
1

Analyzing timing attack potential against RSA on
the UDOO board

Hans-Olav Hessen hansolavhessen@gmail.com
&

Arve Nygård mail@arve.in

Abstract—For our project we want to implement the RSA
algorithm on the UDOO board.
RSA relies on modular exponentiation. There are several ways to
do this. A commonly used technique for doing the exponentiation
is called Montgomery exponentiation. However, this technique
is vulnerable to timing attacks. We will implement RSA using
both the standard Montgomery exponentiation and an alternative
technique called Montgomery powering ladder, and attempt to
show whether the UDOO board is susceptible to such a timing
attack.

I. INTRODUCTION

The RSA algorithm was invented by Ron Rivest, Adi Shamir
and Leonard Adleman in 1977. The algorithm is a public-key
cryptographic algorithm that is based on the difficulty of the
factoring problem.
The algorithm can be divided into three different steps:

• Key generation: Create a private and a public key
• Encryption of the message
• Decryption of the message

An important part of the RSA algorithm is the modular
exponentiation. This process consist of reducing the the
temporary result modulo n at each step of the exponentiation.
In this article we are going to focus on two different methods
of doing this: The standard Montgomery method and the
Montgomery power ladder.

II. ALGORITHM WALKTHROUGH

A. RSA algorithm

Key generation:
• Choose two large prime numbers p and q and calculate
n = q ∗ p

• Compute φ(n) = φ(n)φ(q) = (p− 1)(q − 1)
• Choose an e, where 1 < e < φ(n) and where
gcd(φ(n), e) = 1. The e is then the public key.

• Compute d = e−1mod(φ(n)) using the extended Eu-
clidean algorithm. d is then the secret key.

Encryption:
• Chipertext = C = Memod(n), where M is the original

message.
Decryption:
• Message = M = Cdmod(n), where C is the encrypted

message.

B. Square-and-Multiply algorithm

[H] Input: m, d = (dk−1, ..., d0)2, N
Output: S = mdmodN
1. R0 = 1
2. For i = k − 1 to 0 do

• R0 ← R2
0(modN)

• if (di = 1) then R0 ← R0 m (mod N)

3. Return R0

C. Montgomery powering ladder

[H] Input: m, d = (dk−1, ..., d0)2, N
Output: S = mdmodN
1. R0 = 1, R1 = m
2. For i = k − 1to0do

• b← 1− di;Rb ← R0R1(modN)
• Rdi

← R2
di
(modN)

3. Return R0

III. TIMING ATTACK

A timing attack is a side-channel attack where the attacker is
trying to recreate the secret key of a cryptographic algorithm.
The attacker times the duration spent by a process signing a
number of messages and analyses the result by simulating the
RSA algorithm in a local setting. By doing this the attacker can
recover the key bit by bit. The execution time for the Square-
and-Multiply algorithm increases depending on the numbers of
one-bits in the secret key, and enables the attacker to extract
information about the key. While performing these attacks,
there are several sources of noise. This could be disk access,
latency in network, OS scheduling, et cetera.
The Montgomery powering ladder addresses this problem by
always having a fixed set of operations regardless of the cur-
rent bit value. These operations are squaring and multiplying.

IV. UDOO BOARD

The UDOO is a development platform consisting of a
single-board computer with an integrated Arduino compatible
microcontroller. The UDOO board runs an optimized version
of Ubuntu(Linux).



2

V. IMPLEMENTATION

Our UDOO board is equipped with a fully operational Linux
operating system. We have chosen to implement the server in
C++. C++ has the power of a low-level language and combines
this with some levels of abstractions. We wrote a program that
signs a number of random messages, along with the time it
took to sign the messages. This program acts like a signing
server. In order to avoid noise due to network communication,
we did the timing inside the server process. This gives the
attack a bigger chance of success. The signing program outputs
a CSV file with the format ‘message, signature, duration‘,
which we can then analyze in order to recover the secret
private key.

We implemented the attack itself in python.
The attack is an iterative process where we initially guess

that the secret key is one. We then divide the set generated
by the server depending if there was any subtraction in the
simulated RSA algorithm with the guessed key. We then
calculate the average execution time of these to sets. If the
average time of the set with subtractions is significantly larger
then the set with no subtractions we append the key with one,
else we append it with zero. We reuse the same data set for
each iteration. At the end of each iteration the attacker signs a
couple of messages from the data set with the guessed key, and
then checks if it matches with the signature from the server.
If this signature is equal to the real signature, we know that
we have recovered the secret key, and can stop. This approach
lets the attack be agnostic to key length - the attacker does
not have to know the length of the private key.

VI. RESULTS

Before attempting to attack the UDOO board, we did a few
test runs on our laptop, in order to verify that our code was
bug free, and that the approach we selected works.

Since the laptop contains a relatively fast processor and
runs a full fledged OS, the extra time of a subtraction would
completely drown in temporal noise caused by scheduling etc.
To alleviate this, we decided to add a 2 millisecond sleep
at each subtraction in the Montgomery product routine. This
ensured that the time variance caused by the subtractions was
indeed observable. See figure 1 and 2 for an illustration of the
observable difference.

With this managed to recover a 33bit key with just 10k
messages. This confirmed that our approach worked.

We then signed 10k messages on the UDOO board (with no
sleep delay), using a 12 bit private key. We failed to recover
the key.

Finally, we signed 1M messages on the UDOO board, using
a 669 bit private key. Here too we failed to recover the key.

VII. CONCLUSION

On a sufficiently slow computer, this attack is definitively
viable. However, it seems that if the signing process is running
on a full general OS introduces too much temporal noise in
the form of scheduling, garbage collection and all the other
functions an OS has to do.

Fig. 1. The data set for one of the bits that was Zero

Fig. 2. The data set for one of the bits that was One

It turns out the UDOO board’s processor is fast enough that
the subtraction operation takes way too little time, so it’s not
observable whether an extra subtraction was made or not from
the data we generated.

Below is an example from the four-day process of signing
1M messages with a large key. The graph clearly demonstrates
how OS originated delays affected the timing of certain
signatures in a substantial way.



3

Fig. 3. 1 million signatures. Vertical axis is the time in nanoseconds spent
on signing the message. Horizontal axis is the message. Red / blue designates
which group the message landed in during the attack.

Performing a successful timing attack on a process running
on the UDOO board seems to be an intractable problem,
due to the issues mentioned earlier. Our initial plan was to
demonstrate that using the Powering Ladder method for RSA
exponentiation would work as a countermeasure to the timing
attack explained in the introduction. However, since we were
unable to replicate the timing attack on real hardware, we saw
no reason to run a bunch of messages through the Powering
Ladder algorithm. We would have liked to demonstrate the
difference compared to the run with a 1 ms sleep, but we see
no obvious way to insert a corresponding sleep in the Powering
Ladder routine.

VIII. FURTHER WORK

It would be nice to implement this on the Arduino part of
the UDOO board, where it would not run on top of an OS,
but just on the bare metal. This should both remove the OS
related variations, as well as provide an even slower processor
where hopefully the extra delay of the subtraction instruction
would be significant enough to exploit.

A. References

• Implementing the RSA - Marc Joye (slides from course)
• Side-Channel Attacks on Cryptographic Tokens, Coun-

termeasures for Preventing Side-Channel Attacks - Marc
Joye (slides from course)

• Source code: https://github.com/stoutbeard/crypto


