
1

Digital Random Number Generation

Using Elliptic Curves

Josephine Vo

Abstract—For two random number generators the Power

Generator, and the Naor Reingold generator, we discuss

their implementation over various curves and present a com-

parison of the resulting performances. The curves we work

with are the Weierstrass Curve and the Edwards curve. In

addition we observe the e↵ects of changing the size of the

curves and mapping them to their projective representa-

tions.

I. Introduction

Random numbers are needed in many applications of
Cryptography to name a few; generation of session keys,
signature keys, block ciphers, and hash functions. Elliptic
curve algorithms can used to generate sequences of pseudo
random numbers. These sequences are well distributed, be-
cause of the arithmetic of the elliptic curve. They are also
secure, because determining information about the gener-
ator would amount to solving the ECDLP, which cannot
yet be done in polynomial time. Thus using elliptic curves
for RNG is very promising, especially if their computation
can be done e�ciently.

In this paper we begin by giving background informa-
tion about the curves and the digital random number gen-
eration (DRNG) algorithms. We also detail the implemen-
tation of the DRNGs over the curves, the implementation
of the curves and the method of gathering data on their per-
formances. We use the data to compare the speed of the
DRGNs over two types of curves, the Weierstrass Curve
and the Edwards curves. In addition we observe the ef-
fects of changing the size of the curves and mapping them
to their projective representations. We should see that for
larger curves the computation over the projective curves
is the faster, in particular, we should see that in with
certain projections, computations over edwards curves is
faster than computations over weierstrass curves.

II. Weierstrass Curves

The Weierstrass curve in this case is over a prime field,
with char(K)! = 2, or 3, and can have the form:

y

2 = x

3 + ax+ b

where a, b 2 K.
I implement the curve as a class with attributes that

specify the curve parameters, order, and base element and
also functions for adding, doubling and multiplying in the
class definition. A curve can be passed into a DRNG which
can access the base point, order information, and functions
to generate a random number. To the top right are the
algorithms for point arithmetic on the curve.

Weierstrass Add
Input: Px, Py, Qx, and Qy,
Output: Rx and Ry

1: if(P == 1) then return Q

2: if(Q == 1) then return P

3: if(Qy == Px+ Py and Qx == Qy) return 1
4: else
5: m = Qy � Py/Qx� Px

6: Rx = m

2 � Px�Qx

Ry = m(Px�Rx)� Y p

7: return (Rx,Ry)

Weierstrass Double
Input: (Px, Py)
Output: (Rx,Ry)

1: m = (3(Px

2) + a)/2Py

2: Rx = (m2 � 2Px)
3: R3 = (m(Px�R3)� Py)
4: return (x3, y3)

Weierstrass Point Multiplication
Input: (Px, Py), and n

Output: (Rx,Ry)

1: let n = n1n2...nm

2: R = 1
3: for i in range 0 to m :
4: if d

i

== 1 then (Rx,Ry) = add(Rx,Ry, x, y)
4: else (x, y) = double(x, y)
5: return (Rx,Ry)

These are the point doubling and addition algorithm
which are used in the point multiplication also detailed
above. The point multiplication algorithm describes re-
quires log2(n) iterations [3]. The following properties are
observed:

A point addition takes 1I + 3M + 5A
A point doubling takes 1I + 3M + 6A

III. Edwards Curve

An Edwards curve over a prime field, with char(K)! =
2, has the form:

y

2 + x

2 = 1 + dy

2
x

2

where d 2 K.
The implementation of the Edwards curve is similar to

that of the Weierstrass curve except there is no need for a
doubling algorithm as it is the same as the addition.



2

Edwards Add
Input: Px, Py, Qx, and Qy,
Output: Rx and Ry

1: if(P == (0, 1) then return Q

2: if(Q == (0, 1) then return P

3: if (Px == �Qx and Py == Qy) then return (0, 0)
4: else:
6: Rx = (PxQy + PyQx)(1 + dPxQxPyQy)�1

7: Ry = (PyQy � PxQx)(1� dPxQxPyQy)�1

8: return (Rx,Ry)

Edwards Point Multiplication
Input: (Px, Py), and n

Output: (Rx,Ry)

1: let n = n1n2...nm

2: R = 1
3: for i in range 0 to m :
4: if d

i

== 1 then (Rx,Ry) = add(Rx,Ry, x, y)
4: else (x, y) = add(x, y, x, y)
5: return (Rx,Ry)

The following properties are observed:
A point addition takes 2I + 9M + 3A

Though this is slower than the weierstrass operations,
the group law is unified and this is useful for security in
applications of the algorithm and is simpler to implement
[2].
It is also worthwhile to note that the inversions are to most
computationally intensive field operation. To work over a
very large prime field we use the property that for any ele-
ment a of the field Z

p

, ap�2 = a

�1 to get the inverse. This
can be made even more e�cient with exponentiation by
squaring (which in elliptic curves has the analogue double-
and-add).

IV. Projective Coordinates

For the Weierstrass curve as previously mentioned,
with the form

y

2 = x

3 + ax+ b

we can define a projective form

Y

2 = X

3 + aXZ

4 + bZ

6
.

The projective point (X,Y, Z) corresponds to the a�ne
point (X/Z

2
, Y/Z

3), and this correspondence is 1-1. Like-
wise for an Edwards curve of the form

y

2 + x

2 = 1 + dy

2
x

2

we can define a projective form

(X2 + Y

2)Z2 = Z

4 + dX

2
Y

2
.

A projective point (X,Y, Z) corresponds to the a�ne point
(X/Z, Y/Z) on the Edwards curve.

The projective coordinates allow for more e�cient
point multiplication, various formulas allow us to avoid in-
versions. In the end we can simply convert the point back
to its a�ne representation if needed.

V. Power Generator

The power generator on elliptic curves is a pseudo ran-
dom number function that yields a uniformly distributed
sequence of random numbers [4].

We can implement the power generator on elliptic
curves. Given a point on the curve, G 2 E(GF

p

), both
of which have prime order r, we randomly choose an inte-
ger e between 2 and r. Let W

o

= G, then the sequence
defined by

W

n

= eW

n1, n = 1, 2, ...

gives us n pseudo random numbers.

VI. Naor Reingold Generator

The Naor Reingold generator is also a function on ellip-
tic curves that produces a uniformly distributed sequence
of random numbers. To define the function let E a curve
of prime order r, and an element G of order l s.t. l|r � 1.
Select an n-dimensional vector a = (a1, a2, ..., an), where
each a

i

2 Z/lZ. Now consider the general form of the Naor
Reingold an intermediate function

f

a,x

(G) = a

x1
1 ...a

xn
n

G

where x = x1x2..xn

, is the bit representation of some inte-
ger x, such that 0  x  2n� 1 with leading zeros if neces-
sary. x and each a

i

have been chosen randomly by pythons
builtin DRNG. The Naor Reingold Elliptic sequence is de-
fined as,

µ

P

= X(f
a,x

(P ))

where X(P ) is the perpendicular distance of a point from
the vertical axis, in others words the x coordinate of a point
P 2 E.

VII. Results

The curves used to obtain the following results are:
the weierstrass curves NIST P-256, NIST P-384, [7] and
[6], and the edwards curves numsp256t1, numsp384t1 and
numsp512t1[5].

The tables below for each algorithm show on the left
columns the size of the curve and in the middle and right
columns is the runtime in seconds on the DRNG. For both
algorithms there is one table for its performance over a�ne
coordinates and one table for its performance of projective
coordinates.

Power Generator:

bitsize A�ne Weierstrass A�ne Edwards
256 0.0931639671326 0.339298963547
384 0.333019971848 1.09542989731
512 0.705378055573 2.80055689812

Power Generator:

bitsize Projective Weierstrass Projective Edwards
256 0.00321197509766 0.00147795677185
384 0.00590801239014 0.00243782997131
512 0.0104079246521 0 0.00364804267883



3

Naor Reingold:

bitsize A�ne Weierstrass A�ne Edwards
256 0.128608942032 3.10117793083
384 3.66616296768 6.51536607742
512 5.731372118 10.6225821972

Naor Reingold:

bitsize Projective Weierstrass Projective Edwards
256 0.0544121265411 0.0151789188385
384 0.0579319000244 0.00884103775024
512 0.0612258911133 0.0270869731903

The runtime for the Naor Reingold varies greatly be-
tween runs while the runtime for the power generator stays
fairly consistent - within 10�2 figures. The cause is still
unclear.

From these results it is clear to see that in the a�ne
case the algorithms perform better over weierstrass curves
than they do over edwards curves. This is consistent with
our hypothesis since the weierstrass operations have one
less inversion per iteration of the point multiplication. We
can also see that the performance increases even more sig-
nificantly through using projective coordinates by the elim-
ination of field inversions. What is interesting here, is that
in projective coordinates the edwards curves outperform
the weierstrass curves. This is due to the fact that there
there are no inversions to account for in either case and
the projective edwards curve addition has less field mul-
tiplications than both the weierstrass curve addition and
doubling.

VIII. Conclusion

There are various places in which we can make our
DRNGs more e�cient. In terms of the field operations,
inversion is the most expensive, optimizing this helps with
our performance especially when there are many inversions.
However the focus of this paper was that we would like to
further reduce the cost of our algorithms by eliminating
inversions where it is possible.

As we have seen there are many ways to do this. The al-
gorithms can be implemented over curves with faster group
law formulas, like how the weierstrass addition and dou-
bling is faster than the edwards addition. We can also ex-
press our curves in their projective forms to try to eliminate
inversions and multiplications. As desired these optimiza-
tions resulted in faster performances of the DRNGS.

IX. Refernces

[1]Cruz, Marcos, Domingo Gmez, and Daniel Sadornil.
”On the Linear Complexity of the NaorReingold Sequence
with Elliptic Curves.” Finite Fields and Their Applications
16.5 (2010): 329-33. Web.

[2] Enos Graham, ”Binary Edwards Curves in Elliptic
Curve Cryptography.” (2013).

[3]Hankerson, Darrel, Alfred Menezes, and Scott Van-
stone. ”Guide to Elliptic Curve Cryptography.” Springer

Professional Computing (2004): n. pag. Web.
[4] Reyad Omar, and Zbigniew Kotulski. ”On Pseudo-

Random Number Generators Using Elliptic Curves and
Chaotic Systems.” Appl. Math. Inf. Sci. Applied Math-

ematics amp; Information Sciences. 9.1 (2015): 31-38.
Web.

[5]C. Costello, P. Longa, and M. Naehrig. ”Ellip-
tic Curve Cryptography (ECC) Nothing Up My Sleeve
(NUMS) Curves andCurve Generation.” Microsoft Re-
search. (2015): 5-7.Web.

[6] M. Lochter and J. Merkle. ”Elliptic Curve Cryptog-
raphy (ECC) Brainpool Standard Curves and Curve Gen-
eration.” secunet Security Networks. (2010):10-13.Web.

[7] ”RECOMMENDED ELLIPTIC CURVES FOR
FEDERAL GOVERNMENT USE.”.Web.


