
1

A Survey of Tiny ECC - A Small Library for ECC
in Configurable Wireless Networks, and its

Optimizations
Ben Terner

Abstract—Elliptic curves offer strong computational security
for public key cryptography while requiring far smaller keys
than RSA. In a world where interconnected devices trend toward
miniaturization and security threats become more frequent,
elliptic curves are especially appealing to implementors of
embedded devices with strong security requirements and few
computing resources.

This survey will investigate the library TinyECC for imple-
menting elliptic curve cryptography in embedded systems and
devices with low computational power and the optimizations that
it employs. TinyECC is a library designed for wireless sensor
networks that allows its users to choose configure optimizations
based on the computing resources available on a device and
performance requirements.

I. INTRODUCTION

As the world fills with devices connected over wireless
networks, the need arises for devices with strong cryptographic
capabilities available at low power. Standard public key cryp-
tography, which uses RSA or Diffie-Hellman, requires long
keys and large computations that can become very memory
intensive, possibly occupying a large portion of the compu-
tational abilities of the device. Elliptic curve cryptography
achieves similar security to RSA while requiring much shorter
keys and computation over much smaller integers, making
it much better suited to devices with limited computational
capabilities.

However, the problems on which ECC is built are still diffi-
cult and computationally intensive, with the potential to drain
the power capabilities of the device, so implementing tools
for ECC on small devices requires optimization to improve the
efficiency of the computation. TinyECC aims to provide a low-
power, portable, cross-platform, and computationally efficient
implementation of cryptographic algorithms with optimiza-
tions suitable for low power devices. By understanding the
performance of TinyECC and its performance, we can also
gain insight into the bottlenecks in computing elliptic curve
cryptography.

TinyECC implements the three standard elliptic curve cryp-
tographic algorithms: Elliptic Curve Diffie-Hellman (ECDH)
key agreement, Elliptic Curve Digital Signature Algorithm
(ECDSA), and Elliptic Curve Integrated Encryption Scheme
(ECIES).

II. OPTIMIZATIONS

To achieve its stated design goals, TinyECC [1] [2] employs
a variety of optimizations to both improve performance and

reduce code size. In general, however, the more complex
algorithms trade efficiency for an increase in code size and
RAM necessary, since they hold intermediate values in mem-
ory to speed up computation if they can be reused by similar
operations rather than compute them as needed. Here, we
detail the optimizations.

A. Barrett Reduction

Rather than perform modular reductions in the “textbook”
way, using division, Barrett Reduction offers a method for
computing a reduction using two multiplications and a small
number of reductions via integers of the form 2m. Although
the textbook method is more efficient for a single modular
reduction, Barrett Reduction provides performance benefits
for many reductions modulo the same number by permitting
pre-computation and reuse of intermediate values. Barrett
Reduction is similar to Montgomery’s modular multiplication
method, although Montgomery multiplication requires con-
verting the operands into Montgomery form and back, while
Barrett Reduction trades off by requiring pre-computation.

TinyECC identifies the tradeoffs of Barrett Reduction in
terms of speed in processing for size of code and occupation
of RAM, since it needs to store intermediate values. We
give Barrett’s Algorithm in Algorithm 1 and describe it below.

Input: p, b > 3, k = blogb pc+1, 0 ≤ z ≤ b2k, µ = bb2k/pc
Output: z mod p

q ← bbz/bk−1c · µ/bk+1c
r ← (z mod bk+1)− (q · p mod bk+1)
if r < 0 then

r ← r + bk+1

end if
while r ≥ p do

r ← r − p
end while
return r

Algorithm 1: Barrett’s Algorithm for modular reduction

The value b is a base suitably chosen for the modulus, and
if it is set to some value b = 2L for an appropriate L, then
division by b is just a right shift, making the operation highly
efficient. The value µ = bb2k/pc is dependent only on the
modulus and not on the variable being reduced, so although
its computation may be expensive (requiring the number of



2

times the prime modulus p divides b2k), it can be reused for
all modulus computations.

B. Hybrid Multiplication and Hybrid Squaring

The Hybrid Algorithm given by Gura et. al [3] is not
reproduced here for its tediousness, but instead we give a
description and discuss its advantages. The objective of Hybrid
multiplication is to have an algorithm which is both fast
and requires minimal storage; if the storage is small enough,
efficient use of registers by the operating system and processor
might improve speed of memory lookups; however, the main
objective of a hybrid approach with TinyECC is to balance
speed with memory requirements on devices with minimal
storage.

The Hybrid algorithm attempts to find balance between
the benefits of a row-wise multiplication and a column-wise
multiplication. In a row-wise multiplication, one bit of the
multiplier is kept constant as an AND is computed with each
bit of the multiplicand, and partial products are summed in an
accumulator for each bit of the multiplier. In a column-wise
multiplication, columns of partial products are collected for
the products ai · bj , where i+ j = l for column l. At the end
of each column, a k bit word is stored as part of the final
product. Although this method requires very few registers,
the access pattern to memory is not as regular (in row-wise
multiplication, one needed only to increment a pointer to
find the next bit or word of the multiplier and multiplicand)
potentially slowing down the computation.

To achieve a balance between the row-wise and column-
wise multiplication, the Hybrid algorithm combines both. At
a high level, it uses column-wise multiplication as its “outer
algorithm” and row-wise multiplication as its “inner algo-
rithm” in order to compute columns comprising of the rows
of partial products. The intuition is that the k-bit multiplier
should be loaded from memory as few times as possible
to compute partial products for its rows, and the columns
should be accumulated individually in registers. By scheduling
multiplications of the bits of the multiplier as close together
as possible, the algorithm stems the growth of the number of
registers needed to accumulate the final result while preventing
repeated accesses to memory for each bit.

The Hybrid Squaring algorithm proceeds as the standard
multiplication algorithm, but it additionally takes advantage
of the fact that in a squaring, each partial product appears
twice.

C. Projective Coordinates

As discussed in the handbook chapter by Doche and Lang
[4] and Hankerson, Menezes, and Vanstone [5], points on
an elliptic curve can be represented in the form (x, y, z) as
projective coordinates rather than affine coordinates in (x, y).
Representing points in this way helps improve the speed of
point addition by replacing modular inversion with a small
number of additions and multiplications. For the sake of
space because the formulas are cumbersome (and because
these were covered in a homework), we defer to [4] and
[5] to give algorithms for point addition and multiplication

using projective coordinates. However, we note [5] explain
that using projective coordinates, a point doubling in Jacobian
projective coordinates can be computed using only six fields
squarings and four field multiplications. [4] gives an algorithm
for computing point addition using twelve field multiplications
and four squarings.

Although computation on projective coordinates is generally
faster than affine coordinates, it is not sufficient to only
perform computation on projective coordinates. Sometimes
it is useful to add a point in projective coordinates with a
point in affine coordinates without needing to convert between
coordinate systems. Doche and Lang [4] show that if one of
the points has a z value of 1, then it reduces to eight field
multiplications and three field squarings, which is possible
with a trivial conversion of the affine point to a Jacobian
projective point. However, the algorithm requires storage for
nine intermediate values.

In addition, Hankerson, Menezes, and Vanstone [5] show
that if computing repeated point doublings in Jacobian projec-
tive coordinates, it might be faster to use a different algorithm
than repeated application of the doubling formula. When m
consecutive doublings are computed, the algorithm (which we
defer to [5]) trades m− 1 field additions, m− 1 divisions by
two, and a multiplication for only two field squarings.

D. Sliding Window for Scalar Multiplication in NAF

Rather than represent a number in GF (p) (or GF (2m))
strictly in its binary representation, it is useful to represent
(or recode) the number in Non-Adjacent Form (NAF), where
digits are drawn from the set (0, 1,−1), and the representation
is analogous to the binary, except that a negative number
indicates subtraction of that power of the base. The advantages
of this representation include the fact that it is guaranteed for
no non-zero digits to border each other, allowing for fewer
maximum operations in any algorithm that depends on non-
zero digits to decide a step.

An efficient algorithm for scalar multiplication of a number
in GF (p), given by [5], is presented in Algorithm 2.

Input: Window width w, positive integer k, P ∈ E(Fq)
Output: kP
Compute NAF (k) =

∑l−1
i=0 ki2

i

Compute Pi = iP for i ∈ {1, 3, 5, ..., 2w − 1}
Q←∞
for i = l − 1→ 0 do

Q← 2Q
if ki 6= 0 then

if k > 0 then
Q← Q+ Pki

else
Q← Q− P−ki

end if
end if

end for
return Q

Algorithm 2: Window Non-Adjacent Form Method for Point
Multiplication



3

The above textbook-like multiplication algorithm scans bits
of the multiplier from most significant to least significant
determine when to compute a point doubling and addition.
The approach achieves additional performance benefits by
precomputing the table of small scalar multiples of P and
using them for additions. However, this approach can be
further improved using a “sliding window” trick, given by [5],
where instead, k bits of input are viewed at a time rather than
carrying out a bitwise multiplication, or as in this algorithm,
additions for every bit flag.

Input: Window width w, positive integer k, P ∈ E(Fq)
Output: kP
Compute NAF (k) =

∑l−1
i=0 ki2

i

Compute Pi = iP for i ∈ {1, 3, 5, ..., 2(2w−(−1)w)/3−1}
Q←∞, i← l − 1
while i ≥ 0 do

if ki = 0 then
t← 1, u← 0

else
Find largest t ≤ w such that u← (ki, ..., ki−t+1) is

odd
end if
Q← 2tQ
if u > 0 then

Q← Q+ Pu

else if u < 0 then
Q← Q− P−u

end if
i← i− t

end while
return Q

Algorithm 3: Sliding Window Method for Point Multiplication

The “sliding window” algorithm is given in Algorithm 3.
The algorithm takes advantage of the NAF to “look ahead”
as far as the window size w to find the next power of 2 by
which to multiply Q (just 1 if k is 0, and there is no point
addition) and then looks up in the precomputed table which
point to add (or subtract).

E. Shamir’s Trick

Shamir’s trick is used only for verification of ECDSA
signatures, so we will not pay much attention to it here.
However, the trick allows computation of the form aP+bQ for
close to the cost of a single scalar multiplication rather than
two multiplications an an addition. The algorithm is similar
to the sliding window trick, where for every bit of a and
b the algorithm checks whether to add P or Q or P + Q
to an accumulated value that is doubled at every bit after
initialization at ∞, rather than just to add or subtract P as
in Algorithm 2.

F. Pseudo-Mersenne Primes

A Mersenne Prime is of the form p = 2n − 1; a pseudo-
Mersenne prime is of the form 2n−c for some c << 2n. When
constructing a finite field over which to establish an elliptic

Fig. 1. Signature Generation Times with One Optimization Enabled [1]

curve, it is advantageous to choose a pseudo-Mersenne prime
because reductions modulo the prime can be computed with a
few modular multiplications and additions without the need for
any divisions. Indeed, some of the prime fields recommended
by NIST use pseudo-Mersenne primes.

III. EVALUATION

The authors of TinyECC evaluated the performance of each
optimization they employed by running a series of experiments
that they stratified into two categories. First, they configured
and ran the code with only the optimization they wanted to test
enabled; this was considered case A. Second, they configured
and ran the code with all of the optimizations enabled except
for the one they were testing; this was considered case B.
The result was a large set of tests in which no optimiza-
tions were present, only one optimization was present at a
time, all optimizations except for one were present, and all
optimizations were present, allowing for thorough analysis of
the effects of each optimization in comparison to the others.
While graphs were constructed for initialization, signature
generation, and signature verification times, we only reproduce
here the graphs constructed for signature generation, since we
consider initialization to be a one-time cost and verification
results are similar to generation with the exception of Shamir’s
trick, which improves the speed of verification. The tables are
given in figures 1 and 2.

It was clear that the most useful technique was the use
of projective coordinates. The least useful trick, surprisingly,
is the use of Barrett reductions for modular multiplications.
It should not be surprising that using projective coordinates
improves the speed (and power consumption) most of all of the
optimizations, since the methods specifically target the most
expensive elliptic curve computations and trade them for more
operations of more efficient nature.

However, it is very surprising that Barrett Reductions did not
strongly improve the performance of signature generation and
even slowed it down on every architecture when it was the only
optimization enabled. This slow-down cannot be explained as
an issue in implementation, where every Barrett Reduction
constant had to be recomputed before computing the modulus,
since (although not shown here), Barrett reductions were
shown to contribute heavily to initialization times.



4

Fig. 2. Signature Generation Times with All But One Optimization Enabled
[1]

In addition, the TinyECC paper [1] very unsatisfactorily
does not contribute ideas about why Barrett Reduction has
this effect. Indeed, one would assume that with modular re-
ductions within the prime field necessary for almost every ECC
operation that requires multiplication or squaring, it would
have similar impact to projective coordinates by eliminating
divisions! It is possible that the reason for Barrett Reduction
not having a very large effect while other optimizations are
enabled is that curve-specific optimizations already achieve
most of the gain. When using pseudo-Mersenne primes as the
size of the field, it is already possible to achieve very efficient
modular reductions, obviating the need for another efficient
modular reduction algorithm. This is supported by the fact
that the curve-specific optimizations in the chart, which are
simply choosing pseudo-Mersenne primes, have the second
biggest effect on the execution time. However, this does not
explain why Barrett Reduction increases the execution time
when it is the only “optimization” enabled.

The given results, which are scaled logarithmically in terms
of time, highlight the effectiveness of projective coordinates.
In each case, not using projective coordinates results in a
slowdown of at least three times for signature generation!
This information highlights the value of eliminating highly
expensive field inversions and replacing them with multi-
plications and additions, even modular multiplications. It is
nearly possible to say without qualification that converting to
projective coordinates to use more efficient algorithms is by far
worth the cost of keeping a small number of extra temporary
variables to hold intermediate computations.

IV. CONCLUSION

We see that for TinyECC, efficient computation of elliptic
curve cryptography focuses greatly on methods to manipulate
the representations of numbers to find efficient processes
for point additions and multiplications, often trading expen-
sive inversions for multiplications and additions or building
multiplications from additions and scalar multiplications. Of
all the optimizations that TinyECC implemented, the use of
projective coordinates to reduce expensive field inversions at
the expense of squarings and multiplications was the most
effective. Next most effective was choosing an effective prime

to construct the field so that modular reductions were highly
efficient, mitigating the possibly prohibitive costs of modular
multiplications.

Although TinyECC does not specifically mention consid-
erations for computation on elliptic curves in GF (2m) it
supports arithmetic in that field. However, it does not mention
support for conversions in GF (2m) between polynomial rep-
resentation and normal basis representation; if the conversions
between point representations are efficient, they may achieve
even better power performance for TinyECC on devices over
wireless sensor networks by achieving squarings for the price
of a bitwise shift.

REFERENCES

[1] An Liu and Peng Ning, “Tinyecc: A configurable library for elliptic curve
cryptography in wireless sensor networks,” in Information Processing in
Sensor Networks, 2008. IPSN’08. International Conference on. IEEE,
2008, pp. 245–256.

[2] “Tiny ecc source home page,” http://discovery.csc.ncsu.edu/software/TinyECC/.
[3] Nils Gura, Arun Patel, Arvinderpal Wander, Hans Eberle, and Sheuel-

ing Chang Shantz, “Comparing elliptic curve cryptography and rsa on
8-bit cpus,” in Cryptographic hardware and embedded systems-CHES
2004, pp. 119–132. Springer, 2004.

[4] Henri Cohen, Gerhard Frey, Roberto Avanzi, Christophe Doche, Tanja
Lange, Kim Nguyen, and Frederik Vercauteren, Handbook of elliptic and
hyperelliptic curve cryptography, CRC press, 2005.

[5] Darrel Hankerson, Alfred J Menezes, and Scott Vanstone, Guide to elliptic
curve cryptography, Springer Science & Business Media, 2006.


