
Cryptographic Engineering Implementation of D-H Key Exchange on UDOO

An efficient implementation of Diffie-Hellman key
exchange protocol on UDOO

Sachin Rathod and Sahaj Biyani
{rathod,sahajbiyani}@cs.ucsb.edu

(UCSB Computer Science) CS290G : Course Project June 11, 2015 1 / 17

{rathod,sahajbiyani}@cs.ucsb.edu


Cryptographic Engineering Implementation of D-H Key Exchange on UDOO

Diffie-Hellman Key Exchange

How can two parties agree on a secret value when all of their
messages might be overheard by an eavesdropper?

The Diffie-Hellman [1] key agreement protocol (1976) was the first
practical method for establishing a shared secret over an unsecured
communication channel.

The point is to agree on a key that two parties can use for a
symmetric encryption, in such a way that an eavesdropper cannot
obtain the key.

The Diffie-Hellman algorithm accomplishes this, and is still widely
used.

(UCSB Computer Science) CS290G : Course Project June 11, 2015 2 / 17



Cryptographic Engineering Implementation of D-H Key Exchange on UDOO

Diffie-Hellman Algorithm Analogy

(UCSB Computer Science) CS290G : Course Project June 11, 2015 3 / 17



Cryptographic Engineering Implementation of D-H Key Exchange on UDOO

Diffie-Hellman Algorithm

Steps in the Algorithm:

1 Alice and Bob agree on a prime number p and a base g .

2 Alice chooses a secret number a, and sends Bob (ga mod p)

3 Bob chooses a secret number b, and sends Alice (gb mod p)

4 Alice computes ((gb mod p)a mod p)

5 Bob computes ((ga mod p)b mod p)

(UCSB Computer Science) CS290G : Course Project June 11, 2015 4 / 17



Cryptographic Engineering Implementation of D-H Key Exchange on UDOO

Implementation Methods

We tried different exponentiation methods to compute the key values to
compare their performance on different platforms.

Three methods of exponentiation:

1 Binary Exponentiation (Implemented)

2 Montgomery Exponentiation (Implemented)

3 OpenSSL (Used from library)

(UCSB Computer Science) CS290G : Course Project June 11, 2015 5 / 17



Cryptographic Engineering Implementation of D-H Key Exchange on UDOO

Implementation

For managing arbitrary length numbers, we used OpenSSL’s BIGNUM
structure [2] and its library functions.

This library performs operations on integers of arbitrary size. The
operations include arithmetic (add, multiply etc.), comparison,
conversion to different formats etc.

(UCSB Computer Science) CS290G : Course Project June 11, 2015 6 / 17



Cryptographic Engineering Implementation of D-H Key Exchange on UDOO

Binary Exponentiation Method

One of the methods we used for analysis is binary exponentiation. The
binary exponentiation method is explained by the following algorithm:

Input: M, e, n.
Output: C = Me mod n.
Step 1. if ek−1 = 1 then C = M else C = 1
Step 2. if i = k − 2 downto 0

2a. C = C .C (mod n)
2b. if ei = 1 then C = C .M (mod n)

Step 3. return C

(UCSB Computer Science) CS290G : Course Project June 11, 2015 7 / 17



Cryptographic Engineering Implementation of D-H Key Exchange on UDOO

Montgomery Exponentiation Method

Another method we used for analysis is montgomery exponentiation. The
montgomery exponentiation method is explained by the following
algorithm:

function MonPro(ā, b̄)
Step 1. t = ā.b̄
Step 2. m = t.n′ mod r
Step 3. u = (t + m.n)/r
Step 4. if u ≥ n then return u − n

else return u

(UCSB Computer Science) CS290G : Course Project June 11, 2015 8 / 17



Cryptographic Engineering Implementation of D-H Key Exchange on UDOO

Montgomery Exponentiation Method

function ModExp(M, e, n) { n is odd }
Step 1. Compute n′ using Euclid’s algorithm
Step 2. M̄ = M.r mod n
Step 3. C̄ = 1.r mod n
Step 4. for i = k − 1 down to 0 do
Step 5. C̄ = MonPro(C̄ , C̄ )
Step 6. if ei = 1 then¯C = MonPro(M̄, C̄ )
Step 7. C = MonPro(C̄ , 1)
Step 8. return C

(UCSB Computer Science) CS290G : Course Project June 11, 2015 9 / 17



Cryptographic Engineering Implementation of D-H Key Exchange on UDOO

Hardware Specifications: UDOO Board

Results are compared between UDOO board and standard PC with
following configurations:

UDOO PC

CPU 1 x [ARMv7 Processor rev 10 (v7l)] 4 x [Intel(R) Core(TM) i5-3337U CPU @ 1.80GHz]

Physical Memory 800 MB 3.7 GB

OS Ubuntu 12.04 32-bit Ubuntu 14.04 64-bit

(UCSB Computer Science) CS290G : Course Project June 11, 2015 10 / 17



Cryptographic Engineering Implementation of D-H Key Exchange on UDOO

Diffie-Hellman Parameters

Prime p and generator g :

1 IETF standard 1024 and 2048-bit primes and corresponding generators
(having 160-bit and 224-bit prime order subgroups). RFC5114 [3]

2 Random ’safe’ primes generated using OpenSSL library having given
number of bits and generator g is taken as 5). (Safe primes are of the
form 2p + 1, where p is also prime)

Safe primes are of the form 2p + 1, where p is also prime. Safe primes
offers security against Pohlig and Hellman attacks, but require more
computation.

Parameters a and b : random primes with given number of bits

(UCSB Computer Science) CS290G : Course Project June 11, 2015 11 / 17



Cryptographic Engineering Implementation of D-H Key Exchange on UDOO

Results on UDOO

Avg time required for key generation on UDOO (in seconds):

Key-size (bits) Binary Exponentiation Montgomery Exponentiation OpenSSL Exponentiation

256 0.005414833 0.009804000 0.001707833

512 0.023968332 0.047772333 0.008993666

1024 0.148043826 0.284063160 0.058445834

2048 0.294208169 0.564812660 0.114655666

(UCSB Computer Science) CS290G : Course Project June 11, 2015 12 / 17



Cryptographic Engineering Implementation of D-H Key Exchange on UDOO

Comparing UDOO and PC

Avg time required for key generation (in seconds):

Key-size (bits) Binary Exponentiation Montgomery Exponentiation OpenSSL Exponentiation

1024 [UDOO] 0.148043826 0.284063160 0.058445834

1024 [PC] 0.007844172 0.018422132 0.001439296

2048 [UDOO] 0.294208169 0.564812660 0.114655666

2048 [PC] 0.015397863 0.036434080 0.002855158

(UCSB Computer Science) CS290G : Course Project June 11, 2015 13 / 17



Cryptographic Engineering Implementation of D-H Key Exchange on UDOO

Conclusions

D-H key generation performance:

Binary exponentiation 2-3 times faster than Montgomery
exponentiation.

OpenSSL implementation of exponentiation is 3 times faster than
our binary exponentiation.

This could be because OpenSSL implementation is highly efficient
than our implementation.

(UCSB Computer Science) CS290G : Course Project June 11, 2015 14 / 17



Cryptographic Engineering Implementation of D-H Key Exchange on UDOO

Key Learnings from the Project

We learnt a lot from this project. Some of the learnings are as follows:

Hands-on development on the UDOO platform.

The use of OpenSSL library for handling arbitrary length integer
operations in C programming language.

The implementation of security protocols and operations in secure
and efficient manner.

(UCSB Computer Science) CS290G : Course Project June 11, 2015 15 / 17



Cryptographic Engineering Implementation of D-H Key Exchange on UDOO

Future Work

Future iterations of this project can include:

Improving efficiency of Montgomery exponentiation implementation
for UDOO board.

Using the key exchange implementation to communicate messages
between remote clients and testing its security.

(UCSB Computer Science) CS290G : Course Project June 11, 2015 16 / 17



Cryptographic Engineering Implementation of D-H Key Exchange on UDOO

References

[1] Diffie, W.; Hellman, M. (1976). ”New di-
rections in cryptography”. IEEE Transactions
on Information Theory 22 (6): 644 - 654.
doi:10.1109/TIT.1976.1055638

[2] Open SSL - Cryptography and SSL/TLS Toolkit
[https://www.openssl.org/]

[3] IETF Standard RFC5114
[http://tools.ietf.org/html/rfc5114]

(UCSB Computer Science) CS290G : Course Project June 11, 2015 17 / 17


