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Definition (HEC over 𝐾):
 Curve with equation 𝑦2 + ℎ 𝑥 𝑦 = 𝑓 𝑥 with ℎ, 𝑓 ∈ 𝐾 𝑋

 Genus 𝑔 ⇒ deg ℎ(𝑥) ≤ 𝑔, deg 𝑓 𝑥 = 2𝑔 + 1

 𝑓 monic

 Nonsingular
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Nonsingularity
 Definition (Algebraically closed field 𝐾):

𝑃 ∈ 𝐾 𝑋 , 𝑃 𝑛𝑜𝑛 − 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 ⇒ 𝑃 ℎ𝑎𝑠 𝑎 𝑟𝑜𝑜𝑡.

 Definition (Algebraic closure of 𝐾):

Smallest algebraically closed field containing 𝐾
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Nonsingularity (definition)
A hyperelliptic curve 𝑦2 + ℎ 𝑥 𝑦 = 𝑓 𝑥 with coefficients in field 𝐾

is said to be nonsingular if no point on the curve over the algebraic 

closure  𝐾 of 𝐾 satisfies both partial derivatives of the curve equation, ie

2𝑦 + ℎ 𝑥 = 0 and ℎ′ 𝑥 𝑦 = 𝑓′(𝑥). 

In particular, note that 𝑓′ 𝑥 = 0 ⇔ 𝑥 multiple root of 𝑓, and hence for 

odd characteristics 𝑦2 = 𝑓 𝑥 non singular ⇔ 𝑓 has no multiple roots.
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Group law
[1]

 More intersections in general 
than the EC case ⇒more than 3 
points if we intersect with a line

 We do not even have a group 
structure in general, so we need 
something else
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Divisors (definition)
 𝐷 is called a divisor of a HEC 𝐶 if 𝐷 =  𝑃∈𝐶( 𝐾)𝑛𝑃𝑃 with 

𝑛𝑃 ∈ ℤ and only finitely many 𝑛𝑝 ≠ 0

 The degree of 𝐷 is deg 𝐷 =  𝑃∈C  𝐾 𝑛𝑃

E.g. given 𝐷 = 𝑃1 + 2𝑃2, deg 𝐷 = 3

 𝐷𝑖𝑣𝐶
0( 𝐾) is the group of degree 0 divisors on 𝐶
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Divisors
 Let 𝑟 be a rational function in  𝐾(𝐶) (field of fractions in  𝐾 𝑥, 𝑦 /(𝑦2 + ℎ 𝑥 𝑦 − 𝑓(𝑥)). 
The order of 𝑟 at 𝑃 is given by

ord𝑃 𝑟 =  
𝑛 if 𝑃 zero of order 𝑛
−𝑛 if 𝑃 pole of order 𝑛

0 if neither

 The divisor of 𝑟 is given by

div 𝑟 =  𝑃∈𝐶(  𝐾) ord𝑃 𝑟 ∙ 𝑃

e.g. 𝑟 𝑥 =
𝑥−2 2

𝑥+1 𝑥3
: 𝑃1 = 2 is a zero of order 2, 𝑃2 = −1 a pole of order 1 and 𝑃3 = 0 a 

pole of order 3, so div 𝑟 = 2 𝑃1 − 𝑃2 − 3𝑃3
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Divisors
 A divisor 𝐷 is said to be principal if ∃𝑟 s.t. 𝐷 = div 𝑟 . The set of 
principal divisors on 𝐶 is Princ 𝐶 .

 It can be shown that ∀𝑟 ∈  𝐾 𝐶 , deg(div 𝑟 ) = 0 and hence 
Princ 𝐶 is a subgroup of Div𝐶

0( 𝐾).

 In practice, deg(div 𝑟 ) = 0 means we will need to throw in 𝑂, the 
point at infinity. For example consider the curve 𝐶: 𝑦2 = 𝑓(𝑥) of genus 
1 over ℂ. Then deg 𝑓 = 3. Given 𝑔 𝑥, 𝑦 =

𝑦

𝑥−2
, the zero of 𝑔 is 0, and 

as deg 𝑓 = 3 then there are 3 points on the curve with 𝑦 =
0; call them 𝑃1, 𝑃2, 𝑃3. Additionally 𝑔 has points with 𝑥 = 2 as poles. 
Assuming 𝑓 2 ≠ 0, then there are two such points on 𝐶, 𝑄1 & 𝑄2. Then 
div 𝑔 = 𝑃1 + 𝑃2 + 𝑃3 − 𝑄1 − 𝑄2 − 𝑂.
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Divisors
 We define the Picard (or divisor class) group of 𝐶 as 

Pic𝐶
0  𝐾 = Div𝐶

0  𝐾 / Princ 𝐶

 ∃𝐽(𝐶) abelian variety of dimension 𝑔 s.t. 𝐽 𝐶 ≅ Pic𝐶
0( 𝐾). 𝐽(𝐶) is 

called the Jacobian of 𝐶.

 What is important here is that the group we will be using is 𝐽(𝐶). The 
group law will operate on divisor classes. A divisor class would then be 
written uniquely as  𝑖=1

𝑟 𝑃𝑖 − 𝑟𝑂 , 𝑃𝑖∈ 𝐶\ 𝑂 , 𝑟 ≤ 𝑔, with 𝑃𝑖 ≠ −𝑃𝑗 =

𝑥𝑗 , −ℎ 𝑥𝑗 − 𝑦𝑗 for 𝑖 ≠ 𝑗.

 Theorem (Hasse-Weil): if 𝐶 is a HEC of genus 𝑔 over Ϝ𝑞 ,

𝑞 − 1 2𝑔 ≤ #𝐽 𝐶 ≤ 𝑞 + 1 2𝑔
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Divisors (concretely)
 Step 1: if 𝑛 > 1 points, write a polynomial of degree 𝑛 − 1;
the number of other points of intersections with the curve 
is max(deg(𝑓), 2 𝑛 − 1 ) − 𝑛. 

 Step 2: Inflect (ie take the opposite of these points) to 
reduce the sum.

 Step 3: repeat until you reach a number of points ≤ 𝑔. This 
will allow one to form a divisor class / reduced divisor.
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Genus 1 example
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Genus 2 example
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Mumford representation
 Theorem: Given a HEC 𝐶 of genus 𝑔 over 𝐾, ∃! 𝑢, 𝑣 with 𝑢, 𝑣 ∈ 𝐾[𝑥] s.t.

• 𝑢 is monic

• 𝑢 | 𝑣2 + 𝑣ℎ − 𝑓

• deg 𝑣 < deg 𝑢 ≤ 𝑔

 In particular, if 𝑔 = 2, we can represent any divisor class by the coefficients 
𝑢1, 𝑢0, 𝑣1, 𝑣0 of 𝑢 and 𝑣.

 As 𝑢 is monic, we can write 𝑢 in  𝐾 𝑥 as 𝑢(𝑥) = Π𝑖=1
deg 𝑢

(𝑥 − 𝑥𝑖). The 
middle condition in the theorem tells us that 𝑥𝑖, 𝑣 𝑥𝑖 ∈ 𝐶. In general if 
𝑥𝑖 , 𝑦𝑖 has multiplicity 𝑛, then for 0 ≤ 𝑗 ≤ 𝑛 − 1,

𝑑

𝑑𝑥

𝑗

𝑣 𝑥 2 + 𝑣 𝑥 ℎ 𝑥 − 𝑓 𝑥 |𝑥=𝑥𝑖
= 0
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Mumford representation
For example, consider 𝐶: 𝑦2 = 𝑥5 + 3𝑥3 + 2𝑥2 + 3 over F5.

 Consider 𝑃1 = 1,2 , 𝑃2 = 3,0 , 𝑃3 = 1,3 , 𝑃4 = (4,1)

 We want to reduce the divisors 𝐷1 = 𝑃1 + 𝑃2 − 2𝑂 and

𝐷2 = 𝑃3 + 𝑃4 − 2𝑂 ie find 𝑎, 𝑏, 𝑐, 𝑑 s.t. 𝐷1 = 𝑎, 𝑏 , 𝐷2 = [𝑐, 𝑑]

 𝐶 has genus 2 so deg(b) < deg 𝑎 ≤ 2 . We know that at the 𝑥
coordinates of 𝑃1, 𝑃2 ,𝑎 vanishes so 𝑎 = 𝑥 − 1 𝑥 − 3 = 𝑥2 + 𝑥 + 3
and 𝑏 𝑥𝑖 = 𝑦𝑖, 𝑏1 + 𝑏0 = 2 and 3𝑏1 + 𝑏0 = 0 so 𝑏 = 4𝑥 + 3. 

 Similarly we have 𝑐 = 𝑥 − 1 𝑥 − 4 = 𝑥2 + 4 and 𝑑1 + 𝑑0 = 3 and 
4𝑑1 + 𝑑0 = 1 so 𝑑 = 𝑥 + 2.

 𝐷1 = 𝑥2 + 𝑥 + 3,4𝑥 + 3 , 𝐷2 = [𝑥2 + 4, 𝑥 + 2]
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Cantor’s algorithm[1]
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Cantor algorithm
 ∃ better algorithms for fixed 𝑔 and ℎ. Notably, for binary fields, we can 
reduce the operations to 𝐼 + 5𝑆 + 22𝑀 (Lange,2004).[2]

 Additionally if deg ℎ = 1 we can get down to 𝐼 + 5𝑆 + 9𝑀.[2][3]

 As with the EC case we can change coordinate systems to get even 
better results and avoid inversions altogether (e.g. if ℎ 𝑥 = 𝑥, doubling 
in affine coordinates is 𝐼 + 5𝑀 + 6𝑆 but in projective coord, 22𝑀 +
6𝑆)[3]
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In practice
 HECC can be used to implement the same algorithms as HEC

 𝑔 ≥ 3 turns out to be vulnerable to index-calculus [4][5]

 To achieve a security level of 2128, the base fields in ECC will have 
about 2256 elements as compared to 2128 for HECC with 𝑔 = 2, leading 
to a speed-up factor of 3 [6]

 In a certain class of HECs (Kummer surfaces), HECC with 𝑔 = 2 will 
have only twice as many operations as EC[7]

 Interestingly enough, Gaudry, Hess and Smart showed in 2000 that the 
ECDLP over Ϝ2𝑘 can be reduced to the DLP of a Jacobian over a subfield 
of Ϝ2𝑘 leading to subexponential times unless 𝑘 large enough[8]
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Future of HECC
 Focused on 𝑔 = 2

Recently, Bernstein and al. showed how HECC could take advantage of 
modern CPU architecture (using vectorization) to break DH speed 
records. [9]

 HECC being faster than ECC for certain operations and slower for others 
(e.g. ephemeral DH where 𝑔 = 1 is faster for fixed-based multiplications    
such as the ones involved in the key generation and slower for variable-
based multiplications, such as the ones needed for the shared-secret 
computation), Bernstein and Lange proposed a new approach to 
(H)ECC, “hyper-and-elliptic curve cryptography” in which a single 
appropriate group is used to compute both kinds of operations.[10]

18HYPERELLIPTIC CURVE CRYPTOGRAPHY



References
[1] Cohen, H., Frey, G., Avanzi, R., Doche, C., Lange, T., Nguyen, K., & Vercauteren, F. (Eds.). (2005). Handbook of elliptic and 
hyperelliptic curve cryptography. CRC press.

[2] Lange, Tanja. "Efficient Arithmetic on Genus 2 Hyperelliptic Curves over Finite Fields via Explicit Formulae." IACR Cryptology 
ePrint Archive 2002 (2002): 121.

[3] Wollinger, Thomas, and Vladyslav Kovtun. "Fast explicit formulae for genus 2 hyperelliptic curves using projective 
coordinates." null. IEEE, 2007.

[4] Gaudry, P., Thomé, E., Thériault, N., & Diem, C. (2007). A double large prime variation for small genus hyperelliptic index 
calculus. Mathematics of Computation, 76(257), 475-492.

[5] Adleman, L. M., DeMarrais, J., & Huang, M. D. (1994). A subexponential algorithm for discrete logarithms over the rational 
subgroup of the Jacobians of large genus hyperelliptic curves over finite fields. In Algorithmic number theory(pp. 28-40). Springer 
Berlin Heidelberg.

[6] Joppe W. Bos, Craig Costello, H•useyin Hisil, Kristin Lauter, Fast cryptography in genus 2, in Eurocrypt (2013), 194{210.

[7] Gaudry, P. Variants of the Montgomery form based on Theta functions (2006)

[8] Gaudry, P. (2000, January). An algorithm for solving the discrete log problem on hyperelliptic curves. In Advances in 
Cryptology—EUROCRYPT 2000 (pp. 19-34). Springer Berlin Heidelberg.

[9] Bernstein, D. J., Chuengsatiansup, C., Lange, T., & Schwabe, P. (2014). Kummer strikes back: new DH speed records. In Advances 
in Cryptology–ASIACRYPT 2014 (pp. 317-337). Springer Berlin Heidelberg.

[10] Bernstein, D. J., & Lange, T. (2014). Hyper-and-elliptic-curve cryptography.LMS Journal of Computation and 
Mathematics, 17(A), 181-202.

19HYPERELLIPTIC CURVE CRYPTOGRAPHY


