Hyperelliptic Curve Cryptography

A SHORT INTRODUCTION

Definition (HEC over K):

• Curve with equation $y^2 + h(x)y = f(x)$ with $h, f \in K[X]$

- Genus $g \Rightarrow \deg h(x) \le g$, $\deg f(x) = 2g + 1$
- f monic
- Nonsingular

Nonsingularity

Definition (Algebraically closed field K):

 $P \in K[X]$, $P non - constant \Rightarrow P has a root.$

Definition (Algebraic closure of *K*):

Smallest algebraically closed field containing K

Nonsingularity (definition)

A hyperelliptic curve $y^2 + h(x)y = f(x)$ with coefficients in field K

is said to be **nonsingular** if no point on the curve over the algebraic closure \overline{K} of K satisfies both partial derivatives of the curve equation, ie 2y + h(x) = 0 and h'(x)y = f'(x).

In particular, note that $f'(x) = 0 \Leftrightarrow x$ multiple root of f, and hence for odd characteristics $y^2 = f(x)$ non singular $\Leftrightarrow f$ has no multiple roots.

Group law

Figure 14.1 Group law on genus 2 curve over the reals \mathbb{R} , $y^2 = f(x)$, $\deg f = 5$ for $(P_1 + P_2) \oplus (Q_1 + Q_2) = R_1 + R_2$.

- More intersections in general than the EC case ⇒more than 3 points if we intersect with a line
- We do not even have a group structure in general, so we need something else

Divisors (definition)

■ D is called a **divisor** of a HEC C if $D = \sum_{P \in C(\overline{K})} n_P P$ with $n_P \in \mathbb{Z}$ and only finitely many $n_p \neq 0$

■ The **degree** of *D* is $deg(D) = \sum_{P \in C(\overline{K})} n_P$

E.g. given
$$D = P_1 + 2P_2$$
, $\deg(D) = 3$

• $Div_{\mathcal{C}}^{0}(\overline{K})$ is the group of degree 0 divisors on \mathcal{C}

Divisors

Let r be a rational function in $\bar{K}(\mathcal{C})$ (field of fractions in $\bar{K}[x,y]/(y^2+h(x)y-f(x))$. The **order** of r at P is given by

$$\operatorname{ord}_{P}(r) = \begin{cases} n \text{ if } P \text{ zero of order } n \\ -n \text{ if } P \text{ pole of order } n \\ 0 \text{ if neither} \end{cases}$$

The divisor of r is given by

$$\operatorname{div}(r) = \sum_{P \in C(\overline{K})} \operatorname{ord}_P(r) \cdot P$$

e.g. $r(x) = \frac{(x-2)^2}{(x+1)x^3}$: $P_1 = 2$ is a zero of order 2, $P_2 = -1$ a pole of order 1 and $P_3 = 0$ a pole of order 3, so $\operatorname{div}(r) = 2 P_1 - P_2 - 3 P_3$

Divisors

- A divisor D is said to be **principal** if $\exists r$ s.t. $D = \operatorname{div}(r)$. The set of principal divisors on C is $\operatorname{Princ}(C)$.
- It can be shown that $\forall r \in \overline{K}(C)$, $\deg(\operatorname{div}(r)) = 0$ and hence $\operatorname{Princ}(C)$ is a subgroup of $\operatorname{Div}_C^0(\overline{K})$.
- In practice, $\deg(\operatorname{div}(r))=0$ means we will need to throw in O, the point at infinity. For example consider the curve $C\colon y^2=f(x)$ of genus 1 over $\mathbb C$. Then $\deg(f)=3$. Given $g(x,y)=\frac{y}{x-2}$, the zero of g is 0, and as $\deg(f)=3$ then there are 3 points on the curve with y=0; call them P_1,P_2,P_3 . Additionally g has points with x=2 as poles. Assuming $f(2)\neq 0$, then there are two such points on $C,Q_1 \& Q_2$. Then $\operatorname{div}(g)=P_1+P_2+P_3-Q_1-Q_2-O$.

Divisors

- We define the Picard (or divisor class) group of C as $\operatorname{Pic}_C^0(\overline{K}) = \operatorname{Div}_C^0(\overline{K}) / \operatorname{Princ}(C)$
- $\exists J(C)$ abelian variety of dimension g s.t. $J(C) \cong \operatorname{Pic}_C^0(\overline{K})$. J(C) is called the **Jacobian** of C.
- What is important here is that the group we will be using is J(C). The group law will operate on divisor classes. A divisor class would then be written uniquely as $\sum_{i=1}^r P_i rO$, $P_i \in C \setminus \{O\}$, $r \leq g$, with $P_i \neq -P_j = (x_j, -h(x_j) y_j)$ for $i \neq j$.
- Theorem (Hasse-Weil): if C is a HEC of genus g over \mathbf{F}_q , $(\sqrt{q}-1)^{2g} \leq \#J(C) \leq (\sqrt{q}+1)^{2g}$

Divisors (concretely)

- Step 1: if n > 1 points, write a polynomial of degree n-1; the number of other points of intersections with the curve is $\max(\deg(f), 2(n-1)) n$.
- Step 2: Inflect (ie take the opposite of these points) to reduce the sum.
- Step 3: repeat until you reach a number of points $\leq g$. This will allow one to form a divisor class / reduced divisor.

Genus 1 example

$$P_{1} = P_{1} - 0$$

$$D_{2} = P_{2} - 0$$

$$div(u) = P_{1} + P_{2} + (-P_{3}) - 30$$

$$div(v) = P_{3} + (-P_{3}) - 20$$

$$div(u) - div(v) - P_{1} + P_{2} - P_{3} - 0$$

$$0 = P_{1} + P_{2} - P_{3} - 0$$

Genus 2 example

Figure 14.1 Group law on genus 2 curve over the reals \mathbb{R} , $y^2 = f(x)$, $\deg f = 5$ for $(P_1 + P_2) \oplus (Q_1 + Q_2) = R_1 + R_2$.

$$D_{1} = P_{1} + P_{2} - 20$$

$$D_{2} = Q_{1} + Q_{2} - 20$$

$$div(u) = P_{1} + P_{2} + Q_{1} + Q_{2} + (-R_{1}) + (-R_{2}) - 60$$

$$div(v_{1}) = R_{1} + (-R_{1}) - 20$$

$$div(v_{2}) = R_{2} + (-R_{2}) - 20$$

$$div(u) - div(v_{1}) - div(v_{2})$$

$$= P_{1} + P_{2} + Q_{1} + Q_{2} - R_{1} - R_{2} - 20$$

$$D_{1} + D_{2} = D$$

$$D = R_{1} + R_{2} - 20$$

Mumford representation

- Theorem: Given a HEC C of genus g over K, $\exists ! (u, v)$ with $u, v \in K[x]$ s.t.
 - *u* is monic
 - $u | v^2 + vh f$
 - $\deg(v) < \deg(u) \le g$
- In particular, if g=2, we can represent any divisor class by the coefficients u_1,u_0,v_1,v_0 of u and v.
- As u is monic, we can write u in $\overline{K}[x]$ as $u(x) = \prod_{i=1}^{\deg(u)} (x x_i)$. The middle condition in the theorem tells us that $(x_i, v(x_i)) \in C$. In general if (x_i, y_i) has multiplicity n, then for $0 \le j \le n-1$,

$$\left(\frac{d}{dx}\right)^{J} \left[v(x)^{2} + v(x)h(x) - f(x)\right]_{|x=x_{i}} = 0$$

Mumford representation

For example, consider $C: y^2 = x^5 + 3x^3 + 2x^2 + 3$ over F_5 .

- Consider $P_1 = (1,2), P_2 = (3,0), P_3 = (1,3), P_4 = (4,1)$
- We want to reduce the divisors $D_1 = P_1 + P_2 20$ and

$$D_2 = P_3 + P_4 - 20$$
 ie find a, b, c, d s.t. $D_1 = [a, b], D_2 = [c, d]$

- C has genus 2 so $\deg(b) < \deg(a) \le 2$. We know that at the x coordinates of P_1 , P_2 , a vanishes so $a = (x-1)(x-3) = x^2 + x + 3$ and $b(x_i) = y_i$, $b_1 + b_0 = 2$ and $3b_1 + b_0 = 0$ so b = 4x + 3.
- Similarly we have $c = (x-1)(x-4) = x^2 + 4$ and $d_1 + d_0 = 3$ and $4d_1 + d_0 = 1$ so d = x + 2.
- $D_1 = [x^2 + x + 3,4x + 3], D_2 = [x^2 + 4,x + 2]$

Cantor's algorithm[1]

INPUT: Two divisor classes $\overline{D}_1 = [u_1, v_1]$ and $\overline{D}_2 = [u_2, v_2]$ on the curve $C: y^2 + h(x)y = f(x)$.

OUTPUT: The unique reduced divisor D such that $\overline{D} = \overline{D}_1 \oplus \overline{D}_2$.

1.
$$d_1 \leftarrow \gcd(u_1, u_2)$$
 [$d_1 = e_1u_1 + e_2u_2$]

2.
$$d \leftarrow \gcd(d_1, v_1 + v_2 + h)$$
 $[d = c_1d_1 + c_2(v_1 + v_2 + h)]$

3.
$$s_1 \leftarrow c_1 e_1, s_2 \leftarrow c_1 e_2 \text{ and } s_3 \leftarrow c_2$$

4.
$$u \leftarrow \frac{u_1 u_2}{d^2}$$
 and $v \leftarrow \frac{s_1 u_1 v_2 + s_2 u_2 v_1 + s_3 (v_1 v_2 + f)}{d} \mod u$

5. repeat

6.
$$u' \leftarrow \frac{f - vh - v^2}{u}$$
 and $v' \leftarrow (-h - v) \mod u'$

7.
$$u \leftarrow u' \text{ and } v \leftarrow v'$$

- 8. until $\deg u \leqslant g$
- make u monic
- 10. return [u, v]

Cantor algorithm

- ∃ better algorithms for fixed g and h. Notably, for binary fields, we can reduce the operations to I+5S+22M (Lange,2004).[2]
- Additionally if deg(h) = 1 we can get down to I + 5S + 9M.[2][3]
- As with the EC case we can change coordinate systems to get even better results and avoid inversions altogether (e.g. if h(x) = x, doubling in affine coordinates is I + 5M + 6S but in projective coord, 22M + 6S)[3]

In practice

- HECC can be used to implement the same algorithms as HEC
- $g \ge 3$ turns out to be vulnerable to index-calculus [4][5]
- To achieve a security level of 2^{128} , the base fields in ECC will have about 2^{256} elements as compared to 2^{128} for HECC with g=2, leading to a speed-up factor of 3 [6]
- In a certain class of HECs (Kummer surfaces), HECC with g=2 will have only twice as many operations as EC[7]
- Interestingly enough, Gaudry, Hess and Smart showed in 2000 that the ECDLP over F_{2^k} can be reduced to the DLP of a Jacobian over a subfield of F_{2^k} leading to subexponential times unless k large enough[8]

Future of HECC

- Focused on g=2
- Recently, Bernstein and al. showed how HECC could take advantage of modern CPU architecture (using vectorization) to break DH speed records. [9]
- HECC being faster than ECC for certain operations and slower for others (e.g. ephemeral DH where g=1 is faster for fixed-based multiplications such as the ones involved in the key generation and slower for variable-based multiplications, such as the ones needed for the shared-secret computation), Bernstein and Lange proposed a new approach to (H)ECC, "hyper-and-elliptic curve cryptography" in which a single appropriate group is used to compute both kinds of operations.[10]

References

- [1] Cohen, H., Frey, G., Avanzi, R., Doche, C., Lange, T., Nguyen, K., & Vercauteren, F. (Eds.). (2005). *Handbook of elliptic and hyperelliptic curve cryptography*. CRC press.
- [2] Lange, Tanja. "Efficient Arithmetic on Genus 2 Hyperelliptic Curves over Finite Fields via Explicit Formulae." *IACR Cryptology ePrint Archive* 2002 (2002): 121.
- [3] Wollinger, Thomas, and Vladyslav Kovtun. "Fast explicit formulae for genus 2 hyperelliptic curves using projective coordinates." *null*. IEEE, 2007.
- [4] Gaudry, P., Thomé, E., Thériault, N., & Diem, C. (2007). A double large prime variation for small genus hyperelliptic index calculus. *Mathematics of Computation*, 76(257), 475-492.
- [5] Adleman, L. M., DeMarrais, J., & Huang, M. D. (1994). A subexponential algorithm for discrete logarithms over the rational subgroup of the Jacobians of large genus hyperelliptic curves over finite fields. In *Algorithmic number theory* (pp. 28-40). Springer Berlin Heidelberg.
- [6] Joppe W. Bos, Craig Costello, Hilluseyin Hisil, Kristin Lauter, Fast cryptography in genus 2, in Eurocrypt (2013), 194{210.
- [7] Gaudry, P. Variants of the Montgomery form based on Theta functions (2006)
- [8] Gaudry, P. (2000, January). An algorithm for solving the discrete log problem on hyperelliptic curves. In *Advances in Cryptology*—*EUROCRYPT 2000* (pp. 19-34). Springer Berlin Heidelberg.
- [9] Bernstein, D. J., Chuengsatiansup, C., Lange, T., & Schwabe, P. (2014). Kummer strikes back: new DH speed records. In *Advances in Cryptology—ASIACRYPT 2014* (pp. 317-337). Springer Berlin Heidelberg.
- [10] Bernstein, D. J., & Lange, T. (2014). Hyper-and-elliptic-curve cryptography. *LMS Journal of Computation and Mathematics*, 17(A), 181-202.