
UC SANTA BARBARA, CS 290G, FALL 2015 1

ECDSA - Application and Implementation Failures
Markus Schmid

Abstract— Elliptic Curve Cryptography (ECC) is the
newest member of public-key algorithms with practical rel-
evance. It is based on the algebraic structure of elliptic
curves over finite fields. Compared to RSA and Discrete
Logarithm (DL) schemes, in many cases ECC has perfor-
mance advantages with respect to fewer computations, and
bandwidth advantages due to shorter signatures and keys.
In addition, ECC provides the same level of security but
with significantly shorter operands.[11] The Elliptic Curve
Digital Signature Algorithm (ECDSA) is the elliptic ana-
logue of the Digital Signature Algorithm (DSA). It uses the
advantages of elliptic curves and was standardized in the
US in 1999 by the American National Standards Institute
(ANSI).[7]

After a short introduction of ECC and the comparison
in terms of security of RSA and ECC, the main purpose of
this paper is to compare their security levels and to present
the ECDSA and its applications.[13], [4] Furthermore, im-
plementation failures like in the case of the ECDSA based
code authentication of the Playstation 3 in 2010 will be an-
alyzed.

I. Introduction

In 1976, a new type of cryptographic algorithms was in-
troduced by Whitfield Diffie, Martin Hellman and Ralph
Merkle. These kind of algorithms are based on mathemati-
cal problems that admit no efficient solution. In contrast to
symmetric algorithms where a secret key is shared between
two parties that is used for both, encryption and decryp-
tion, in public-key cryptography a user possesses a secret
key but also a public key. The RSA algorithm was one
of the first public-key cryptosystems and is still the most
prominent and widely used crypto scheme in practice.

With the introduction of elliptic curve cryptography by
Koblitz and Miller, a new type of public-key algorithms was
introduced that is used in many new applications with se-
curity needs such as mobile devices.[11] After a short intro-
duction to ECC and RSA and their comparison in terms of
security, ECDSA as the elliptic curve variant of the Digital
Signature Algorithm (DSA) is presented and implementa-
tion failures in two examples are analyzed.

II. ECC - Overview

Elliptic Curve Cryptography (ECC) is based on the gen-
eralized discrete logarithm problem and can be used for en-
cryption, for key exchange and for digital signatures. ECC
is steadily gaining popularity in applications due to its per-
formance advantages over other public-key algorithms in
many cases. For cryptographic use, we consider the curve
over a finite field, where the most popular choice are prime
fields GF (p) and where all arithmetic is performed modulo
a prime p. An elliptic curve over Zp, p > 3 is the set of all
pairs (x, y) ∈ Zp which fulfill

y2 ≡ x3 + a · x + b (mod p)

together with an imaginary point of infinity O, where

a, b ∈ Zp

and the condition 4 · a3 + 27 · b2 6= 0 (mod p)

According to the definition of elliptic curves, the curve
has to be nonsingular, which means that the plot has no
self-intersections or vertices. This can be ensured if the
discriminant of the curve -16(4a3+27b2) is nonzero. Al-
though, elliptic curves over prime fields GF (p) than over
other finite fields are currently more widely used in prac-
tice, curves over binary Galois fields GF (2m) are also pop-
ular. A particular type of elliptic curve over GF (2m) with
the values 0 and 1 for the coefficients, is the Koblitz curve,
which allows fast point multiplication.[11]

III. RSA - Overview

The RSA cryptosystem is named after its inventors R.
Rivest, A. Shamir, and L. Adleman and its security is based
on the intractability of the integer factorization problem.[9]
Even though elliptic curves and discrete logarithm schemes
are becoming more popular, it is currently the most widely
used asymmetric cryptographic scheme. RSA has many
application areas but in practice it is most often used for
the encryption of small data items, mainly for key trans-
port, and for digital signatures. However, RSA encryption
is not meant to replace symmetric ciphers. Since perform-
ing RSA involves many computations, it is multiple times
slower than ciphers such as AES. Therefore, the main use of
its encryption is to securely exchange a key for a symmet-
ric cipher. The key generation, encryption and decryption
works as follows [11] :

RSA Key Generation
Output: public key: kpub = (n,e) and private key: kpr=(d)
1. Choose two large primes p and q.
2. Compute n = p · q.
3. Compute Φ(n) = (p− 1)(q − 1).
4. Select the public exp. e ∈ {1, 2, ...,Φ(n)− 1} such that

gcd(e,Φ(n)) = 1.

5. Compute the private key d such that

d · e ≡ 1 mod Φ(n)

RSA Encryption Given the public key (n,e) = kpub and
the plaintext x, the encryption function is:

y = ekpub
(x) ≡ xemod n

where x,y ∈ Zn.

UC SANTA BARBARA, CS 290G, FALL 2015 2

RSA Decryption Given the private key d = kpr and the
ciphertext y, the decryption function is:

x = dkpr
(y) ≡ ydmod n

where x,y ∈ Zn.

IV. Security of ECC and RSA

In ’The Case for Elliptic Curve Cryptography’ the U.S.
National Security Agency recommend that the industry
should move on from the first generation of public key algo-
rithms to elliptic curves due to both, the relative security
offered by these kind of curves and their relative perfor-
mance.[14] Elliptic curves offer more efficient implementa-
tions and bandwidth advantages with respect to shorter
signatures and keys at the same security level as e.g. RSA.
In terms of numbers, about 160-256 bit vs. 1024-3072
bit. For elliptic curves, a security level of 80 bit provides
medium-term security but bit lengths up to 256 bit are
usually used, which corresponds to a security level of up to
128 bit.[3], [11]

A comparison of key sizes and their bit security between
ECC and RSA is shown by [15]:

Bit Security

80 112 128 192 256
ECC 160 224 256 384 512
RSA 1024 2048 3072 8192 15360

However, the stated security is only achieved in case that
cryptographically strong elliptic curves are used. The Na-
tional Institute of Standards and Technology (NIST) often
propose standardized curves for the application in practice
since several families of curves have cryptographic weak-
nesses, e.g., supersingular curves.[11]

According to FIPS 186-2, examples for recommended
curves over prime fields F p, defined by a generalized
Mersenne prime, are:

p192 = 2192 - 264 - 1
p224 = 2224 - 296 + 1
p256 = 2256 - 2224 + 2192 + 296 - 1
p384 = 2384 - 2128 - 296 + 232 - 1
p521 = 2521 - 1

Their group orders are all prime and have the same co-
efficient a = −3.[15], [3]

In case the elliptic curve is chosen with care, the best
known attacks against the ECDLP are notably weaker
than the best factoring algorithms to attack the RSA, and
the best algorithms to solve the discrete logarithm prob-
lem modulo p. Powerful attacks against the DLP mod-
ulo p like the index-calculus algorithms are not applica-
ble against elliptic curves. Therefore, the only remaining
attacks are Pollard’s rho method and Shanks’ baby-step
giant-step method.[11]

Since the RSA cryptosystem was introduced, the effec-
tiveness of brute-force attacks got stronger and stronger.
This also had an considerable impact on the choice of RSA

modulus sizes. The Number Field Sieve (NFS), which is al-
ready more than 20 years old, is the most effective method
that has been published to attack the RSA. In terms of in-
teger factorization, quite a number of small improvements
were achieved over time that slightly influenced NFS’ effec-
tiveness but there was no major breakthrough. However,
worth mentioning is the polynomial time factoring on a
quantum computer.[4]

V. Ecdsa and examples of implementation
failures

Elliptic curves and the digital signature algorithm that is
based on it, offer a great level of security when implemented
correctly. In [13], Vaudenay listed four necessary security
conditions for DSA and ECDSA respectively. First, the
discrete logarithm in the subgroup spanned by G has to
be hard. Otherwise it is possible to compute the discrete
logarithm of the public key to receive the secret key. Fur-
thermore, SHA-1 has to be a one-way and at the same time,
a collision-resistant hash function to withstand forgery at-
tacks. Last, the generator for k has to be unpredictable.
In the following, two examples are presented where the
last condition didn’t hold, which led to an intrusion into
the system.

A. Console Hacking - Playstation 3

On the 27th Chaos Communication Congress in 2010,
a hacker group called fail0verflow presented a way to sign
software for Sony’s game console, the Playstation 3. This
could be achieved by finding out the private key that is
used within the ECDSA. As a result, copied and unlicensed
games could be downloaded on any Playstation 3 and even
malicious software could be deployed since it was officially
signed by Sony. ECDSA is used for the code authentication
that is checking and verifying the digital signature of a
binary file before it is allowed to be run on a processor. For
the ECC version of the digital signature algorithm defined
over a prime finite field (Zp), a large prime p should be
selected. In addition, the parameters a and b for the curve
have to be chosen and a base point G of high order n,
meaning that n × G = O for a large n. After randomly
selecting X, 1 ≤ x ≤ n− 1, which serves as the private key,
the public key Y can be calculated by

Y = X ×G.

According to [1], an approved hash function shall be used
to generate the ECDSA curve parameters. Furthermore,
for a high security, n shall be chosen in adherence to the
recommendations in the NIST document FIPS 186-3.

The parameters p, a, b,G, n and Y will be publicly avail-
able whereas X serves as the private key. Constructing a
digital signature of a document requires a one-time random
number K such that 0 < K < n − 1. Each digital signa-
ture has to be created with a different value for K. M is
an integer that represents a hash of the document, which
has to be signed. The digital signature that is constructed
for M consists of two parts, sig1 and sig2 where sig1 is

UC SANTA BARBARA, CS 290G, FALL 2015 3

constructed by calculating the point K ×G on the elliptic
curve first and retaining the modulo n of its x-coordinate.
In case the modulo operation generates a zero value for
sig1, a different K has to be tried.

sig1 = (K ×G)xmod n

sig2 = K−1 · (M + X · sig1)mod n

The recipient of the document can verify the authenticity
by: [8], [5]

(a) calculating the hash M of the document
(b) calculating w = sig2

−1mod n, u1 = M · w mod n,
u2 = sig1 · w mod n
(c) computing the point (x, y) on the curve:

(x, y) = u1 ×G + u2 × Y
(d) authenticating the signature by checking whether the
equivalence holds: sig1 ≡ x mod n

In cryptography, generating random numbers is a funda-
mental task. These random numbers are needed in steps of
cryptographic algorithms or protocols as well as for gener-
ating cryptographic keys. Even if [6] claim that a certain
robustness and therefore perfect randomness is not guar-
anteed by the two Linux PRNGs (pseudo-random number
generators), /dev/random and /dev/urandom, the hacker
group fail0verflow presented a common way to generate a
random K:

m = open(”/dev/random”, ”rb”).read(30)

Sony didn’t generate a K with the help of a PRNG but
used 4 constantly as its random number. The accompany-
ing risk of using the same K for two different documents
is that an adversary can find out the private key and pro-
ceed to counterfeit the signature. Given the hashes of two
different documents M and M ′, which are signed with the
same K, the signatures for these two documents will look
like the following (primed signatures symbolize the second
document):

sig1 = (K ×G)xmod n
sig2 = K−1 · (M −X · sig1)mod n
sig′1 = (K ×G)xmod n
sig′2 = K−1 · (M ′ −X · sig1′)mod n

Sig1 and sig′1 are independent of the document and stay
the same. By calculating the difference of sig2 − sig′2, the
adversary would receive

sig2 − sig′2 = K−1(M −M ′)

and is able to instantly calculate K. Finally, the private
key X can be computed by

sig2 = K−1 · (M −X · sig1)mod n

[8], [5]

B. Bitcoin

Another example of a flawed implementation of ECDSA
happened in the case of Bitcoin. Bitcoin is a digital cur-
rency, which is based on a distributed peer-to-peer system.
User can transact money directly without the need of a
financial institution as an intermediary. As of today, it
is a popular way of online payment: According to [2], the
total amount of bitcoins in circulation on the 4th of Decem-
ber 2015 was 14.913.800 at a market price of 361.11USD.
Bitcoins are transferred between two users A and B by at-
taching a digital signature (which uses A’s private key) of
the hash of the previous transaction. In addition, infor-
mation about B’s public key are attached at the end of
a new transaction. The verification of the signature can
be achieved by A’s public key from the previous transac-
tion.[3] [12] shows an exemplary transaction that has one
output and two inputs:

transaction:
9ec4bc49e828d924af1d1029cacf709431abbde46d59554b62

input 1:
30440220d47ce4c025c35ec440bc81d99834a624875161a26bf
56ef7fdc0f5d52f843ad1022044e1ff...

input 2:
30440220d47ce4c025c35ec440bc81d99834a624875161a26bf
56ef7fdc0f5d52f843ad102209a5f1c...

By comparing the inputs, it can be noticed that bytes
at the start and at the end are equal. The starting bytes
represent the actual signature (r, s):

r1: d47ce4c025c35ec440bc81d99834a624875161a26bf56ef...
r2: d47ce4c025c35ec440bc81d99834a624875161a26bf56ef...

s1: 44e1ff2dfd8102cf7a47c21d5c9fd5701610d04953c68365...
s2: 9a5f1c75e461d7ceb1cf3cab9013eb2dc85b6d0da8c3c6e...

The flaw was the same as in the case of the Playsta-
tion 3: a random number is needed for each signature but
the random number was used twice with the same private
key. Therefore the private key could be calculated and at-
tackers, who were able to sign any transaction, could steal
bitcoins from affected Bitcoin wallets. This was due to a
vulnerability in the Android implementation of the Java
class SecureRandom that prevented the generation of safe
random numbers to protect the wallet applications.[10]

[3] made an effort by extracting 47.093.121 elliptic curve
points from the signatures and verifying their correctness.
In addition, they looked for duplicated nonces in the sig-
nature. They found that 158 unique public keys used the
same signature nonce’s value for more than one signature.
One address could be traced back to have stolen bitcoins
from 10 addresses with a value of approximately $12.000
USD.

UC SANTA BARBARA, CS 290G, FALL 2015 4

VI. Conclusion

Elliptic curves and ECDSA as its digital signature al-
gorithm offer a secure, fast and efficient alternative to the
RSA signature scheme and DSA. This evaluation only holds
true when the algorithm is implemented correctly. In this
work, two cases were analyzed, in which Vaudenay’s fourth
security condition didn’t hold: the generator for k was pre-
dictable and thus, the private key could be calculated. In
case the elliptic curve is chosen with care and the secu-
rity conditions are met, the best known attacks against
the ECDLP are notably weaker than the best factoring al-
gorithms to attack the RSA. Another advantage is that
powerful attacks like the index-calculus algorithms are not
applicable against elliptic curves. Therefore only Pollard’s
rho method and Shanks’ baby-step giant-step method re-
main for attacking, which have a comparable slow runtime.

References

[1] FIPS 186-3. Digital Signature Standard (DSS). Federal Infor-
mation Processing Standards Publication. National Institute of
Standards and Technology, Gaithersburg, 2009.

[2] ”Bitcoin”. http://blockchain.info, 2015.
[3] Joppe W. Bos, J. Alex Halderman, Nadia Heninger, Jonathan

Moore, Michael Naehrig, and Eric Wustrow. Elliptic curve
cryptography in practice. Cryptology ePrint Archive, Report
2013/734, 2013.

[4] Joppe W. Bos, Marcelo E. Kaihara, Thorsten Kleinjung, Ar-
jen K. Lenstra, and Peter L. Montgomery. On the security of
1024-bit rsa and 160-bit elliptic curve cryptography. 2009.

[5] ”Bushing”, ”Marcan”, ”Segher”, and ”Sven”. Ps3 epic
fail. https://events.ccc.de/congress/2010/Fahrplan/
attachments/1780_27c3_console_hacking_2010.pdf, 2010.

[6] Yevgeniy Dodis, David Pointcheval, Sylvain Ruhault, Damien
Vergnaud, and Daniel Wichs. Security analysis of pseudo-
random number generators with input: /dev/random is not
robust. Proceedings of the 2013 ACM SIGSAC conference on
Computer and communications security, pages 647–658, 2013.

[7] Don Johnson, Alfred Menezes, and Scott Vanstone. The elliptic
curve digital signature algorithm (ecdsa). International Journal
of Information Security, pages 36–63, 2001.

[8] Avinash Kak. Elliptic Curve Cryptography and Digital Rights
Management. Lecture Notes on Computer and Network Secu-
rity. Purdue University, 2015.

[9] Alfred Menezes, Paul van Oorschot, and Scott Vanstone. Hand-
book of Applied Cryptography. Discrete Mathematics and Its
Applications. CRC Press, Boca Raton, 1997.

[10] AVG Now Official Blog Online Security News and Tips. The
android bitcoin vulnerability explained. http://now.avg.com/
android-bitcoin-vulnerability-explained/, 2013.

[11] Christof Paar and Jan Pelzl. Understanding Cryptography. A
Textbook for Students and Practitioners. Springer-Verlag, Berlin
Heidelberg, second edition, 2010.

[12] Nils Schneider. Recovering bitcoin private keys using weak sig-
natures from the blockchain. https://www.nilsschneider.net/
2013/01/28/recovering-bitcoin-private-keys.html, 2013.

[13] Serge Vaudenay. The security of dsa and ecdsa - public key
cryptography - pkc 2003. Lecture Notes in Computer Science,
pages 309–323, 2003.

[14] Ann Hibner Koblitz, Neal Koblitz, and Alfred Menezes. Elliptic
curve cryptography: The serpentine course of a paradigm shift.
Journal of Number Theory, 131(5):781–814, 2011.

[15] Marc Joye. Elliptic curves and fault attacks. University of Cal-
ifornia, Santa Barbara, 2015.

