Hyperelliptic
Curve
Cryptography

OOOOOOOOOOOOOOOOO




Definition (HEC over K):

= Curve with equation y? + h(x)y = f(x) with h, f € K[X]

=Genus g > degh(x) <g, degf(x) =2g+1
= f monic

= Nonsingular
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Nonsingularity

= Definition (Algebraically closed field K):

P € K[X], P non — constant = P has a root.

= Definition (Algebraic closure of K):

Smallest algebraically closed field containing K
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Nonsingularity (definition)

A hyperelliptic curve v + h(x)y = f(x) with coefficients in field K

is said to be nonsingular if no point on the curve over the algebraic

closure K of K satisfies both partial derivatives of the curve equation, ie

2y + h(x) = 0and k' (x)y = f'(x).

In particular, note that f'(x) = 0 & x multiple root of f, and hence for

odd characteristics y? = f(x) non singular © f has no multiple roots.
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Group law

Figure 14.1 Group law on genus 2 curve over the reals R, y°> = f(x),deg f = 5for (P, + P») &
(Q1+ Q2) = Ry + Ry. [1]

Qa = More intersections in general
than the EC case =>more than 3
points if we intersect with a line

= We do not even have a group
R Ra structure in general, so we need
WS{“\ something else
R
—Hz
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Divisors (definition)

= D is called a divisor of a HEC C if D = ZPEC(E) npP with
np € Z and only finitely many n, # 0

" The degree of D is deg(D) = Ypec(r) e
E.g. givenD = P, + 2P,,deg(D) = 3

- Div‘C) (K) is the group of degree 0 divisors on C
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Divisors

= Let r be a rational function in K(C) (field of fractions in K[x,y]/(y? + h(x)y — f(x)).
The order of r at P is given by

n if P zero of order n
ordp(r) = { —n if P pole of order n
0 if neither

= The divisor of 7 is given by
div(r) = ZPEC(E) ordp(r) - P

(x-2)%

e.g.r(x) = GrDes P, = 2isazerooforder2, P, = —1apoleoforderland P; =0 a

pole of order 3, so div(r) =2 P — P, — 3P;
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= A divisor D is said to be principal if 3r s.t. D = div(r). The set of
principal divisors on C is Princ(C).

" |t can be shown that Vr € I?(C),_deg(div(r)) = 0 and hence
Princ(C) is a subgroup of DivQ (K).

= In practice, deg(div(r)) = 0 means we will need to throw in O, the
point at infinity. For example consider the curve C: y? = f(x) of genus
1 over C. Then deg(f) = 3. Given g(x,y) = L , the zero of g is 0, and
as deg(f) = 3 then there are 3 points on the curve with y =
0; call them Py, P,, P;. Additionally g has points with x = 2 as poles.
Assuming f(2) # 0, then there are two such points on C, Q; & Q,. Then
div(g) =Py + P, + P3 — Q1 — @, — 0.
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Divisors

= We define the Picard (or divisor class) group of C as
Pic2(K) = Divg(K) / Princ(C)

= 3/(C) abelian variety of dimension g s.t. J(C) = Pic2(K).J(C) is
called the Jacobian of C.

= What is important here is that the group we will be using is J(C). The
group law will operate on divisor classes. A divisor class would then be
written uniquely as };_4 P, =70, P,€ C\{0},r < g, with P, # —P; =

(xj, —h(xj) — yj) fori #J.
= Theorem (Hasse-Weil). if C is a HEC of genus g over F,

Vg -D* <#(0) < g+ 1%
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Divisors (concretely)

= Step 1:if n > 1 points, write a polynomial of degree n — 1;
the number of other points of intersections with the curve
is max(deg(f),2(n—1)) — n.

= Step 2: Inflect (ie take the opposite of these points) to
reduce the sum.

= Step 3: repeat until you reach a number of points < g. This
will allow one to form a divisor class / reduced divisor.
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Genus 1 example
®a - P| '.O
v, =pP,-0

div (W)= P +Pt (-P5)— 30
divV) = Poe (-P5) -290

e ~$’;54£ - Aiv(u\'c\iv(v):?ﬁF[Pg-G
S i 0=Pr%-P; -0

bx o

L




Genus 2 example

Figure 14.1 Group law on genus 2 curve over the reals R, y°> = f(x),deg f = 5for (P, + P») &
(Q1+ Q2) = R1 + Ro. .
D= P+P, 20
Q=
D,= Q+Q,-20

AJ v(W)=P+1 +Q R ("RD
+(- )0\2» ~£0O

' \)‘ RZZ d\\;(\/hz_P\—f’Gﬂ)’ZO
ng\ . div(Nq) = R+ (-8 )~ 20

- [ @ dov(W) ~div(v)) - Qiv (vy)
T =PP 4 QAQ 7 KK, €0

DD, =
Y, iD)g R+ ~20
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Mumford representation

= Theorem: Given a HEC C of genus g over K, 3! (u, v) with u, v € K[x] s.t.
° uismonic
cu|lvi+vh—f
« deg(v) < deg(u) < g

" |n particular, if g = 2, we can represent any divisor class by the coefficients
Uq, Ug, V1, Vg Of u and v.

= As u is monic, we can write u in K[x] as u(x) = H?ff(u) (x — x;). The
middle condition in the theorem tells us that (x,;, v(xi)) € C. In general if
(x;,y;) has multiplicity n, thenfor0 < j <n — 1,

d J
(@ V()2 + VRGO = f(O),.,, = 0
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Mumford representation

For example, consider C: y? = x> + 3x3 + 2x% + 3 over F-.

= Consider P; = (1,2),P, = (3,0),P; = (1,3),P, = (4,1)

= We want to reduce the divisors D; = P; + P, — 20 and
D, =P; +P,—20iefinda,b,c,ds.t.D; =[a,b],D, = [c,d]

= C has genus 2 so deg(b) < deg(a) < 2. We know that at the x
coordinates of Py, P, ,a vanishessoa = (x — 1)(x —3) = x* + x + 3
and b(x;) =vy;,b; + by =2and3b; + by = 0so b = 4x + 3.

= Similarly we havec = (x — 1)(x —4) = x* + 4and d; + dy = 3 and
4d, +dyg=1sod = x + 2.

=D, =[x*+x+34x+3],D, = [x* + 4,x + 2]
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Cantor’s algorithm|[1]

INPUT: Two divisor classes )1 = [ui,vi] and Dy = [us, v2] on the curve C : ye + hiz)y =

f(z).
OUTPUT: The unique reduced divisor D such that D = Dy & Ds.

—

di +— ged(wi, us) [di = e1uy + egua)
d «— ged(di, v1 +v2 + h) [d = e1d1 + e2(v1 + va + h)]

81 +— c1€1, 852 +— cipez and s3 +— o2

TR s1u1va + sausvy + sa(viva + f)
and v +—

d? d

mod u

U +—

repeat ,
—vh —w
H".‘—f— and v’ +— (—h — v) mod u’
i
uw+—u and v— v’

until degu < g

e U A

make u monic

b
o

return [u, v]
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Cantor algorithm

= J better algorithms for fixed g and h. Notably, for binary fields, we can
reduce the operationsto I + 55 4+ 22M (Lange,2004).[2]

= Additionally if deg(h) = 1 we can get downto ] + 55 + 9M.[2][3]

= As with the EC case we can change coordinate systems to get even
better results and avoid inversions altogether (e.g. if h(x) = x, doubling
in affine coordinatesis I + 5M 4+ 6S but in projective coord, 22M +
65)[3]
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In practice

= HECC can be used to implement the same algorithms as HEC

" g = 3 turns out to be vulnerable to index-calculus [4][5]

= To achieve a security level of 2128, the base fields in ECC will have
about 22°6 elements as compared to 2128 for HECC with g = 2, leading
to a speed-up factor of 3 [6]

" |n a certain class of HECs (Kummer surfaces), HECC with g = 2 will
have only twice as many operations as EC[7]

= Interestingly enough, Gaudry, Hess and Smart showed in 2000 that the
ECDLP over F,« can be reduced to the DLP of a Jacobian over a subfield
of F,k leading to subexponential times unless k large enough[8]
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Future of HECC

" Focusedon g = 2

=Recently, Bernstein and al. showed how HECC could take advantage of
modern CPU architecture (using vectorization) to break DH speed
records. [9]

= HECC being faster than ECC for certain operations and slower for others
(e.g. ephemeral DH where g = 1 is faster for fixed-based multiplications
such as the ones involved in the key generation and slower for variable-
based multiplications, such as the ones needed for the shared-secret
computation), Bernstein and Lange proposed a new approach to
(H)ECC, “hyper-and-elliptic curve cryptography” in which a single
appropriate group is used to compute both kinds of operations.[10]
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