
POLLARD’S RHO ALGORITHM FOR ELLIPTIC CURVES

AARON BLUMENFELD

Abstract. Elliptic curve cryptographic protocols often make use of the in-

herent hardness of the discrete logarithm problem, which is to solve kG = P

for k. There is an abundance of evidence suggesting that elliptic curve cryp-
tography is more secure than the classical case. One reason for this is the best

known general-purpose algorithm to solve the elliptic curve discrete logarithm

problem is Pollard’s Rho algorithm, which has exponential time complexity
O(

√
n), where n is the order of the elliptic curve.

In this paper, we explore Pollard’s Rho algorithm. In particular, we show
that it only requires O(1) space complexity. This is an astronomical improve-

ment over the related Baby-Step Giant-Step algorithm, which requires O(
√
n)

time and space complexity. We also investigate different methods of defining
the sequence of points used in Pollard’s Rho algorithm and discuss their effects

on efficiency.

1. Introduction

Given a cyclic group G, the discrete logarithm problem asks us to solve gx = y
for x, where g, y ∈ G and x ∈ Z≥0. (In fact, x can be taken to be modulo n = |G|.)
There are numerous general algorithms for solving the discrete logarithm problem
in any cyclic group G. These are all applicable to elliptic curves, although not
necessarily efficient. (Technically, an elliptic curve may not be cyclic, but the base
point generates a cyclic subgroup.) The most naive method is an exhaustive search:
simply iterate over the possible values of x and try each one.

An improved algorithm is Baby-Step Giant-Step. This algorithm creates lists of
values gi and yg−mj for all 0 ≤ i, j < m, where m = d

√
ne. Once a match is found,

gi = yg−mj , so x ≡ i+mj (mod n). A match is guaranteed to be found because x
can be written uniquely as x = i+mj in base m. The problem with this algorithm
is that it also requires O(

√
n) storage space.

An improvement is to use Pollard’s Rho algorithm, which also has O(
√
n) time

complexity, but only O(1) space complexity. This algorithm is described in detail
in the next section.

2. Pollard’s Rho Algorithm

In this section, we describe the original version of Pollard’s Rho algorithm. Al-
though this algorithm is a general-purpose algorithm that can be applied to any
cyclic group G, we will describe it using the notation of elliptic curves.

Let E be an elliptic curve over F2k with n points. Our goal is to solve for k in
the equation kP = Q.

Date: December 5, 2015.

1



2 AARON BLUMENFELD

We should point out that unlike Baby-Step Giant-Step, Pollard’s Rho algorithm
is probabilistic, which means it will finish within the expected running time with a
high probability. But there is no guarantee it will finish this quickly.

We first partition E into three subsets S1, S2, and S3. The Si should be roughly
the same size. For example, we can do this by reducing the x-coordinate modulo
3 (and making an arbitrary choice for which set to place ∞ in). Or we could use
projective coordinates and reduce the y-coordinate modulo 3 (since ∞ = (0 : 1 : 0)
in projective coordinates).

We now choose a starting point A0 = αP as a scalar multiple of the base point.
α could simply be 1, or it could be randomly chosen modulo n. We now let

Ai+1 = f(Ai) =


Ai + P if Ai ∈ S1,

2Ai if Ai ∈ S2,

Ai +Q if Ai ∈ S3.

The terms of the sequence Ai then take the form Ai = ajP + bjQ. Once we
discover an equality Ai1 = Ai2 , we have aj1P + bj1Q = aj2P + bj2Q, which means

that
aj1

−aj2

bj2−bj1
P = Q. We can then easily find k provided that gcd(bj2 − bj1 , n) = 1.

In fact, even if gcd(bj2 − bj1 , n) = d > 1, we can compute
aj1

−aj2

bj2−bj1
(mod N/d).

There are then d possibilities for k, which is only intractable for large d. In practice,
however, d is quite small, especially if E is chosen so that n is prime. [1]

Actually, it’s not very important which set ∞ gets hashed to. Indeed, suppose,
for example, that Ai = 3P + 5Q ∈ S2 and Ai+1 =∞. This means that 6P + 10Q =
6P + 10kP = (10k+ 6)P =∞. In this case, 10k+ 6 ≡ 0 (mod n) (or modulo some
proper divisor of n if P generates a proper subgroup of E), which means we can
easily solve for k.

Unlike the Baby-Step Giant-Step algorithm, however, Pollard’s Rho algorithm
only requires O(1) space complexity. The naive implementation would be to store
all the results in a table of size O(

√
n), sort the table, and look for a match. But

in fact, we only need to look at pairs (Ai, A2i)i≥1.

2.1. Proof of Correctness. Why should there be a match in this narrow sequence
of points? Certainly there will be an equality of the form Ai = Aj at some point.
This is because the elliptic curve has only finitely many points, so our sequence of
points must be ultimately cyclic. Given the existence of such an equality, it follows
that Ai+k = Aj+k for all k ≥ 0. Since we want an equality of the form Ai = A2i,
we set 2(i + k) = j + k and solve for k. This has the solution j − 2i. Indeed, we
then have Ai+j−2i = Aj+j−2i, or Aj−i = A2(j−i), as desired.

We require j ≥ 2i, however. But this assumption is not stifling. Indeed, if
Ai = Aj but j < 2i, then we know we have a cycle of length j − i (or a divisor
of j − i). We can find an integer r with r(j − i) ≥ i. In this case, we know
Aj = Aj+r(j−i), which must also be equal to Ai. Since r(j − i) ≥ i and j ≥ i, it
follows that j + r(j − i) ≥ 2i, and we can assume without loss of generality that
our initial match Ai = Aj satisfies j ≥ 2i. What we are doing here is traversing
the cycle multiple times.

To give a concrete example, suppose we find that A5 = A8. In this case, our
original j − 2i would be −2, which does us no good. But we see that there must
be a cycle of length 3 (or possibly 1), so A5 = A8 = A11. Since 11 ≥ 2 · 5, we can
then let k = 11− 2 · 5 = 1, and see that A5+1 = A11+1, or A6 = A12.



THE POLLARD-RHO ALGORITHM FOR ELLIPTIC CURVES 3

3. Increasing the Number of Partitions

How fast should a match be found? If we view our function as producing a
graph, where the vertices are the points of E, and there is an edge Pi → Pj

whenever f(Pi) = Pj , then this graph will look like the Greek letter ρ: there will
be a tail followed by a cycle. It can be shown that, for a random map f , the tail
length and the cycle length each have expectation

√
πn/8 [2]. Therefore, a match

should be found within 2
√
πn/8 =

√
πn/2 iterations.

Unfortunately, there is evidence to show that with our choice of function f , the
number of iterations exceeds the expected

√
πn/2 required iterations by about 28-

35% [3]. One possible explanation for this is provided by an analysis of the different
cases. The rule Ai +P only takes one step, and the rule Ai +Q only takes k steps,
which could be fairly small. With such small steps, it could take considerably longer
to walk through the the tail and the cycle and find a match. [3]

Research has indicated, however, that increasing the number of partitions im-
proves the randomness of the function f , which improves the performance of the
algorithm.

In order to do this, we first need to hash the points (x, y) ∈ E to the set
{1, . . . ,m}, where there are m partition elements. Again, it is not important what
set ∞ gets hashed to. It turns out that hashing based on the x-coordinate is just
as effective as using the y-coordinate. Since the x-coordinate is a polynomial, we
can represent it as a binary vector and view it as a non-negative integer (for the
purposes of hashing). We then partition the points evenly into m subsets of size
2k/m.

We define Mj = ajP +bjQ, where the aj ’s and bj ’s are randomly chosen modulo
n. We finally define f(Ai) = Ai +Mj when Ai ∈ Sj , where Sj is the jth partition
element.

The best choice for m in simulating a random function f seems to be in between
20 and 30 [3]. However, there is evidence that for m around 60, the function f
performs more efficiently than a random map by about 6% [3].

4. Future Work

This research topic could be continued in a couple of different ways. First,
the data referenced in this paper was gathered for curves over F28 . Of course,
these curves are too small to be considered for real cryptographic applications.
Unfortunately, curves over, say, F(2163) would be too large to gather statistics on.
But certainly fields larger than F28 could be used for further analysis.

Secondly, this research could be extended to curves over prime fields Fp. Most
of the details would be the same, except for how to hash the points. But hashing
would actually be simpler. For example, one could just reduce the x-coordinate
modulo m, and pick a random set Si to place ∞ in (or ignore ∞ altogether).

References

[1] Washington, Lawrence C., Elliptic Curves: Number Theory and Cryptography, Chapman
& Hall, Boca Raton, FL, 2nd. Ed., 2008.

[2] P. Flajolet and A. Odlyzko, Random Mapping Statistics. In Advanced in Cryptology—
EUROCRYPT ’89 (Houthalen, 1989), volume 434 of Lecture Notes in Comput. Sci., pages
329-354. Springer, Berlin, 1990.



4 AARON BLUMENFELD

[3] Lamb, Nicholas, An Investigation into Pollard’s Rho Method for Attacking Elliptic Curve

Cryptosystems. 2002.

E-mail address: ablumenf@u.rochester.edu


