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Abstract— Koblitz curves are a type of elliptic curve that
are defined over GF(2). These curves are advantageous in
that they can be used to create point multiplication algo-
rithms without the need for point doubling [2]. This paper
aims to understand the uses of Koblitz curves in cryptogra-
phy, including their advantages and disadvantages. We will
begin by analyzing the properties of Koblitz curves. We will
then look into the advantages of Koblitz curves, mainly, the
speeding up of scalar multiplications [4], and later examine
the methods proposed by Solinas to further enhance the ex-
ecution speeds of point multiplication on Koblitz curves [6].
Afterwards, we will delve into a brief discussion concerning
the current state of security in using curves on binary fields
and the possible risks of using Koblitz curves in the future

5].

I. INTRODUCTION

In 1991, Neal Koblitz presented what he called the
anomalous binary curves

E:y+ay=a3+22+1 O
1

E:y2+9:y:x3+1

defined over GF(2) [4]. These curves were discovered by
Koblitz to have the efficient property that scalar multipli-
cations [k]P could be handled using only point additions
when the binary representation of k contained less than or
equal to four zeros [3]. Koblitz further found that for these
curves over fields GF(2™), where m < 4, [k]P could be
calculated using only point additions when &k had binary
representations with two to four zeros [3]. These curves
henceforth became known as Koblitz curves.

Since their introduction, the use of Koblitz curves have
been continuously expanded and improved upon. Cur-
rently, Koblitz curves in the field GF(2*) are assumed to
have k defined as a prime number in order for the curves
to have orders that are either prime or very nearly prime
[2], [6]. This prevents the curves from being broken by
common algorithms.

With the knowledge and technology at the time of this
discovery, the Diffie-Hellman cryptosystem that resulted
from these Koblitz curves were considered secure [3], and
over the years, many algorithms arose to further increase
the efficiency of the scalar multiplications [6].

II. EFFICIENCY

A Frobenius map is a map 7 on a field of ¢ elements,
GF(q), such that 7(z,y) = (29,y?). If the trace of the
Frobenius map of an elliptic curve is equal to 1, we call
the curve anomalous. 7 then satisfies the characteristic
equation 72 —T+q = 0. Thus, when ¢ = 2¥, the Frobenius

map becomes 7 : (x,y) — (ka,yzk). From here, we see
that scalar multiplication by a factor of 2¥ can be greatly
simplified by using 72 — 7 + 2F = 0:

2(P) —1(P) +2*(P) =0

becomes
28P = —7(P) + 7%(P)

reducing the k point additions to just one point addition
3].

From here, Koblitz presents the following theorem:

Theorem 1: Let E be an anomalous elliptic curve defined
over Fy, and let I be its twist.

(a) If P is an Fgn-point on E (or E), then the multiple [q]P
can be computed with a single addition of points (together
wth shift operations for the computation of x — z? in a
normal basis of Fy).

(b) In the special case ¢ = 2, any of the multiples [2!/]P for

[ <4 can be computed with a single addition of points.

With this result, point doubling can be conducted al-
most for free [3]. Furthermore, for points in GF(2*), the

Frobenius map on F is 7 = HT V=" Then as 7 is an ele-
ment of norm 2 in the ring Z[*Y=" V"] any element of the

ring can be written as a linear combination of 77, with co-
efficients {0,1}. Any integer n is an element of this ring,
and thus, a linear combination of the 7/ with Hamming
size less than s can be chosen for n. From here, we have
that scalar multiplication [n]P can be reduced to less than
s point additions:

[P =" c;7(P).

A similar argument can be made for E. but in this case,
T= 71%‘/?7, so the expansion of n becomes a linear com-
bination of 77, with coefficients {0, —1} [3].

This expansion of n is known as the 7-adic representation

[2].
III. SoLINAS: FURTHER EFFICIENCY

In 2000, a paper by Solinas proposed a method that im-
proves the speed of scalar multiplication by 50% when com-
pared to any previous version [6].



A. Areas of Improvement

Solinas highlights three improvements which are unique
to the elliptic case:

1. Rather than using a random process, the curve and the
base field on which it is defined can be selected to optimize
the efficiency of scalar multiplication.

2. Because subtraction on elliptic curves is as efficient as
addition, by allowing subtractions, we can replace the bi-
nary expansion of n seen in the previous section with
a signed binary expansion, n = Y c;77, where ¢; =
{-1,0,1}.

3. Complex multiplication with algebraic integers can be
used from a set of operations that comes with every elliptic
curve over a finite field.

All three of these areas are used in the creation of Solinas’
new algorithm [6].

B. Algorithm
B.1 Nonadjacent Forms

The nonadjacent form (NAF) of n is a signed binary ex-
pansion with the property that two consecutive coefficients
cannot be nonzero. Every integer n can be represented with
a unique NAF, and there are several algorithms to find the
NAF of n from its binary expansion [6]. The use of NAF’s
rather than ordinary binary expansion signifcantly reduces
the number of terms required for integer expansion.

One method of finding the NAF involves repeated divi-
sion by 2, allowing remainders {0, +1} chosen such that the
quotient is even.

ROUTINE 4 (NAF)

Tnput:
a positive integer n

Outpui:
NAF(n)

Computation:
Set ¢c+«—n
Set & «— {}
While ¢ =0
If ¢ odd
then
set u «— 2 — (cmod 4)
set c+—c—u
else
set u «— 0
Prepend w to &
Set ¢« ¢/2
EndWhile
Output &

Fig. 1: An algorithm to compute the NAF

However, the computation of the NAF can be made more
efficient by the proposed methods in II.A. For example,
for NAF’s with length [, the following addition-subtraction
method

ROUTINE 6 (ADDITION-SUBTRACTION METHOD)

Input:
a positive infeger n
an elliptic curve point P

Output:
the point n P

Computation:
Eet c«n
Eet Q — (2,
While ¢ =0
If ¢ odd then
set w «— 2 — (c mod 4)
set c«—c—u
if w=1 then set 0« Q+ F
if w=—1 then set Q< Q00— F
Set ¢« ¢/2
Set Py «— 28
EndWhile
Cutput Q@

Py — P

Fig. 2: Addition-Subtraction computation of the NAF

has an average density of nonzero coefficients of

218l —4) — (=16l —4) 1 5
91— - (-1 3 @)

compared to the binary expansions, which have an average
density of about %, so we see that binary methods are less
efficient, requiring about 12% more elliptic operations than
addition-subtraction [6].

B.2 7-adic NAF

In [6], Solinas takes this a step further and introduces the
7T-adic NAF as an alternative to the normal NAF we saw in
Figure 1. By replacing a (signed) binary expansion with a
(signed) 7-adic expansion, n can be represented as the sum
and difference of powers of 7, and when GF(2%) is repre-
sented as a normal basis, multiplication by 7 is essentially
free [6].

As an example, given a point P = (x,y) on E and an
integer n = 9, the scalar multiplication [9]P can be com-
puted using the representation of 9 as its 7-adic NAF. That
is, 9 = 7° — 73 41, so the scalar multiplication can be com-
puted as follows [6]:

O1P = (") = (¢* *) + (2.9)

By modifying the original NAF algorithm in Figure 1,
we obtain the algorithm to compute the 7-adic NAF seen
in Figure 3. Unlike the original NAF algorithm where the
NAF was obtained through repeated division by 2, here we
divide repeatedly by 7. The only possible remainders after
this division are 1 or -1, so we choose the value that allows
the quotient to be divisible by 7 [6].



ALGORITHM 1 (1-adic NAF)

Tnput:
integers ry, 1]

Outpui:
TNAF(rg 4+ 1)

Computation:
Set cp—rg, C1 — N
Set & «— {}
While cg#£0 or c1 #0
If ¢p odd
then
set #w «— 2 —(cpg—2cymod4)
set cp «—cg—u
else
set u «— 0
Prepend w to &
Set (ep.c1) < (a1 + peon/2, —cpf2)
EndWhile
Output S

Fig. 3: Computation of the 7-adic NAF

To prove that the 7-adic NAF is more efficient than reg-
ular NAF, Solinas presented the following [2]:

Theorem 2: Let k € Z,, k # 0.

If the length I(k) of the 7-adic NAF(k) is greater than 30,
then

logy(N (k) — 0.55 < I(k) < logy(N(k)) + 3.52.

In addition, as with addition-subtraction NAF’s; the av-
erage density of nonzero coefficients for 7-adic NAF’s of
length [ is given by (2), and thus can be approximated by

3 [6]

B.3 Reduced 7-adic NAF

A problem that occurs when using the 7-adic NAF is
that the number of nonzero terms, or Hamming weight, is
twice as long as that of the ordinary NAF. Because of this,
the advantages gained by eliminating point doublings is
reduced by the doubling of the number of point additions.
Then the T-adic method is not as advantageous as it could
be [6].

To fix this problem, Solinas replaces the 7-adic NAF
with a reduced T-adic NAF. The reduced 7-adic NAF is
constructed so that it is equivalent to the ordinary 7-adic
NAF (that is, for A and p in Z[7], AP = pP for all P on
the Koblitz curve), but only half as long [6].

The reduced 7-adic NAF can then be applied to improve
the efficiency of scalar multiplication on curves in GF(2F).
Then the algorithm, seen in Figure 4, requires only k/3
point additions and no point doubling. This makes the

algorithm at least 50% faster than the previous algorithms
[6].

ALGORITHM 3 Scalar Multiplication on Koblitz Curves

Per-Curve Parameters.
m, a, 5, 51, T

Tnput:
n, a positive integer less than r/2
P, apoint in the main subgroup

Outpui:
nP

Computation:
Compute (rg.71) < n mod &
Set Q - (_r)
Py« P
While rp#0 or rp1#0
If rgp odd then
set w <« 2—(rg—2r; mod 4)
set rp—rp—u
if u=1 then set O «— 0+ F
if u=—1 then set 0 «— 00— F
Set Pp—1F (=RightShift [FPy])
et (rp.71) < (r1 4+ pro/2, —ro/2)
EndwWhile
Cutput Q@

(via (74))

Fig. 4: Algorithm for Scalar Multiplication

IV. CURRENT STATE

With the significant improvements in efficiency that
Solinas created, Koblitz curves became “so nice to work
with that they reportedly became known as ‘magic curves’
within the U.S. National Security Agency” [4]. In fact, of
all the special classes of elliptic curves, only Koblitz curves
are approved for practical use by major industrial stan-
dards [4], and until recently, the NSA supported the use of
the five Koblitz curves listed in [7]: K-163, K-233, K-283,
K-409, and K-571.

However, there is an increasing concern over the quan-
tum computer, as well as a necessity for quantum-safe cryp-
tography that cannot be solved with a quantum computer.
Due to this, in August 2015, the NSA announced plans to
transition away from ECC and into quantum-resistant al-
gorithms. Until these new algorithms are developed, the
current algorithms, known as Suite B, will continue to be
used [8].

In addition to this, the long-term security of Koblitz
curves has become questionable [5]. In 2014, Gal-
braith and Gebregiyorgis presented their approach to using
summation-polynomial methods to attack the ECDLP on
curves over binary fields [1]. Because of the progress they
made in breaking the cryptographic system, curves defined
over prime fields have become safer choices for use over
curves defined on binary fields [5].



V. CONCLUSION

We see that Koblitz curves are a special class of curves
defined over binary fields and allow for greatly improved ef-
ficiency through their ability to implement scalar multipli-
cations by using only point additions. Due to this, Koblitz
curves have been popular and there have been many suc-
cessful attempts to further increase their efficiency.

However, due to recent progress in cracking curves over
binary fields and increasing concern over the advent of the
quantum computer, the confidence towards the long-term
security of Koblitz curves is waning. Sentiment is shifting
away from supporting the use of these curves, and once
the NSA releases its new suite of quantum-resistant algo-
rithms, we may see that the use of elliptic curves, and thus
Koblitz curves, disappears altogether.
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