E if and only if Tr(xp) = Tr(a).
See [21].

PROPOSITION92 Suppose that a has tra€e Let (x4, y4) be a pointon E. Then

(Xa, Ya) = 4 (X1, Y1) (93)
for some(xy, y1) on E if and only ifTr(x4) = 0 and

Tr(ya) = Tr(% Xa) (94)
for some satisfying

MHai=x4+a (95)

Proof. Suppose first that (93) holds for sorpe, y;). Let
(X2, ¥2) i= 2(X1, Y1),

S0 that(Xy, Y4) = 2(X2, ¥2). By (90), it follows that

Tr(X4) = Tr(x2) = 0. (96)
Let
Ai=Xo+ E; ©7)
X2

then it follows from the doubling formula that (95) holds and that
Va = X34+ (A + 1) Xg. (98)

Since T(x2) = Tr(xp), it follows (via (96)) that (94) holds.

Conversely, suppose now that(Xy) = 0, and that (94) holds for some for which
(95) holds. Then in fact (94) holds faither value of A satisfying (95). It follows
from (90) that(xs, Ya) = 2(Xp, y2) for some(x,, y2) on E. We may conclude that
(97) holds (where we have replaceédoy A + 1 if necessary). Moreover, (98) holds,
so that

Ya+ AXs = X5 + Xa.

It follows that Trx3) = 0, so that T¢xp) = 0. By (90), it follows that(xz, Y2) = 2 (X1, Y1)
for some(xy, y1) on E. Thus(X4, V4) = 4 (X1, Y1). |
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B. Gaussian Normal Bases

In anticipation of the specific Koblitz curves presented in Appendix 9, we describe the
Gaussian normal basis representation for the binary Gg2™).

Let m be prime, and leT be an even positive integer for whigh:= T m+ 1 is prime.
Then a Typél Gaussian normal basis exists 8F (2™) if and only if mis relatively prime
to (p — 1)/k, wherek is the order of 2 modulg. For each primen, a TypeT Gaussian
normal basis exists for sonfe To maximize efficiency, the lowest available valu€eTois

used.
Once the typd has been identified, the multiplication rule can be constructed. One first

constructs a functiof (u, v) on inputs
U= (UgUz ... Un_1)

and
v=(vv1 ... Um-1)

as follows. Letu be an integer having ordeF modulo p. Compute the sequence
JQ), J(2),...,Jd(p—1) as follows:

1 Set w<«1
2 For j from Oto T-1do
21 Set n<«w
2.2 For i from 0 to m-—1 do
221 Set  J(n) <
2.2.2 Set n<«2n mod p
2.3 Set w <« uw mod p

ThenF is given by the formula

p-2

Fuv = Z Ugk+D) VI(p—k)-
k=1

This computation need only be performed once per basis. Given the furicfam, one
computes the product

(CoC1...Cm-1) = (@0 @1...8m-1) x (bpby...bn_1)

as follows.
1 Set (UgUp ... Um_1) < (@@ ... @8m_1)
2 Set (vovy ... VUm_1) < (bo b]_ - bmfl)
3 For k from 0 to m-—1 do
3.1 Compute ¢ := F(U,v)
3.2 Set U «LeftShift  (u) and v «LeftShift (v),
where LeftShift denotes the
circular left shift operation.
4 Output Cc:=(CpCy ... Cm-1)
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Example: For the type 4 normal basis f@ F(2), one hasp = 29 andu = 12 or 17.
Thus the values of are given by

F1)=0 F® =3 F15=6 F(22=5
F@=1 FO=3 F16 =4 F(23 =6
F@ =5 F10=2 FA7)=0 F24=1
F4hH=2 FAD=4 F18 =4 F(25 =2
FG =1 F12=0 FA19 =2 F(26 =5
F6) =6 F13=4 F(20=3 F2n=1
F(7’=5 F(14=6 F2) =3 F(28 =0

Therefore
FU,v) = Uov1+ Ui (vo+ v2+ s+ ve) + Uz (V1 + v3 + v4 + v5)
+ U3 (V2 + vs) + Ug (v2 + ve) + Us (v1 + v2 + v3 + vp)
+ Ug (v1 + v4 + vs + ve).
Thus, if
a=(1010113 and b=(1100003,

then

F((1010113, (1100003}) =1,
F((0101113, (100001}) =0,

Co

C1

e = F((11010113,(1110000)=1,
sothatt=ab=(1011001. O

C. Standard Curves

The following five Koblitz curves appear in the document “Recommended Elliptic Curves

for Federal Government Use,” issued July 1999 by NIST and available on their website
http://csrc.nist.gov/encryption.

Each curve has very nearly prime order. For each curve is given a bas&psitiGy, Gy)

generating the main subgroup.

Curve K-163
a=1
r = 5846006549323611672814741753598448348329118574063

Polynomial Basis  ¥3+t"+t6+t3+1
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Gy = 2 fel3c053 7bbcllac aa07d793 dedeb6d5e 5c94eee8
Gy = 2 89070fb0 5d38ff58 321f2e80 0536d538 ccdaa3d9
Typed Normal Basis

x = 0 5679b353 caa46825 fea2d371 3ba450da 0c2a4541
Gy = 2 35b7c671 00506899 06bac3d9 dec76a83 5591edb2

Curve K-233

a=2>0

r = 34508731733952818937173779311385127605709409888622521263280
87024741343

Polynomial Basis ~ #3+t™+1

Gy = 172 32baB853a 7e731afl
29f22ff4 149563a4 19c26bf5 0a4c9d6e efad6126
Gy = 1db 537dece8 19b7f70f

555a67c4 27a8cd9b f18aeb9b 56e0cl110 56faeba3

Type2 Normal Basis

Gy = ofd e76d9dcd 26e643ac
26flaa90 1aal2978 4b71fc07 22b2d056 14d650b3

Gy = 064 3e317633 155c9e04
47ba8020 a3c43177 450ee036 d6335014 34cac978

Curve K-283

a=20

r = 38853377844514581418389238136470378132848117337930613242958
74997529815829704422603873

Polynomial Basis ~ ¥+t +t" +t54+1

Gx = 503213f 78ca4488 3fla3b81 62f188e5
53cd265f 23cl567a 16876913 b0Oc2ac24 58492836
Gy = lccda38 0flc9e31 8d90f95d 07e5426f

e87e45c0 e8184698 e4596236 4e341161 77dd2259

Type6 Normal Basis

Gy = 3ab9593 f8db09fc 188fld7c 4ac9fcc3
e57fcd3b  db15024b 212c¢7022 9de5fcd9 2ebOea60
Gy = 2118c47 55e7345c dsf603ef 93b98b10

6fe8854f feb9a3b3 04634cc8 3ale759f 0c2686bl
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Curve K-409

a=2>0

r = 33052798439512429947595765401638551991420234148214060964232
43950228807112892491910506732584577774580140963665906§17731
358671

Polynomial Basis ~ 19 +1t8 +1

Gy = 060f05f 658f49c1 ad3abl189
0f718421 0efd0987 e307c84c 27accfh8 f9f67cc2
c460189e bb5aaaa62 ee222ebl b35540cf €9023746

Gy = 1e36905 0b7c4e42 acbaldac
bf04299c 3460782f 918ead27 e6325165 e9%ealle3
dabf6c42 e9c55215 aa9ca27a  5863ec48 dB8e0286b

Type4 Normal Basis

Gy = 1b559c7 cha2422e 3affel33
43e808b5 5e012d72 6calOb7e6 a63aeafb cle3a98e
10caOfcf 98350c3b 7f89a975 4a8eldcO0 713cecda

Gy = 16d8c42 052f07e7 713e7490
eff318ba labd6fef 8a5433c8 94b24f5¢ 817aeb79
852496fb ee803a47 bc8a2038 78ebflc4 99afd7d6

Curve K-571

a=2>0

r = 19322687615086291723476759454659936721494636648532174993286
1762572575957114478021226813397852270671183470671280082535
1461273674974066617311929682421617092503555733685276673

Polynomial Basis ~ Y1+t 4+t54+t24+1

Gx = 26eb7a8 59923fbc 82189631
f8103fe4 ac9ca297 0012d5d4 60248048 01841ca4d
43709584 93b205e6 47da304d b4ceb08c bbdlba39
494776fb 988b4717 4dca88c7 €2945283 a01c8972

Gy = 349dc80 7f4fbf37 4fdaeade
3bca9531 4dd58cec 9f307a54 ffc6lefc 006d8a2c
9d4979c0 ac44aea7 4fbebbb9 f772aedc b620b0la
7ba7aflb 320430c8 591984f6 0lcd4cl4 3eflc7a3

TypelONormal Basis

Gy = 04bb2db a418d0db 107adae0
03427e5d 7ccl39ac hb465e593 4fObea2a h2f3622b
c29b3d5b 9aa7alfd fd5d8be6 6057c100 8e71e484
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bcd98f22 bf847642 37673674 29ef2ec5 bc3ebcf7

Gy = 44cbb57 de20788d 2c952d7b
56¢f39bd  3e89b189 84bd124e 751ceff4 369dd8da
c6a59e6e 745df44d 8220ce22 aa2c852c fcbbef49
ebaa98bd 2483e331 80e04286 feaa2530 50caff60
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Notes

1. We restrict our attention to elliptic curves that are sigpersingularsince such curves are cryptographically
weaker than ordinary curves [16]. But see [12] for cryptographic applications of supersingular curves.

2. This does not cause confusion, because the origin is nevEér on

3. There do exist special-purpose improvements to the basic elliptic operatipfit4], but they are not relevant
to this paper.

4. ltis easy to prove there is no left-to-right method for computing the NAF. On the other hand, there exist signed
binary expansions that are as good as the NAF and that can be computed from left to right.

5. More elaborate window methods exist (see [4]), but they can require a great deal of initial calculation and
seldom do much better than the technique presented here.

6. Seege.g.[6].
As R. Schroeppel has remarked, these algorithms are also useful when using a polynomial basis, since squaring
is still relatively efficient in that case.

8. A brief summary of Poonen’s approach is given in [4] by D. Gordon, who has since presented a more detailed
version of the proof.

9. Thisis an adaptation of an idea of H. Lenstra (see [10]).

10. It was proved in (32) that 0 occurs with frequengg 2fter the initialt=1. It is easy to see that 1 ardl are
equally likely on average.
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