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Pollard’s Rho Algorithm

Consider the elliptic curve E over F2k , where |E | = n.

Assume we want to solve the elliptic curve discrete logarithm
problem: find k in Q = kP.
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Pollard’s Rho Algorithm

I Partition E into S1 ∪ S2 ∪ S3, where the Si are similar in
size.

I Choose Ai ∈ E as some scalar multiple of P.

I Let Ai+1 = f (Ai) =


Ai + P,Ai ∈ S1,

2Ai ,Ai ∈ S2,

Ai + Q,Ai ∈ S3.
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Pollard’s Rho Algorithm

I Image credit: Washington [1]
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Pollard’s Rho Algorithm

The terms of the sequence then take the form Ai = ajP + bjQ.

Once we see an equality Ai1 = Ai2 , we have

aj1P + bj1Q = aj2P + bj2Q,

which means that
aj1 − aj2
bj2 − bj1

P = Q.

The ECDLP can thus be solved provided that
gcd(bj2 − bj1 ,n) = 1.
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Pollard’s Rho Algorithm

I In fact, even if gcd(bj2 − bj1 ,n) = d > 1, we can compute

aj1 − aj2
bj2 − bj1

(mod N/d).

I There are then d possibilities for k , which is only
intractable for large d .

I In practice, however, d is quite small, especially if E is
chosen so that n is prime.
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Pollard’s Rho Algorithm

Unlike Baby-Step Giant-Step, only O(1) space complexity is
required:

Start with the ordered pair (A1,A2). Given (Ai ,A2i), we can
compute (Ai+1,A2i+2) = (f (Ai), f (f (A2i))).
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Pollard’s Rho Algorithm

Why does this find a match?

I Suppose Ai = Aj . Then Ai+k = Aj+k for all k ≥ 0.
I For k = j − 2i(≥ 0), we have Ai+j−2i = Aj+j−2i , or

Aj−i = A2(j−i).
I Note that j − i ≥ i by construction since j ≥ 2i .
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Performance Issues

I However, it turns out that this function f performs
approximately 33% more slowly than the expectation.

I It can be shown that the tail and cycle length both have an
expectation of

√
πn/8.

I Therefore, a cycle should be detected within
2
√
πn/8 =

√
πn/2 iterations.
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Increasing Number of Partition Elements

I Research has indicated that using more than 3 partition
elements improves the randomness of the function f .

I This improves the performance of the algorithm.
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Increasing Number of Partition Elements

In order to do this, we can hash the points (x , y) ∈ E to the set
{1, . . . ,m}.

I It turns out hashing based on the x-coordinate is just as
effective as using the y -coordinate.

I Since the x-coordinate is a polynomial, we can represent it
as a binary vector and view it as an integer for the
purposes of hashing.

I We then partition evenly into m subsets of size
2k

m
.
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Increasing Number of Partition Elements

I We define Mj = ajP + bjQ, where the a′js and b′j s are
randomly chosen modulo n.

I We then define f (Ai) = Ai + Mj when Ai ∈ Sj .

Aaron Blumenfeld Pollard’s Rho Algorithm for Elliptic Curves



Pollard’s Rho Algorithm
Partitions

Future Work
References

Increasing Number of Partition Elements

I The best choice for m in simulating a random function f
seems to be in the range [20,30].

I However, there is evidence that for m around 60, the
function f performs more efficiently than a random map by
about 6%.
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Future Work

I Collect statistics for curves over larger binary fields (the
data gathered was for curves over F28).

I Perform similar analysis for curves over Fp.
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