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Supersingular Isogeny Key Exchange
Paul Galloway

Abstract— It is estimated that production-ready quantum
computers will become a reality within the next 15 to 20
years.[1] If such devices are realized in the near future then
many of the currently established public key encryption al-
gorithms (specifically RSA, Diffie-Hellman, Elliptic Curve
Diffie-Hellman, and Elliptic Curve DSA) will become inse-
cure and will need to be replaced. It is prudent for us to
begin considering such a scenario and to look into possible
replacements.

In this paper we review the post-quantum Key exchange
scheme known as Supersingular Isogeny Diffie Hellman
(SIDH). This type of key exchange provides forward secrecy
and any attack by a quantum system still takes exponen-
tial time.[6] Additionally, like the established Elliptic Curve
Diffie-Hellman system, SIDH provides similar key sizes and
computationally efficient implementations when compared
to established schemes.

Along the way we will mention some necessary mathemat-
ical constructs that will supplement our basic understanding
of Elliptic Curves. Supersingular elliptic curves and isoge-
nies between such curves will be explored. We will show how
such constructs allows us to thwart analysis by a quantum
system.[5] Finally, we will mention why such a key exchange
scheme is superior to other post-quantum systems such as
the McEliece system or NTRU.

I. Introduction

In a post-quantum cryptographic landscape many ap-
proaches will be insufficient. The widely used RSA system
will be obsolete. Any mechanism reliant upon the Discrete
Logarithm Problem will be vulnerable. As shown in [2]
the Elliptic curve variant of the Discrete Logarithm prob-
lem is not immune to quantum analyis. A fundamentally
different hard problem will be needed that maintains the
need for an exponential time attack, even with a quantum
computer. One such system involves Supersingular ellip-
tic curves and isogenies between these curves. Using this
scheme has many benefits. Firstly, it relies on many of the
same primitives used in common ECC implementations, so
existing systems can more easily be upgraded. Secondly, it
is not subject to any known patents and thus remains free
and open to the research community. What follows is an
overview of necessary mathematical concepts and how they
build on top of our basic understanding of elliptic curves.
We will then get to the actual key exchange algorithm and
discuss possible attacks on this system. We will conclude
by briefly comparing it to other non-ECC, post-quantum
cryptographic schemes.

II. Mathematical Background

Note: Some of the finer details are omitted for simplicity
but can be found in [7].
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A Supersingular Elliptic Curve

We consider the Elliptic Curve E described by the equa-
tion y2 + cy = x3 + ax + b and defined over Fq. Let p be
the characteristic of Fq . An elliptic curve E defined over
Fq is supersingular if p divides t, where t is the trace. If p
does not divide t, then E is non-supersingular.[3]

An elliptic curve E/Fq over a finite field of characteristic
p is said to be supersingular if E[p] = 0 (0 represents the
point at infinity). In this case E[pn] = 0 for all n. Oth-
erwise, E[pn] = pn for all n, and E is said to be ordinary.[5]

The motiviation for supersingular elliptic curves over or-
dinary elliptic curves is three fold[7].

1. Ordinary curves allow for a subexpontial quantum attack.
2. Ordinary curves are slow when used in such an
isogeny-based context.
3. Isogenies over supersingular curves have already found
success in the field of hash functions.

Isogenies

An isogeny is a non trivial, rational algebraic map φ :
E1→E2 between two elliptic curves such that φ(P +Q) =
φ(P ) +φ(Q) for all geometric points P,Q in E1. This map
is also a group homomorphism because the group opera-
tion (addition/multiplication) is preserved and maps back
to the same group of points. The two elliptic curves that
form such an isogeny must have the same number of points.
There exists a polynomical time algorithm to count these
points and therefore constructing an isogeny should take
polynomial time on a classical computer.[5]

To identify an isomorphism between curves we use what
is called the j-invariant. If two curves possess the same j-
invariant, they should be isomorphic. For an elliptic curve
given by the equation: y2 = x3 + ax + b the j-invariant is
given by:

j(E) = 1728 ∗ 4a3/(4a3 + 27b2)

Basic Examples

If E is an elliptic curve, the multiplication by [m] is an
isogeny. If E : y2 + cy = x3 + ax+ b is an elliptic curve de-
fined over a finite field Fq of characteristic p, the Frobenius
E→E(p), (x, y)p→(xp, yp) is an isogeny.

An isogeny f : E1→E2 transports the DLP problem from
E1 to E2. This can be used to attack the Discrete Loga-
rithm Problem on E1 if there is a weak curve on its isogeny
class (and an efficient way to compute an isogeny to it).
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If E1 and E2 are two elliptic curves given by Weierstrass
equations, a morphism of curve f : E1→E2 is of the form
f(x, y) = (R1(x, y), R2(x, y)) where R1 and R2 are rational
functions, whose degree in y is less than 2 (using the equa-
tion of the curve E1 ). If f is an isogeny, f(−P ) = −f(P ).
If char(k) > 3 we can assume that E1 and E2 are given
by reduced Weierstrass forms, this mean that R1 depends
only on x, and R2 is y time a rational function depending
only on x.

The set of isogenies of a supersingular elliptic curve,
together with the composition operation form a non-
abelian group and the added security of SIDH over non-
supersingular isogeny approaches is dependent upon the
resultant non-abelian structure. But the first layer of dif-
ficulty in attacking SIDH does rely upon the following
abelian problem.

The Hidden Shift Problem

Like any cryptographic scheme SIDH relies on a funda-
mentally ”hard” problem. In this case the hard problem
is the Abelian Hidden Shift Problem[7]. This problem is
stated as follows:

-Let A be a finite abelian group.
-Let S be a finite set.
-Let f: A→S and g: A→S be two injective functions.
-A b exists in A such that, for all x in A. f(x) = g(xb)
-The value that an attacker desires is b (the shift).

This can be easily re-formulated for elliptic curves.
Omitting some extra mathematical details we can say the
following:

-We have two isogenous curves E and E′.
-We say that f0(a) = a ∗ E and f1(a) = a ∗ E′.
-Then b ∗ E = E′.
-And f1(a) = a ∗ E′ = a ∗ b ∗ E = f0(ab).
-Solving the hidden shift problem on f0, f1 should yield b.

This relies on computing the group action for elliptic
curves and the time and space complexity of finding this is
exp((lnN)1/2).

Velus formula

Velus formula plays a key role in the construction of iso-
genies in SIDH. For simplicity, assume the characteristic of
K is not equal to 2 or 3. Let E : y2 + cy = x3 + ax+ b be
an elliptic curve in short Weierstrass form, with l odd. Let
F be a subgroup of E of order l. In [36], Velu showed how
to explicitly find the rational function form of a normalized
isogeny Φ : E→E0 with kernel F . The formula is presented
here. With F ′ = F − {∞}, P = (xP , yP ) ∈ F ′, and sums
taken over Q ∈ F ′.

Φ(P ) = xP +
∑

(x(P+Q) − xQ), yP +
∑

(y(P+Q) − yQ)

III. Supersingular Isogeny Diffie Hellman
Method

Description of the algorithm

The basic setup for SIDH is as follows (all parameters
here are public and agreed upon by both participants):

1. A prime of the form p := (weA
A ) ∗ (weB

B ) ∗ f ± 1.
(w’s are small primes, e’s are unrestricted exponents)
2. A supersingular elliptic curve E over Fp2 .
3. Fixed elliptic points PA, QA, PB , QB on E.
4. The order of PA and QA is (wA)eA .
The order of PB and QB is (wB)eB .

Using the common elliptic curve E above, the parties A and
B each create an isogeny based off of this curve. A random
point is chosen in what will be the kernel of their isogeny.
The two points chosen by each party (their P and Q) will
span this kernel. By using two points, this guarantees that
the two parties will not create two isogenies that commute.
Each party produces a random point in ther kernel of their
isogeny that is a random linear combination of their two
points P and Q. These random points are RA and RB in
the steps below.

Key Exchange [10]
Public: prime number p, supersingular elliptic curve
E/Fp2 , fixed elliptic points PA, QA, PB , QB on E
Alice: RA = mAPA + nAQA

φA : E → E/〈RA〉 Send E/〈RA〉, φA(PB), φA(QB) to Bob
Bob: RB = mBPB + nBQB

φB : E → E/〈RB〉 Send E/〈RB〉, φB(PA), φB(QA) to Alice

1: A generates two random integers
mA, nA < (wA)(eA)

2: A generates RA := mA ∗ (PA) + nA ∗ (QA)
3: A uses the point RA to create an isogeny mapping

ΦA := E→EA and curve EA isogenous to E
4: A applies φ to PB and QB to form two points on

EA := φA(PB) and φA(QB)
*Repeat steps 1-4 but with A and B subcripts swapped

5a: A sends to BEA, φA(PB) and φA(QB)
5b: B sends to AEB , φB(PA) and φB(QA)
6a: A has mA, nA, φB(PA), and φB(QA) and

forms SBA := mA(φB(PA)) + nA(φB(QA)).
7a: A uses SBA to create an isogeny mapping ψBA

8a: A uses ψBA to create an elliptic curve EBA

which is isogenous to E.
9a: A computes K := j-invariant(jBA) of

the curve EBA

6b: B has mB , nB , φA(PB), and φA(QB) and
forms SAB := mB(φA(PB)) + nB(φA(QB)).

7b: B uses SAB to create an isogeny mapping ψAB

8b: B uses ψAB to create an elliptic curve EAB

which is isogenous to E.
9b: B computes K :=j-invariant(jAB) of the

curve EAB
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The curves EAB and EBA will be guaranteed to
both have the same j-invariant. A function of K
is used as the shared key.

IV. Hardness and possible attacks

There is more than one possible attack against any
isogeny-based cryptographic scheme. We summarize them
in this section and discuss the efficiency of such attacks.
Each of these attacks relies on computing the group ac-
tion. To compute this group action and find b ∗ E we can
do it either directly or indirectly.

Direct Approach

The direct approach works with b directly. In this case
we try factoring b. This should take subexponetial time.
However this requires computing a classical modular poly-
nomial of level l which grows very large as l increases.

Indirect Approach

There is also an indirect way to compute b ∗ E much
faster. Using index calculus we can find a factorization of
[b]:

[b] = [pe11 p
e2
2 p

e3
3 ...p

et
t ]

Evaluating this should take subexponential time when
evaluating the above expression one (small) prime at a
time.

Supersingular Case

The previous two approaches apply to ordinary elliptic
curves. Because the outcome of these approaches is a sub-
exponential attack on the isogeny-based scheme, we need
something better. In [8] we see that the graph of supersin-
gular isogenies is an expander graph which is a Ramanun-
jan graph (this being the ideal condition for the graph).
In order to attack this isogeny-based scheme we must start
two random walks on the graph until a collision occurs.
Because of the features of these types of graphs the proba-
bility of landing on any given node is uniform. A collision
should occur after O(q1/4) where q is the group order and
therefore this is the difficulty of finding the specific isogeny
on an isogeny graph. In order to make this problem harder
SIDH uses Fp2 rather than Fp as shown in [9].

V. Comparison with alternatives

There are several different post-quantum cryptography
systems worth noting. Such systems include lattice-based,
hash-based, and code-based systems. Two key features of
such systems that should be emphasized are key sizes re-
quired and whether or not such schemes provide what is
called ”Forward Secrecy”. This feature means that the
compromise of one message in one session cannot be used

to compromise other messages sent in different sessions in
which a different random key is used. The lattice based
scheme Ring-LWE supports forward secrecy. Another well-
known lattice-based scheme NTRU does not provide this
feature. SIDH does provide forward secrecy, but also comes
out on top when it comes to key size. With a public, pri-
vate bit size of 3071 and 3072, respectively, it wins out over
its closest competitor NTRU which has 6130 and 6743, re-
specively.

VI. Conclusions

There are many different proposals for cryptographic
schemes that could one day replace existing schemes that
rely upon the Discrete Logarithm or Integer Factorization
Problems. Supersingular Isogeny Diffie Hellman (SIDH) is
a front runner in this competition. Isogenies using super-
singular curves already have found success in the construc-
tion of secure hash functions. Additionally, SIDH can be
built on top of existing ECC primitives and when com-
pared to other post-quantum schemes, SIDHs key sizes
clearly set it apart (which is of course consistent with the
lower key sizes of ECC schemes in general). Lastly, the
fact that SIDH does not fall under any filed patents makes
it very attractive when compared to pre-quantum schemes
such as RSA. Several implementations of it already exist
for both embedded[11] and non-embedded[12] applications
For these reasons, SIDH deserves serious consideration for
mainstream use in a post-quantum world.

References

[1] J. Utsler, “http://www.ibmsystemsmag.com/mainframe/trends/IBM-
Research/” IBM Systems Magazine, Sep. 2013.

[2] S. Green, C. Kizilkale, “http://cs.ucsb.edu/ koc/ecc/project/2015Projects”
Attacking the ECDLP with Quantum Computing, Nov. 2015.

[3] D. Hankerson, A. Menezes, S. Vanstone,
“http://cs.ucsb.edu/ koc/ecc/docx/GuideEllipticCurveCryptography.pdf”
Guide to Elliptic Curve Cryptography, Nov. 2015.

[4] “PATENTSCOPE,” World Intellectual Property Organization,
jun. 2014.

[5] D. Robert, “http://ecc2011.loria.fr/slides/summerschool-
robert.pdf” Isogenies and endomorphism rings of elliptic
curves, Sep. 2011.

[6] D. Jao, L. De Feo, “http://cacr.uwaterloo.ca/techreports/2011/cacr2011-
32.pdf” Towards quantum-resistant cryptosystems from
supersingular elliptic curve isogenies, June, 2011.

[7] D. Jao, “http://ecc2011.loria.fr/slides/jao.pdf” Isogenies in a
Quantum World, Sep. 2011.

[8] D. Jao, “http://www.prism.uvsq.fr/ dfl/talks/yacc-27-09-
12.pdf” Isogeny Graphs in Cryptography, Sep. 2011.

[9] S. Galbraith, “http://iml.univ-
mrs.fr/ati/geocrypt2013/slides/galbraith.pdf” Isogeny graphs,
algorithms and applications, Jan. 2013.

[10] Wikipedia, “https://en.wikipedia.org/” Wikipedia - Supersin-
gular Isogeny Key Exchange, Nov. 2015.

[11] Azarderakhsh, Fishbein, Jao, “http://cacr.uwaterloo.ca/techreports/2014”
Efficient Implementations of A Quantum-Resistant Key-
Exchange Protocol on Embedded systems, June. 2014.

[12] L. De Feo, “https://github.com/defeo/ss-isogeny-software”
Quantum-Resistant Cryptosystems from Supersingular Elliptic
Curve Isogenies, Nov. 2015.


