
1

Computing small discrete logarithms
using optimized lookup tables

Vasilios Mavroudis
Department of Computer Science, University of California, Santa Barbara, CA 93106.

E-mail: mavroudisv@cs.ucsb.edu

Abstract—In our previous work Crux 1, we used an additively
homomorphic elliptic-curve cryptosystem, based on El Gamal,
to compute privacy-preserving statistics for the Tor network [4].

The decryption algorithm of our cryptographic scheme re-
quired the computation of a small discrete logarithm (DL). For
small values, the computation of the DLP should have been trivial
as an exhaustive search would quickly retrieve the correct result.
However, in our case the discrete logarithms ended up being quite
large and an exhaustive search proved to be quite slow for real-
life applications.

In this work, we investigate an alternative approach, which
uses an optimized lookup table of precomputed discrete loga-
rithms. More specifically, we use a non-exhaustive lookup table
to assist and speed up the computation of the small discrete
logarithms. Similar approaches have been also been considered in
the past [5], [3], [2]. Initially, we examine the related work in the
field, we then outline our method, and finally we experimentally
evaluate its performance. Based on our findings, we provide a
python implementation, which we also incorporate in Crux.

I. INTRODUCTION

In recent years, homomorphic schemes are being applied
increasingly often in real-life scenarios. This imposes the ad-
ditional requirement of speed and efficiency. More specifically,
in a research setting the complexity of an algorithm matters
more than the actual runtime, whereas users often are not
willing to wait more than very few seconds for an operation
to complete (even if the complexity of the algorithm is
outstanding). Two such examples of (partially) homomorphic
schemes are [7] [6] where the authors apply their protocol in
a variety of scenarios ranging from smart-metering to recom-
mendation systems. However, in both schemes the decryption
process requires the computation of a small discrete logarithm.
Normally, this would not be a problem, since the encrypted
value is small enough and an exhaustive search is enough
to solve the problem. However, since those schemes are
homomorphic, the result of the computations is not necessarily
small. For instance, when the measurements of a large number
of users/meters are aggregated. This can be a problem, as it
can severely delay the decryptin operation and thus inhibiting
the user-friendliness of the implementation. In this work, we
propose a method which allows the rapid computation of the
DLP for a wide enough range of values, especially designed
to be applied in real-life uses.

1The source code of the implementation can be found at:
https://github.com/mavroudisv/Crux

II. RELATED WORK

The problem of solving small discrete logarithms has been
studied by a number of researchers in recent years. One of the
first papers in the area is [2] from Bernstein et. al in which they
explain why the problem is of interest, its practical applications
and introduce a novel algorithm which uses precomputation
tables to reduce the runtime. Their suggested algorithm focuses
on the Boneh, Goh, and Nissim protocol and uses a pre-
computation table to reduce the runtime of the decryption
process, while they consume only limited storage space. Addi-
tionally, they also work on the problem of computing discrete
logarithms in small groups, suggest algorithms which speedup
the process, and discuss their practical applications in schemes
and protocols. Moreover, Bernstein et. al used precomputations
to attack popular cryptographic schemes [3]. In their paper,
they clarify that their attacks are not practical and they do
not pose a real threat in real-life settings, however, the paper
shows that precomputations are a powerful tool which has
many different application in modern cryptography. Finally,
Galbraith’s [5] work summarize the current state of the art for
algorithms capable of solving the discrete logarithm problem
for elliptic curves (ECDLP). Furthermore, they explain the
groups under which each algorithm performs better, their
drawbacks and eventually examine potential combinations.

III. CRYPTOSYSTEM & PROBLEM DEFINITION

Crux utilizes an Additively Homomorphic Elliptic-Curve
cryptosystem based on a variant of El Gamal [1]. The
cryptosystem comprises of the following three algorithms:

KeyGen(1n): Given a security parameter n, elliptic curve E
and a generator g are selected forming a group with order q.
For the generation of the key pair, we choose priv ∈ Zq and
then we compute the public key as pub = priv · g. The output
consists of (E , g , pub) which is public and the private key
priv.

Encryption(pub, m): Given the public key and a plaintext
message m the algorithm computes the ciphertext
Ct = (A,B), where A = k · g, B = k · pub + m · g and
k ∈ Zq is randomly chosen.

Decryption(Ct, priv): During the decryption the two parts of
the ciphertext and the private key are combined as such: B −
x·A = m·g. This gives us m·g but not m itself. To extract m



2

we need to solve a discrete logarithm problem, however, this
is not computationally hard since the range of m is limited
and hence we can compute i · g for all the possible i’s.

However, as discussed in the previous sections, since the
cryptosystem is used for privacy-preserving statistics the en-
crypted values end up being quite large. This often happens
when executing a protocol for the computation of a met-
ric/statistic (e.g. mean, median, variance) between a large
number of entities. The individual values that each entity is
encrypting may be relatively small. However, the decryption
of the sum of a large number of ciphertexts or their squares,
is not trivial and the inefficiency of the exhaustive search will
result in delays. In the following section we present a more
efficient alternative to solve this problem.

IV. PROPOSED SOLUTION

Our proposed solution is based on the observation that a
lookup table (with precomputed pairs of values) can be used to
speed up the slow decryption process. Such a table contains all
possible key-value pairs within a user defined range of values.
More specifically, each row contains a key i · g and the value
of the corresponding i. The algorithm for the construction of
the table is in algorithm 1.

1 func gen lookup (lower bound, upper bound, limit)
Input : Two integers (lower bound, upper bound)

defining the range of the secrets and a third
integer which defines the number of bytes kept
from each curve point.

Output: table
2 G ← EcGroup(nid=713);
3 g ← G.generator();
4 o ← G.order();
5 table = {}
6 ix = lower bound · g;
7 for i=lower bound to upper bound do
8 trunc ix ← substring(ix, trunc limit);
9 if trunc ix in i table then

10 table[trunc ix].append(i);
11 else
12 table[trunc ix] ← i;
13 end
14 ix ← ix + g
15 end
16 return table;

Algorithm 1: Algorithm for generating a non-exhaustive
lookup tables used when solving small instances of the
discrete logarithm problem.

Even though the approach with the exhaustive lookup table
works as expected it essentially offloads the computational
overhead to the storage. Since storage is quite cheap this
is preferable, however, we were able to further improve our
algorithm to get the best of both worlds. Namely, reduce the
computation time and minimize the table size. Our optimiza-
tion is based on the observation that the stored i · g takes up
most of the space compared to i. For this reason, we designed
a simple mechanism which allows us to:

• Reduce the number of bytes of i · g that we store
• Avoid storing all i · g, but keep storing all i’s which are

relatively small
More specifically, we truncate i · g and instead of storing

all its bytes we store only some of them. If this results in a
collision with another element then we store both values (i.e.
i’s) under the same key. In practice this means that we no
longer have an 1-1 pairing between the keys and the values,
but each key holds multiple i’s. The number of bytes to be
stored is parametrized by the user.

Of course, since the pairing in the table is no longer 1-
1, the retrieval mechanism should be adapted accordingly. In
particular, the algorithm works as follows: given the value
i · g and the number of bytes kept when the lookup table was
generated, it truncates the value and then uses it as a key
to retrieve the record from the table. Since each record may
contain multiple i’s, the algorithm evaluates each one of them
and returns the one that solves the instance. This can be seen
in a more formal format in algorithm 2.

1 func small dlp solver (point, limit)
Input : The curve point for which we want to solve

ECDLP (point) and integer which defines the
number of bytes kept from each curve point
(limit).

Output: The solution x to the given ECDLP instance.
2 xs ← table[point[:trunc]].split(’,’);
3 G ← EcGroup(nid=713);
4 g ← G.generator();
5 for x in xs do
6 if x · g == point then
7 return x;
8 end
9 end

10 return None;
Algorithm 2: Algorithm for generating the lookup tables
used when solving small instances of the discrete logarithm
problem.

As seen in section V the proposed technique reduces the
runtime significantly, while it requires relatively small storage
space.

V. EXPERIMENTS

In this section, we design and run experiments to determine
the efficiency of our proposed technique and evaluate the rela-
tionship between the various parameters. More specifically, the
first experiment evaluates the speed-up obtained when using
an exhaustive lookup table compared to an algorithm which
solves the ECDLP by exhaustively scanning all possible val-
ues. For the experiment, the two DLP solving algorithms were
implemented and then used to solve 100 random instances of
the ECDLP, with i being randomly chosen within the range
(-200000, 2000000). As seen in table II the exhaustive search
method is very slow and this would make it impractical in
real-life uses. On the other hand the method using the lookup
table is rapid but has the drawback of a fast growing filesize.



3

Method Time (sec) Filesize (MB)
Bruteforce 297.508512 0
Lookup 0.00248408 104

TABLE I
ALGORITHM FOR GENERATING THE LOOKUP TABLES USED WHEN

SOLVING SMALL INSTANCES OF THE DISCRETE LOGARITHM PROBLEM.

Fig. 1. The figure demonstrates how the number of bytes correlates with the
number of keys/items in the lookup table. The x axis shows the number of
bytes stored, while the y axis shows the number of unique items. We observe
that the number of unique keys is very low and relatively stable when storing
up to 6 bytes, however it then grows very fast until it stabilizes around 10
bytes.

In the second experiment we wanted to study how the key
grouping optimization affects the filesize and the time needed
to solve an instance of the problem. The setup was similar with
the previous experiment. 100 instances of the ECDLP problem
were solved and the median of the runtimes is reported in
figure V. As seen the size of the table gradually grows as we
store more bytes, while the time needed to solve an ECDLP
instance gets reduced very fast. From the graph it becomes
apparent that 3 or 4 bytes offer the best trade off between
filesize and runtime. A more detailed overview of the data
can be seen in table ??.

Bytes Time (sec) Filesize (MB) Unique Keys
1 157.4811983 16 1
2 84.91564391 16 3
3 5.73622117 16.5 33
4 0.40430955 17 513
5 0.02280284 31 8193
6 0.00366381 32 131073
7 0.00258743 65 1362184
8 0.00245893 88 2129442
9 0.0024523 89 2195549
10 0.00244919 104 2199730
11 0.00245336 104 2199982
12 0.00245889 104 2200000
13 0.00248408 104 2200000

TABLE II
THE TABLE SIZE AND THE AVERAGE RUNTIME FOR THE DIFFERENT

NUMBERS OF BYTES.

Fig. 2. The figure demonstrates how the runtime and the filesize change in
regards to the number of bytes stored in the lookup table. The x axis shows
the number of bytes stored, while the y axis shows both the time needed for
solving an instance of the ECDLP (in seconds) and the size of the table in
MBs. More specifically, we observe that the number of unique keys is very
low and relatively stable for the first 6 characters, however it then grows very
fast.

VI. CONCLUSIONS & FUTURE WORK

In this work, we attempted to solve the problem of finding
small discrete logarithms by combining cryptographic tools
with a technique from the realm of ”systems”. The problem
of solving small instances of the discrete logarithm problem
for elliptic curves has immediate practical implications as
many cryptographic schemes with homomorphic properties
require the computation of a small DL. In normal end-to-
end encryption scenarios the problem is trivial as the range
of the plaintext is very limited. However, in cases were the
homomorphic properties of the scheme are utilized to do
computations between many parties it is likely that the final
ciphertext does not fall within the restricted range, making
the discrete logarithm problem easy to solve but not trivial.
This suggests that the computation is not instant any more,
and instead takes few seconds to complete, hence possibly
impairing the user experience. Our proposed technique tackles
this problem and provides a way to solve the ECDLP in a
much large range instantly. The results of our experiments
show that our method was successful and we were able to
both minimize the runtime of the algorithm and prevent the
tables from growing too much when the range increases. An
interesting direction for further research would be to examine
if this or other ”system” approaches would be applicable
on top of the techniques proposed by Bernstein in [3], [2].
Additionally, a generalized approach for various types of
schemes would also be of interest.

REFERENCES

[1] Josh Benaloh. Dense probabilistic encryption.
[2] Daniel J Bernstein and Tanja Lange. Computing small discrete logarithms

faster. In Progress in Cryptology-INDOCRYPT 2012, pages 317–338.
Springer, 2012.

[3] Daniel J Bernstein and Tanja Lange. —non-uniform cracks in the
concrete: the power of free precomputation. In Advances in Cryptology-
ASIACRYPT 2013, pages 321–340. Springer, 2013.



4

[4] Roger Dingledine, Nick Mathewson, and Paul Syverson. Tor: The second-
generation onion router. Technical report, DTIC Document, 2004.

[5] Steven D Galbraith and Pierrick Gaudry. Recent progress on the elliptic
curve discrete logarithm problem. Designs, Codes and Cryptography,
pages 1–22, 2015.

[6] Klaus Kursawe, George Danezis, and Markulf Kohlweiss. Privacy-
friendly aggregation for the smart-grid. In Privacy Enhancing Technolo-
gies, pages 175–191. Springer, 2011.

[7] Luca Melis, George Danezis, and Emiliano De Cristofaro. Efficient
private statistics with succinct sketches, 2015.


