
1

Speeding up the Pollard’s Rho algorithm
Silje Christensen

christensen@umail.ucsb.edu
&

Simen Johnsrud
simejo@umail.ucsb.edu

Abstract—In order to understand the threat model of
elliptical curve cryptographic schemes it is important to
have the knowledge of how you can attack it. Pollard’s
Rho algorithm is one possible way to solve the elliptic
curve discrete logarithm problem (ECDLP)[1]. The algo-
rithm was introduced in 1978 [2], and during the past
four decades there have been several modifications to the
original implementation to reduce the time and storage
complexity.

In our paper we aim to give the reader an overview of
the Pollard’s Rho algorithm in order to understand how
we can speed it up. We will start by looking at the basic
concepts of it, and then study the existing methods which
can be applied to reduce the complexity.

Keywords—Pollard’s Rho algorithm, speeding up, elliptic
curve discrete logarithm problem, cycle-finding algorithm,
Brent.

I. OVERVIEW

The Pollard’s rho algorithm was introduced by the
British mathematician John Pollard[3]. The origin of
the name ”Pollard’s Rho” is based on the similarity
in appearance between the Greek letter ρ (rho) and
the sequence that the algorithm creates, as shown in
Figure 1. The tail length (t) is the amount of steps
before we enter a cycle, and the cycle length (s) is
the length from the start of the cycle until we get a
collision.

The input to the algorithm is the points P of the
elliptic curve over the field Fq. These points are di-
vided into L sets, called branches, of approximately
the same size, by using a partition function f . If f is
a random function, we can make some assumptions
about how long time it will take before we start the
cycle, i.e. the tail length t and the expected cycle
length s. We have that t ≈

√
πn
2

terms and s ≈
√

πn
8

[1], where n is the modulo. The output is the discrete
algorithm l = logpQ, which we will describe in the
next sections.

Fig. 1. Rho shape of the sequence Xi in Pollard’s Rho algorithm.[1]

A. Context
Recall that when we want to solve the elliptic

curve discrete logarithm problem (ECDLP), we have
an elliptic curve (E) defined over a finite field (Fq),
a point P of order n, a point Q which is one of the
points in P , and an integer l in the range [0, n− 1]
such that Q = lP . The integer l is called the discrete
logarithm of Q to the base P , denoted l = logPQ.
[1]

B. Core idea
Pollards rho algorithm finds distinct pairs (c′, d′)

and (c′′, d′′) of integers modulo n such that

c′P + d′Q = c′′P + d′′Q

which gives us

(c′ − c′′)P = (d′′ − d′)Q = (d′′ − d′)lP

and then

(c′ − c′′) ≡ (d′′ − d′)l(mod(n))

and from there we can find l = logpQ by
computing

l = (c′ − c′′)(d′′ − d′)−1(mod(n))

2

The algorithm finds the pairs (c′, d′) and (c′′, d′′)
by defining an iterative function. When a point
cP + dQ occurs for the second time, we have a so
called collision, and the pair has been found. A col-
lision can be found by using Floyd’s cycle-finding
algorithm, also called the ”tortoise and hare” cycle
detection. This pointer algorithm uses two pointers
which move through the sequence at different speed
to find the first two points in the sequence with the
same value[4].

II. COMPLEXITY

The time complexity of Pollard’s rho is originally
approximately

√
n, where n is the modulo, in terms

of the input size in bits O(2k/2).[9]

III. ALGORITHM

Algorithm 1 is a pseuducode of the Pollard’s Rho
algorithm for the ECDLP on a single processor[1],
and should give the reader a better insight of how
the algorithm works.

IV. SPEEDING UP

The original algorithm created by Pollard has
been modified several times in order to speed up
the time complexity. We will take a look at some of
the major improvements on the algorithm.

A. Brent’s cycle finding method

In 1980 Richard P. Brent made a variant of
the cycle-finding algorithm. In this version we are
searching for the smallest power of two (2i) that is
larger than both t and s, were i = 0, 1, 2, ... The idea
is to compare 2i−1 with each following value up to
2i until a collision occurs, i.e. the hare and tortoise
have the same value.

By doing this he gained two advantages compared
to the initial Floyd’s cyclic finding algorithm. First,
it finds the correct length of the cycle length (s)
directly, and each step includes only one evaluation
of the function that maps the set, rather than three
evaluations.[5] If the cost of doing comparisons
are low, the algorithm may actually improve the
time complexity of the cycle finding algorithm by
30%.[6]. According to Brent, this would speed up
the Pollard’s rho algorithm by 24%.

Algorithm 1 Pollard’s rho algorithm for the ECDLP
on a single processor

1: procedure POLARD’S RHO
2: Select the number L of branches (e.g., L=16

or L=32)
3: Select a partition function H : 〈P 〉 →
{1, 2, ..., L}

4: for j from 1 to L do
5: Select aj , bj ∈R [0, n− 1].
6: Compute Rj = ajP+bjQ.
7: end for
8: Select c′, d′ ∈R [0, n−1] and compute X ′ =
c′P + d′Q

9: Set X ′′ ← X ′, c′′ ← c′, d′′ ← d′.
10: while X ′ 6= X ′′ do
11: Compute j = H(X ′). Set X ′ ← X ′+Rj ,

c′ ← c′ + aj mod n, d′ ← d′ + bj mod n.
12: for i from 1 to 2 do
13: Compute j = H(X ′). Set X ′′ ←

X ′′ + Rj , c′′ ← c′′ + aj mod n, d′′ ← d′′ + bj
mod n.

14: end for
15: end while
16: If d′ = d′′ then return (”failure”)
17: Else compute l = (c′ − c′′)(d′′ − d′)−1 mod

n and return (l)
18: end procedure

B. Parallelized Pollard’s Rho

Another way to speed up the algorithm is to run
it on multiple processors. The naı̈ve way to speed
up Pollard’s Rho when you got M processors is to
run the algorithm independently on each processor
with different randomly chosen starting points X0

until one of the processors finds a solution. The
expected number of elliptic curve operations per-
formed by each processor before one terminates is
about 3

√
n/M , where n is the modulo. As a result

of this observation the expected speedup is a factor
of
√
M . [1]

This can be improved to a factor of M by letting
the sequences generated by the different processors
collide with each other. To be more specific, the M
processors choose it’s own independently starting
point X0, but they all share the same iterating
function f to compute the next Xi points. As a result
of this, if two sequences from different processors
collide then the two sequences will be identical from

3

that point on.

C. Automorphism

By creating a group automorphism, which loosely
speaking is the symmetry group of the object, we
can make further improvement to the Pollard’s Rho
algorithm. In other words, this is a way of mapping
the object to itself while preserving all of its struc-
ture. It is defined by Ψ : 〈P 〉 → 〈P 〉, where P ∈

E(Fq).
The equivalence class [R], where R ∈ P , will

consist of all of the points satisfying R1 = Ψj(R2)
where j is an integer in the range [0, t− 1]. Here, t
is the order of the group and hence, the size of the
equivalence class.

How will this affect the algorithm? The idea is
to find a function that runs over the equivalence
classes rather then the points one by one, and replace
it in the Pollard’s Rho algorithm. Since Ψ is a
automorphism group, Ψ(R) = λ(R) for all points
R in 〈P 〉, where λ is an integer between zero
and n − 1. For each equivalence class we create a
unique representation [R], and then we can define
the iteration function g such that g(R) = f(R).
This function could then be used in the parallelized
Pollard’s Rho as the iterating function. As a result,
we achieve a speedup with the factor of

√
t (where t

is the size of equivalence class) over the parallelized
version. [1]

An example of an automorphism group is the use
of the negation mapping Ψ(P) = −P . This has
the order of two, hence we will gain a speedup
improvement of

√
2.

V. SPEEDING UP WITH TRADE-OFFS

All improvements wont necessarily affect the al-
gorithm in a pure positive way. Some of these may
win performance by sacrificing other resources or
risks, such as memory. We call it a trade-off.

A. GCD improvement
The earlier mentioned cycle finding algorithm

could be even faster, by implementing the improve-
ments made by Pollard and Brent based on calcu-
lating the greatest common divider. They showed
that if gcd(a, n) > 1 then gcd(ab, n) > 1,
where b is a positive integer. Instead of comput-
ing gcd(|x− y| , n) for each step, one can simply

calculate gcd(z, n) where z is the product of every
|x− y| - ending up with a huge performance gain.
However, this may cause the algorithm to fail due to
a repeated factor which may be introduced if n has
a certain value, e.g. if n is squared. If the algorithm
turns into a repetitive cycle, the algorithm should
go back to the last computed gcd and do the initial
formula. [7]

B. Faster cycle finding algorithm
There are a number of possible algorithms to

use in order to find the cycle. Some of these will
decrease the time complexity, but as a drawback in-
crease the memory usage. In general, these methods
store computed sequence values, and validates with
a hash function whether or not the new value equals
one of the previous ones. Sedgewick, Szymanski
and Yao provided one that can guarantee a number
of function evaluations, while Nivasch on the other
hand came up with one that does not use a fixed
amount of memory. However, these time improved
methods usually cannot be implemented into the
Pollard’s rho algorithm.[4]

VI. SUMMARY

From the very first release of the Pollard’s rho
algorithm, we have seen many enhancements. First,
Brand made an improvement to the cycle finding
algorithm resulting in a possible 30% gain compared
to Floyd’s version. Later in ’sectionV.B’ we saw
that by trading off memory, we could create an even
faster cycle finding algorithm. However, most of
these is not compatible to be used in the Pollard’s
rho algorithm.

Another improvement was made regarding the
use of multiple processors. Actually we may gain
a factor of a root square to the number of proces-
sors, M , due to the speed complexity. By letting
the sequences generated by the different processors
collide with each other, i.e. sharing state, the factor
can be improved to M .

Automorphism is another topic for speeding up
Pollard’s rho. With some mathematical operations,
we showed that instead of running the algorithm for
every single point, you could simply run it over a
group of points. This improvement would speed up
the algorithm with the square root to the number of
points in each group. As an example the negation
map gains a speedup of

√
2.

4

Finally, we mentioned some improvement that
came with a trade-offs. The theorem made by Pol-
lard and Brent could possible save a lot of gcd-
computations, but along with this improvement there
is a possibility of terminating the algorithm, which
is a drawback. We also discussed the opportunity of
improving the cycle finding algorithm, by trading
off memory.

VII. CONCLUSION

In this paper we have gained insight in how an al-
gorithm can be modified to improve the speed com-
plexity. This is an important factor when it comes
to solve elliptic curves discrete logarithm problems.
Further, we analyzed a collection of improvements
made to the Pollard’s rho, and witnessed many
interesting variations. All in all we have learned that
Pollard’s rho algorithm has been through a lot of
changes resulting in a massive speed improvement.

REFERENCES

[1] Hankerson, Menezes, Vanstone: Guide to Elliptic Curve Cryp-
tography, 2004, Springer-Verlag New York, Inc.

[2] Pollard, J. M. (1978). ”Monte Carlo methods for index compu-
tation (mod p)”. Mathematics of Computation

[3] https://en.wikipedia.org/wiki/John Pollard (mathematician),
November 29, 2015

[4] https://en.wikipedia.org/wiki/Cycle detection, November 27,
2015

[5] http://maths-people.anu.edu.au/ brent/pub/pub051.html, Novem-
ber 29, 2015

[6] http://maths-people.anu.edu.au/ brent/pd/rpb231.pdf, November
29, 2015

[7] https://en.wikipedia.org/wiki/Pollard’s rho algorithm, Novem-
ber 29, 2015

[8] http://maths-people.anu.edu.au/ brent/pd/rpb051i.pdf, November
29, 2015

[9] http://cs.ucsb.edu/ koc/ecc/docx/08dlog.pdf
[10] http://mathworld.wolfram.com/GraphAutomorphism.html

