DEPARTMENT OF COMPUTER SCIENCE UNIVERSITY OF CALIFORNIA SANTA BARBARA, CS 290G FALL TERM 2015 1

Advantage of using Elliptic curve cryptography in
SSL/TLS

Benjamin Clement Sebastian(benjaminclementsebastian @umail.ucsb.edu)
& Ugur Alpay Cenar(ucenar@umail.ucsb.edu)

Abstract—Mobile and wireless devices is experiencing an explo-

sive growth. These devices have strict Power, CPU power, mem-
ory, bandwidth and latency constraints, which makes it important
to have an efficient cryptosystem. It is also important for the web
performance in general to have an efficient cryptosystem. Today
is RSA an widely used public-key cryptosystem.The problem with
RSA is that it requires large key sizes which can lead to lower
bandwidth and higher CPU usage. Elliptic Curve Cryptography
(ECC) is emerging as an attractive public-key cryptosystem. It
offers equivalent security level with smaller key sizes, which can
lead to faster computation and lower power usage.
SSL/TLS is the most widely used security protocol on the web,
so more efficient SSL/TLS will have a significant impact on the
web performance. This paper compares those two cryptosystems
to see if ECC gives significant advantage over RSA regarding to
performance when implemented in SSL/TLS protocol.

I. INTRODUCTION

The use of Internet has grown exponentially the last decade
and it will continue to grow. With the rapid deployment of
online applications like online banking and stock trading there
is a need for not only to have the most secure transmission
of data, but also the fastest available. These days it has
been a growing trend to use mobile and wireless platform as
Internet hosts, which has battery, power and CPU limitations.
Today the most common protocol for secure transmission of
data through the web is SSL/TLS, and is using public key
cryptography to derive symmetric keys and then use symmetric
key cryptography to ensure confidentiality. RSA is the most
commonly used public key cryptosystem used in SSL/TLS.
As cryptoanalysis is getting better and more advanced, it
requires that both symmetric and public key size to grow in
size. The bigger the key size, the more computer resources
must be used. Since 2011, NIST has recommended to use
key-size of 2048 bit for RSA algorithm and recommends to
increase the key-size to 3072 bit after 2030 for maximum
security. Elliptic Curve Cryptography(ECC) is emerging as an
attractive alternative to RSA. ECC offers equivalent security
with smaller key sizes resulting in faster computations and
lower power consumption. This paper describes and compares
those two cryptosystems implemented in SSL/TLS on the web.

II. SSL/TLS OVERVIEW

Secure Sockets Layer (SSL) and it successor Transport
Layer Security (TLS) are security protocols that enables
privacy between two communicating applications. This is
protocol is mainly used in HTTP, but are also utilized for
other protocols like FTP and SMTP. ECC was first included

in this protocol with release of TLS 1.0. In rest of this paper
the phrase SSL are going to be used for both TLS and SSL,
because both are frequently referred to as SSL in public.
Two communicating applications needs to use the same
master key for encryption and decryption. This can be agreed
by SSL handshake.

The Handshake protocol goes like:

Algorithm A: SSL handshake

p—

Client: ClientHello message to the server.

2 Server: Selects cipher suite El, which can be (ECDH-
ECDSA-AES256-SHA) E] and sends it back as Server-
Hello message.

3 Server: Sends ServerCertificate message which contains
ECDH public-key signed with ECDSA to protect against
Man-In-The-Middle attack.

4 Client: Validates the signature and sends back Clien-
tKeyExchange message that contains client ECDH
public-key

5 Both use their own private key to arrive at shared master

secret and all further messages will be encrypted.

The SSL handshake can be computational expensive in
cases where a mobile client is present. In some cases the same
master secret can be used in several sessions. This can avoid
unnecessary handshakes. The RSA cryptosystem is the most
widely used public key cryptography algorithm in the world.
In SSL the RSA algorithm is used in the handshake between
a server and the client and is used to exchange the private key,
for confidentiality, and digital signatures, for authentication.

III. OVERVIEW RSA

RSA derives its security from the difficulty of integer
factorization of large integers which are the product of two
large prime numbers. The key generation is as follows, the two
prime numbers are first generated using Rabin-Miller primality
test algorithm. The product of those two primes is the modulus
n, and is used by both the public and private key.The totient
¢(n) = (p—1)(¢ — 1) is computed. A number e is selected
such that 1 < e < ¢(n). n and e comprise the public key. The

'Includes: client supported SSL protocol version and supported cipher
suites.

2Both client and server have to support the cipher suite

3Cipher suite tells what kind of encryption protocol are going to be used.
In this case ECDH are used for key-exchange, ECDSA for signature, AES256
for bulk-encryption and SHA for message authentication

DEPARTMENT OF COMPUTER SCIENCE UNIVERSITY OF CALIFORNIA SANTA BARBARA, CS 290G FALL TERM 2015 2

private key d is computed such that d x e mod ¢(n) = 1, and
by using the extended Euclidean algorithm d can be found. So
after the symmetric key has been generated it can be encrypted
using the RSA public key and transmitted over to the recipient
and decrypted with the corresponding private key. So now both
parties have the private key. The other use of RSA in the SSL
handshake is digital signatures and it works as follows. The
sender creates a hash of the message, encrypt it with the RSA
private key of the sender. Then the recipient can verify that
the message has not been altered with by decrypting the hash
value with the sender’s public key. If the value matched the
hash of the original message, then it has not been altered with.

IV. ELLIPTIC CURVE CRYPTOGRAPHY (ECC)
BACKGROUND

The strength of every public-key cryptosystem is that it is
an easy mathematical problem if you have the private key.
But to crack the system the cracker needs to solve the discrete
logarithm problem which can be very difficult mathematical
problem to solve. The difficulty of the problem, which
determines the security of the cryptosystem, is determined
by the key size. The problem is that larger key size means
more computation, which makes the system slower and the
system needs to use more power in total. The advantage
of ECC is that it needs smaller key-size to get equivalent
security compared to traditional cryptosystems like RSA.
Cryptosystems like RSA can be attacked in sub-exponential
time while it takes exponential time to attack ECC. In the
table below you can see the key-sizes that gives equivalent
security.

TABLE 1
COMPARABLE KEY SIZES

[Symmetric (bits) | ECC (bits) [RSA(bits) |

80 160 1024
112 224 2048
128 256 3072
192 384 7680
256 512 15360
Elliptic curve cryptography(ECC) was suggested

independently by Neal Koblitz and Victor S. Miller in
1985. ECC has been widely used cryptographic method since
2004. ECC operates over group of points on a elliptic curve,
unlike RSA that operates over integer fields. Elliptic curve is
a plane curve over a finite field, which have points that is
satisfying the equation y? + ayzy + a3y = 2° + asx + ag
including the point at co.

What makes ECC secure is the Elliptic curve discrete
logarithm problem (ECDLP). If you have given points P
and Q = [k]P, then it is hard to find the integer k. From
the user side, k can be chosen randomly, and @ = [k]P can
be calculated using scalar point multiplication, which can
be performed by using combination of point-addition and
point-multiplication. But calculating k from @ = [k]P is
infeasible, which makes ECC secure.

V. ELLIPTIC CURVE DIFFIE-HELLMAN (ECDH)

In SSL the ECC curve y? = 23 + azx + b is usually used.
This curve is of the simplified Weierstrass form.
To use ECC in cryptography, both sides of the communication
have to agree on public domain parameters. Domain param-
eters for an elliptic curve, describes elliptic curve E defined
over a finite field IF, with base point P € E(F,) with order
n. The domain parameters consists of [4]]

o Finite field F, where ¢ is the field order (usually prime
number).

o Two coefficients a,b € F, that defines the equation for
the elliptic curve E over IF,.

o A point P = (z,y) € E(F,) with the order of n such
that nP = 0,this point is also called the base point

o the cofactor h = L E(FF,). Where it is important that n is
large and h is small to be secure against Pohlig-hellman
and Pollar-rho attacks.

These combined makes
(q7 a, b7 Pa n, h’)

the public domain parameters

Elliptic curve Diffie Hellman key exchange (ECDH) and
Elliptic Curve Digital Signature Algorithm (ECDSA) is two
important algorithms used in SSL.

To make an Elliptic curve Diffie Hellman key exchange
(ECDH), both parts (Alice and Bob) must use same public
domain parameters (q,a,b, P,n, h) that is agreed upon.
Algorithm B: ECDH

1 Alice and Bob agree on domain parameters with elliptic
curve group ¢ of order ¢ and a primitive element P € ¢
which is public

2 Alice selects integer k, € [2,q — 1] and computes Q) =
[ko]P and sends it to Bob

3 Bob selects integer k, € [2,¢ — 1] and computes R =

[kp) P and sends it to Alice

Alice receives R and computes S = [k, R
5 Bob receives Q and computes S = [k|Q

e Then: S = [k,]R = [ka][ks] P = [kb])Q = [k][ka] P =
[kq * ky mod q) P

Ilustration of the algorithm can be seen on figure

The private key is held private and only the owner of the

private key knows the private key. So no other that Alice

can determine Alice’s private key, unless someone can solve

ECDLP. And no one but Alice and Bob knows the shared

secret key, unless someone can solve Elliptic curve Diffie-

hellmann problem.

EN

VI. ELLIPTIC CURVE DIGITAL SIGNATURE ALGORITHM
(ECDSA)

For a SSL connection to be in place, some crucial things
needs to be in order. Among them it’s needed to verify that
the sender is who it says it is. A digital signature allows the
recipient to verify the message’s authenticity. The ECDSA
works as follows. Alice wants to sign a message with her
private key, d4, and Bob wants to validate the signature using
Alice’s public key, (). Nobody but Alice should be able to

DEPARTMENT OF COMPUTER SCIENCE UNIVERSITY OF CALIFORNIA SANTA BARBARA, CS 290G FALL TERM 2015 3

Both agreed on (p,a,b,P,b,h)

Bob

E generate k, and solve [ky,]P

»
»

Alice
E generate k, and solve [k,]P
ﬂ send [k,]P

send [kp]P

<
<

E calculate S=[kpk,]P E
H calculate S=[kyk,]P

Fig. 1. Illustration of how ECDH works (S is the shared master secret)

produce valid signatures. They’re using the same domain
parameters. First, the message is hashed, converted to a much
smaller and fixed length message, using a chosen hashing
algorithm, for example Secure-Hash-Algorithm-2 (SHA-2). A
secure hash has a number of properties that makes it secure,
for example 1) irreversibility, nearly impossible to convert
it to the original message, 2) collision resistance, chances
are very small to find another message which have the same
hash value as the original message, and 3) any change in
message will produce a significant change in hashing value.
The hashing value is denoted h(m). The algorithm works as
followed [3]:

Algorithm C: ECDSA signing

Input: e(a,b,p) with order n and the primitive element
P ¢ ¢ with order n

Private key is random integer d € [2,n — 2]

Public key is a point on the curve) = [n]P

Output: Signature of the message m: (sy, S2)

Generate random integer r € [2,n — 2]

Compute [r]P = (z1,y1)

Compute integer s; = 1 (mod n)

If s; =0, stop and go back to step 1

Compute 7~ (mod n)

Compute sy = r~1(h(m) + ds1) (mod n)

If s3 =0, stop and go to step 1

The signature on the message m is the pair of integers
(s1,52)

Algorithm D: ECDSA Verification

Input:the message m, and the signature (si, s2)

Verifier knows the domain parameters and the public key @
QOutput: Message is valid or not valid.

A R T

1: Compute w = s; " (mod n)
Compute u; = h(m)w (mod n)
Compute us = syw (mod n)
Compute [u1|P @ [us]@ = (x2,y2)
Compute integer v = x5 (mod n)
The signature is valid if v = s

PARRAIE R N

VII. COMPARING PERFORMANCE

To check if ECC gives significant performance improvement
over RSA in SSL protocol, both have to be tested in realistic
situation. There is couple of articles that have tested both
cryptosystems in SSL and compared the performance to see
what kind of improvement ECC gives over RSA. This paper
gives short summary of the performance test made by Sun
Microsystems [2] and Symantec [3].

A. Test methodology

The experiment from Sun Microsystems [2] was tested on
an Apache 2.0.45 web server using OpenSSL. The server was
an computer with 900MHz UltraSparc 3 processor with 2GB
ram and the client was running on 7 900MHz UltraSparc 3
processors with 14 GB ram. Server and client was connected
via 100Mb ethernet network.

In this test, two different cipher suites was used: RSA-
RC4-SHA and ECDH-ECDSA-RC4-SHA. where each cipher
suite was used with key-sizes 1024 bits and 2048 bits for
RSA, 160 bits and 224 bits for ECC. From table [it is
known that 1024 bits RSA gives same security as 160 bits
ECC and 2048 bits RSA gives same security as 224 bits ECC.

B. Desktop as client

One of the tests run by Sun MicroSystem compared

the First Response Time (FRT) as a function of Request
Per Second (RPS). FRT is the delay between initial SSL
handshake and when the client receives its first packet. This
is experienced as the latency between the user requests for a
website and seeing the first update on the browser window.
Request per second is how many page requests the server
gets at the same time.
This was tested with 30KB of page size with 60% session
reuse which means new session for every 3 fetches. The
results of the test can be seen on the figure [3| From figure
[3] it can be seen that with small key sizes there is not much
difference on the FRT between RSA and ECC, and the
difference increase for larger key-sizes. It can also be seen
that the server can handle up to 270% more requests with
ECC compared to RSA.

Another test from the paper [2] was comparing average time
taken by the server to fulfill HTTP fetch with public key with
no session reuse. This was tested with file sizes 0OKB, 10KB,
30KB and 70KB. The figure shows microbenchmark results
for ECC,RSA,RC4 and SHA. From the figure E] it can be seen
that RSA use most time for every file type and this time
increases exponentially with larger key-sizes. ECC reduces
total processing time by 29% to 86% compared with RSA.

DEPARTMENT OF COMPUTER SCIENCE UNIVERSITY OF CALIFORNIA SANTA BARBARA, CS 290G FALL TERM 2015

Other
SHA
RC4

I Public Key

Time (ms)

20-

15

10

| |

o Amllm sinil
MMM M M MMM MMM
K d T
+ > o hi @ o B R *
§2E8ES 82 FBEH2RE
DRSNS Sag =7 0
gEzEgE =8 283838
Z $8484%

Fig. 2. Relative cost in HTTP transaction (Figure 4 in paper [2])

.
RSA-2048

RSA-1024*

ECC-224 *

First-Response Time (s)

0150

os
0100 .
0.075 *
0.050 - L

005

B0 100

Requests per second

Fig. 3. Latency v/s Throughput plot for Apache web server. (Figure 5 in
paper [2])

C. Mobile device as client

Symantec [3] made an similar test, but they included a test
on an mobile device which was interesting. This was tested
on AT&T LTE network with an android phone(Samsung
galaxy s3). The cipher suites compared was ECDHE-ECDSA-
AES256-SHA and ECDHE-RSA-AES256-SHA which means
that both are using ECDHE as key-exchange algorithm but
using different authentication algorithms. The key sizes
compared was 256 bit ECC, 2048 bit RSA and 3072 bit RSA.
An Apache server using OpenSSL was used in the test. The
test compared Average response time as function of Request
per second. It was done with 90K page size with 68% session
reuse.

They ran the test several times and the result can be seen
on figure 4 What is interesting is that RSA beats ECC on
performance on this test for both 2048 bit and 3072 bit key-
size. Symantec concludes that the public-key cryptography
operations are more computationally expensive on the client
using ECC-256 bit. The difference in response time is not

ECC
160+

Apache ECC-256 vs RSA-2048 vs RSA-3072 Mobile 90k

2000
7 1800 \/_‘“‘—L_.—\,
= 1600
E
= 1400 e
-4
£ 1200 /
a
£ 1000 —ECC
o=
& 800 ~——RSA-2048
RSA-3072
Y
= 400
2
= 200

0

o 100 200 300 400 500

Desktop Throughput (Requests/sec)

Figure 11: 90K GET with 68% - Apache

Fig. 4. Mobile response time with 90k data(lower is better) (Figure 11 in
paper [3])

significantly large, and the mobile hardware performance is
rapidly increasing which will soon give the same performance
benefits using ECC on mobile client as using it on Desktop
client.

From the figure [d] it can also be seen that the server can handle
more requests per second with ECC-256 compared to RSA,
which is an interesting result when thinking that the amount
of mobile clients are increasing which will require to handle
more requests per second.

DEPARTMENT OF COMPUTER SCIENCE UNIVERSITY OF CALIFORNIA SANTA BARBARA, CS 290G FALL TERM 2015

VIII. CONCLUSION

From the analysis above, it can be seen that ECC cipher

suites give significant performance benefits over RSA used in
SSL with desktop as client. But with mobile client, the ECC
cipher suite gives poorer response time compared to RSA.
Symantec concludes that this happens because of the hardware
restrictions on the mobile client, which will not be a problem
when the hardware gets better.
Today, users are more sensitive on their on-line privacy and
the demand of using SSL protection for web-transactions
are increasing. This trend will give broader implementation
of ECC on web-transactions both on mobile and desktop
clients due to the performance benefits. Popular websites like
Facebook, Google, Youtube are now using ECC for encrypting
transactions and more and more websites are using ECC
because of its performance benefits.

REFERENCES

[1] Elliptic curve Diffie-Hellman, Wikipedia
https://en.wikipedia.org/wiki/Elliptic_curve_Diffie\OT1\
textendashHellman,

[2] Speeding up Secure Web Transactions using Elliptic Curve Cryptography
(ECC) by SunMicrosystems,
http://files.douglas.stebila.ca/files/research/papers/GSFCGEO4.pdf,

[3] Elliptic Curve Cryptography (ECC) Certificates Performance Analysis
by Symantec
https://www.symantec.com/content/en/us/enterprise/white_papers/b-wp_
ecc.pdf

[4] D. Hankerson, S. Vanstone, and A. Menezes. Guide to Elliptic Curve
Cryptography, page 172, Springer 2004

[5] Slide: 13eccalgs.pdf

[6] Slide: 09ecc.pdf

https://en.wikipedia.org/wiki/Elliptic_curve_Diffie\OT1\textendash Hellman
https://en.wikipedia.org/wiki/Elliptic_curve_Diffie\OT1\textendash Hellman
http://files.douglas.stebila.ca/files/research/papers/GSFCGE04.pdf
https://www.symantec.com/content/en/us/enterprise/white_papers/b-wp_ecc.pdf
https://www.symantec.com/content/en/us/enterprise/white_papers/b-wp_ecc.pdf

	Introduction
	SSL/TLS overview
	Overview RSA
	Elliptic curve cryptography (ECC) background
	Elliptic curve diffie-hellman (ECDH)
	Elliptic curve digital signature algorithm (ECDSA)
	Comparing Performance
	Test methodology
	Desktop as client
	Mobile device as client

	Conclusion
	References

