
The Elliptic Curve Diffie-Hellman (ECDH)

Rakel Haakegaard and Joanna Lang

December 2015

1 Introduction

Abstract: The Elliptic Curve Diffie-Hellman
(ECDH), a variant of the Diffie Hellman, allows
two parties that have no prior knowledge of each
other to establish a shared secret key over an in-
secure channel.[3] The Diffie-Hellman works over
any group as long as the DLP in the given group
is a difficult problem.[2] It is one of the first public
key protocols, and it is used to secure a variety of
Internet services. However, newly research from
October 2015 suggests that the security of Diffie-
Hellman key exchange is less secure than widely
believed, and maybe not strong enough to prevent
very well-funded attacks. We will first discuss the
usage and the security of the ECDH specificly, and
then look into the newly published article from
October 2015 [1] to see if the discoveries that have
been made also apply to the ECDH

2 Description of ECDH

The Elliptic Curve Diffie Hellman (ECDH) dis-
tincts from the general Diffie Hellman (DH) in
the way that it is based on the elliptic curve dis-
crete logarithm problem (ECDLP) instead of the
discrete logarithm problem (DLP). ECDH is an
anonymous key agreement protocol which allows
two parties, A and B, to establish a shared secret
key over an insecure channel, where each of the
parties have an elliptic curve public-private key
pair[7].

The ECDH works as follows. A and B agree on
the elliptic curve group E of order n and a primi-
tive element P in E, which then also has the order
n. E, n and P are assumed to be known to the ad-
versary. The ECDLP, which the ECDH is based
on, is defined as the computation of the integer k
given P and Q such that Q = [k]P . The ECDH
let A and B compute a shared secret key S, using

the property of the ECDLP as described below.
A selects an integer a in the range [2, n − 1],

computes Q = [a]P and sends Q to B. B on
the other hand selects an integer b in the range
[2, n − 1], computes R = [b]P and sends R to
A. A and B receives R and Q respectively, and
computes the shared secret key S; S = [a]R =
[b]Q = [a][b]P = [a ∗ bmod(n)]P . Both A and B
get the same value for S, and the shared key is
established.[2]

Figure 1: Elliptic Curve Diffie-Hellman key ex-
change method[2]

3 Security for ECDH

The computational elliptic curve Diffie-Hellman
problem (ECDHP) is the problem of trying to find
S=[ab mod(n)]P, given E, n, P and the two points
Q=[a]P and R=[b]P. This is the problem the ad-
versary will try to solve to get the secret key S,
and the ability to defeat this type of attacks is an
important part of the security of ECDH.

If the ECDLP in < P > can be efficiently
solved, then the ECDHP in < P > can also be ef-
ficiently solved by finding a from (P,Q) and then

1



computing S = [a]R. In other words, the ECDHP
is no harder than the ECDLP. It is unknown
whether the hardness of ECDHP is equal to the
hardness of ECDLP. Anyhow, for the ECDHP to
have a high degree of security, it is essential that
the corresponding ECDLP has a high degree of
security. This topic will be discussed in the fol-
lowing section.[8]

3.1 Security and hardness of the
ECDLP

The elliptic curve parameters for cryptographic
schemes should be carefully chosen to be able to
resist all known attacks on the ECDLP. The most
naive approach for solving the ECDLP is exhaus-
tive search, which can be defeated by choosing a
sufficiently large n (n >= 280). The best known
attack to the ECDLP is a combination of the
Pohlig-Hellman algorithm and Pollard’s rho algo-
rithm, with a running time of O(

√
(p)), with p

being the largest prime divisor of n. To defeat
this type of attack, one should choose the ellip-
tic curve parameters such that n is divisible by
a significantly large prime number p. The size
of p should be so large that

√
(p) steps is an in-

feasible amount of computation (p >= 2160).[8]

The ECDLP is believed to be infeasible by the
state of today’s computer technology, given that
the elliptic curve parameters are carefully chosen
to defeat the known attacks to the ECDLP. As of
today there has been no discovery of a general-
purpose subexponential-time algorithm for solv-
ing the ECDLP.[2]

On the other hand, it should be noted that
there is no mathematical proof of that an effi-
cient algorithm for solving the ECDLP does not
exist. If someone were to prove that such an ef-
ficient polynomial-time algorithm does not exist,
this would imply that P 6= NP . This question
is as of today known for being one of the most
fundamental and outstanding open questions in
computer science, so such a proof would be revo-
lutionary (and not very likely to appear). There is
either no proof for that the ECDLP is intractable,
as ECDLP is not known to be NP-hard. This is
not likely to be proved either.[8]

The ECDLP was introduced to computer sci-
ence only 30 years ago (1985), and because of this
it is not as researched as the commonly used DLP,
which has a subexponential solution. This, to-

gether with the lack of proof for its hardness, are
reasons for that some scepticism exist around the
security of ECDLP.

3.2 Other attacks to ECDH: Man
in the middle attack

The ECDH is also concerned with other types of
attacks than finding the shared secret key S. One
of these is the man-in-the-middle attack, which we
will look further into in this section.

A man-in-the-middle attack is an attack where
the attacker secretly relays and possibly alters the
communication between two parties, while they
believe they are directly communication with each
other. A third party, who is attacking, retrieves
A’s public key and sends it’s own public key to B.
Then, when B transmits his public key, the third
party interrupt and substitutes the value with her
own public key and sends it to A. Therefore, A
has now come to an agreement on a common se-
cret key with the third party instead of B. The
exchange can be done in reverse. Therefore it is
now possible for the third party to decrypt any
messages sent out by A or B. It can read and pos-
sibly modify them before the re-encryption with
the appropriate key, and then transmit them to
the other party.

To address this attacking problem, generally
a process of authentication will be needed. The
public keys created in the key exchange are either
static or ephemeral. A static key is intended for
use for a relatively long period of time. Typically,
it is intended for use in many instances of a crypto-
graphic key establishment scheme. An ephemeral
key is a key which is generated for each execution
of a key establishment process. The ephemeral
keys are not necessarily authenticated, and this is
necessary to avoid man-in-the-middle attack. So,
authenticity assurances must be obtained by other
means.

If one of A or B’s public key is static, man-in-
the-middle attacks are thwarted. A secure com-
munication protocol is said to have forward se-
crecy if compromise of long-term keys does not
compromise past session keys. This protects past
sessions against future compromises of secret keys
or passwords. Static public keys provide nei-
ther forward secrecy nor key-compromise imper-
sonation resilience. Therefor, to avoid leaking in-
formation about the static private key, holders

2



should validate the other public key and should
apply a secure key derivation function to the raw
Diffie-Hellman shared secret.[5]

4 Usage of ECDH in secure
internet protocols

Among other security protocols, the Diffie-
Hellman protocol has often been applied to SSL
(Security Sockets Layer) and SSH (Secure Shell).

SSL (Security Sockets Layer) is the predeces-
sor to TLS (Transport Layer Security) and they
are both referred to as ‘SSL’. SSL is the standard
security technology developed to establish an en-
crypted link between a web server and a browser.
The link should ensure privacy and integrity of
all data passed between the web server and the
browser. Before a client and server can begin to
exchange information protected by SSL they must
exchange or agree upon an encryption key and
a cipher to use when encrypting data. The key
and chiper must both have high security. Elliptic
Curve Diffie-Hellman is one of the secure methods
used for the key exchange.

SSL is composed of two layers, the lower layer
which manages the symmetric cryptography so
the communication is private and reliable, and the
upper layer called the handshake protocol. Diffie-
Hellman is used in this upper layer. It is possi-
ble to use several different Diffie-Hellman meth-
ods, in many cases Elliptic Curve Diffie-Hellman
is preferable. The handshake allows the server
to authenticate itself to the client using public-
key techniques. This is also called asymmetric
encryption. The key exchange process uses Diffie-
Hellman to ensure each party that the other is
who they say they are. After this exchange, the
keys are computed and the parties begin encrypt-
ing all traffic between them, using the computed
keys. SSL is among other uses useful for business
traffic and to ensure confidentiality, authenticity
and integrity.[4]

SHH is a cryptographic network protocol to
allow remote login and other network services to
operate securely over an unsecured network. It
is often used and very common for secure login
on the internet. This protocol can automatically
encrypt, authenticate and compress transmitted
data. SSH proceeds in three stages, the “hello”
phase where the first identification is done. In

the second stage the parties agree upon a shared
secret key. This is where the ECDH method is im-
plemented and used, and the secure key exchanges
is done. Ordinary Diffie-Hellman can also be used.
At the third and final stage, the shared secret key
are used to generate the application keys.

SSH can be used to secure any network
service, but common applications are remote
command-line login and remote command execu-
tion. Among others, SSH can also be used for
setting up automatic login to a remote server, for
executing a single command on a remote host and
secure file transfer.[4][6]

5 Article: How Diffie Hell-
man Fails in Practice

A newly published article from October 2015,
written by Adrian, Bhargavan Durumeric et al.,
states that the Diffie-Hellman key exchange fre-
quently offers less security than widely believed.[1]

As previously described, Diffie-Hellman is the
main key exchange mechanism in SSH and IPsec
and a popular option in SSL, so security flaws re-
lated to this method are critical. The author of
the article states his conclusion based on an ex-
amination of how Diffie-Hellman is commonly im-
plemented and deployed with these protocols.

Mainly there are two reasons for that the
Diffie-Hellman offers less security than widely be-
lieved. The first reason is that a lot of servers
use weak Diffie-Hellman parameters. The second,
more critical reason is that many use standard-
ized, hard coded or widely shared Diffie-Hellman
parameters. This dramatically reduces the cost
of large-scale attacks such that some are within
range of feasibility.[1]

The article contains complex discussions about
the different attacks to be performed on the inter-
net protocols that use Diffie-Hellman. The prob-
lems that are found stem from the fact that the
Diffie Hellman (based on discrete log) allows an
attacker to perform a single precomputation that
only depends on the group. This is a well known
fact for cryptographers, but has obviously not
been fully understood by system builders.[1] The
authors suggests some measures to be taken to
defeat the problems in its Recommendations sec-
tion. This conclusion is of great interest of elliptic
curve cryptography, and is stated below.

3



“Transitioning to elliptic curve Diffie-Hellman
(ECDH) key exchange with appropriate param-
eters avoids all known feasible cryptanalytic at-
tacks.”...”We recommend transitioning to elliptic
curves where possible; this is the most effective
long-term solution to the vulnerabilities described
in this paper.” [1]

The reason for this recommendation is the fact
that current elliptic curve discrete log algorithms
for strong curves do not gain as much of an advan-
tage from precomputation. ECDH keys are also
shorter than the Diffie Hellman based on “mod
p”, and the computation of the shared secret key
is faster.[1]

6 Conclusion

In this report we have discussed the basic proper-
ties, the security aspects and the usage of the key
agreement protocol Elliptic Curve Diffie Hellman
(ECDH).

We divided the security of ECDH into two sec-
tions; one concerning the Elliptic Curve Diffie-
Hellman problem (ECDHP), and other types of
attacks. The ECDHP is essential to the secu-
rity of the protocol in the way that the adversary
shouldn’t be able to compute the shared secret key
S. The hardness of ECDH is closely related to the
corresponding ECDLP, but the equality of the two
is not determined. The ECDLP is believed to be
infeasible by the state of today’s computer tech-
nology, but there are some uncertainty associated
with it because of the lack of mathematical proof
for its hardness.

As a significant example of other types of at-
tacks to the ECDH, we discussed the scenario of
a man-in-the-middle attack. An avoiding strat-
egy to this type of attack would in general be a
process of authentication.

We also discussed the usage of ECDH in secure
Internet protocols. Among other security proto-
cols, the Diffie-Hellman protocols has often been
applied to SSL (Security Sockets Layer) and SSH
(Secure Shell). The ECDH is believed to be one
of the most secure versions of the Diffie-Hellman,
and is preferable in many cases.

Finally, we discussed the recently published ar-
ticle ”How Diffie-Hellman fails in practice” from
2015. The recommended solution the authors sug-
gests to the problems found, is transitioning to
ECDH key exchange whenever possible. With ap-

propriate parameters they state that all known
feasible cryptanalytic attacks would be avoided.
Based on our discussion for the security of the
ECDH, this qualifies as a reasonable solution. On
the other hand, because of the uncertainty asso-
ciated with the ECDH and ECDLP, it may be
questioned if this recommendation will be put into
practice.

7 References

1. Adrian, Bhargavan, Durumeric et. al.
How Diffie-Hellman Fails in Prac-
tice (2015) Available from: https :
//weakdh.org/imperfect − forward −
secrecy − ccs15.pdf(01−Nov − 2015)

2. Koç, Çetin Kaya Elliptic Curve Cryptog-
raphy Fundamentals. Available from http :
//cs.ucsb.edu/ koc/ecc/docx/09ecc.pdf(21−
Oct− 2015)

3. Diffie–Hellman key exchange (2015) Avail-
able from: https : //en.wikipedia.org/wiki/Diffie

4. Ahmed, Sanjabi, Aldiaz et. al. Diffie-
Hellman and Its Application in Secu-
rity Protocols Available from http :
//www.ijesit.com/V olume

5. Ahmed, Sanjabi, Aldiaz et. al. Man-in-
the-middle attack Available from https :
//en.wikipedia.org/wiki/Man− in− the−
middleattack

6. Secure Secure Shell Available from https :
//stribika.github.io/2015/01/04/secure −
secure− shell.html

7. Elliptic Curve Diffie-Hellman Available
from https : //en.wikipedia.org/wiki/EllipticcurveDiffie

8. Hankerson et. al. (2004) Guide Elliptic
Curve Cryptography University of Waterloo,
Springer-Verlag, New York

4


